
Retrofitting Rigour

Peter Sewell

University of Cambridge

July 2014

ITP, Vienna

– p. 1

Retrofitting Rigour

(a hymn to empirical science)

Peter Sewell

University of Cambridge

July 2014

ITP, Vienna

– p. 1

Things I Know About Software

– p. 2

Things I Know About Software

1. there’s a lot of it

– p. 2

Things I Know About Software

1. there’s a lot of it

2. it goes wrong a lot

– p. 2

we’ve failed

– p. 3

we’ve failed

semantics and verification have had regrettably little impact
on mainstream system building in the last 50 years

– p. 3

we’ve failed

semantics and verification have had regrettably little impact
on mainstream system building in the last 50 years

Perhaps 1 000 000+ s/w and h/w engineers.

0.00. . .01% of s/w is verified functionally correct?

– p. 3

– p. 4

– p. 5

But computer systems are built by

smart people

in big groups

subject to commercial pressures

using the best components and tools they know....

– p. 6

– p. 7

– p. 8

This Talk

Before verification (of some component): we have to
precisely characterise the existing interfaces

the assumptions about underlying layers

the properties it aims to provide

– p. 9

This Talk

Before verification (of some component): we have to
precisely characterise the existing interfaces

the assumptions about underlying layers

the properties it aims to provide

How to investigate that?

– p. 9

This Talk

Before verification (of some component): we have to
precisely characterise the existing interfaces

the assumptions about underlying layers

the properties it aims to provide

How to investigate that?

Deeper point: worth doing for its own sake, even without
any verification

each case reveals a fascinating can of worms: deep
semantic questions intertwined with fundamental
engineering concerns and legacy goop

an incremental way to get semantics (and maybe later
verification) into mainstream practice

– p. 9

This Talk

Part 1: experiment and testing

Part 2: consequences for specification tools

– p. 10

This Talk

Examples:

IBM Power and ARM concurrency (operational)

...and axiomatic

C/C++11 concurrency semantics

TCP and Sockets API

PL

SWIFT: optically switched MAC protocol

x86 concurrency semantics

x86, Power, and ARM instruction semantics

CompCertTSO verified compiler

– p. 10

Current Practice

1. (sometimes, at best) specify in prose

2. write code

3. write some ad hoc tests

4. test-and-fix-and-extend until marketable

5. test-and-fix-and-extend until no longer marketable

6. use until too bitrotted, device breaks, or obsolete

– p. 11

Current Practice

1. (sometimes, at best) specify in prose

2. write code

3. write some ad hoc tests

4. test-and-fix-and-extend until marketable

5. test-and-fix-and-extend until no longer marketable

6. use until too bitrotted, device breaks, or obsolete

– p. 11

Investigating existing abstractions

Sources:

1. from a spec

2. from an existing canonical impl

3. from grey-box testing of existing implementations

4. from discussion with designers/architects

5. from interop testing with existing systems

All of the above, iterated

– p. 12

“Executable” Models?

Executable specifications? Not quite the point.

For this empirical conformance testing between model and
implementation, the semantics must be

executable as a test oracle

to decide whether some experimentally observed behaviour
is allowed by the model

...and executable as prosthetic for exploring semantics

– p. 13

Any nondeterminism or loose specification?

– p. 14

Any nondeterminism or loose specification?

If not, trivial:

spec can be executable reference impl

use whatever language is clearest
(pure functional, algorithmic inductive relation, C,...)

run on same input, check equal output

– p. 14

Any nondeterminism or loose specification?

If so, more interesting. Tied in with:

mathematical form of spec

size and nature of test cases

observability of implementations

social/legal context

Look at examples

– p. 14

Operational h/w memory models (Power/ARM)
[Sarkar,Maranget,Alglave,Williams,Sewell]

Existing implementations? Yes – something to test

– p. 15

Operational h/w memory models

Existing implementations? and they really differ:

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegr

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M

MP+dmb/sync+po Allow 670k/2.4G 0/26G U 13M/39G 3.1M/3.9G 50/28M

MP+dmb/sync+addr Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G

MP+dmb/sync+ctrl Allow 363k/5.5G 0/43G U 27M/167G 5.7M/3.9G 1.5k/53M

MP+dmb/sync+ctrlsib/isync Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G

S+dmb/sync+po Allow 0/2.4G U 0/18G U 0/35G U 271k/4.0G 84/58M

– p. 15

Operational h/w memory models

Existing implementations? form some kind of de facto
standard – that’s what codebase is tested against

– p. 15

Operational h/w memory models

Existing implementations? form some kind of de facto
standard – that’s what codebase is tested against

But architecture texts deliberately looser

– p. 15

Operational h/w memory models

Existing implementations? form some kind of de facto
standard – that’s what codebase is tested against

But architecture texts deliberately looser

Also some processors don’t conform

– p. 15

Operational h/w memory models
Observability of implementations

Experimental
opaque execution – just final register and memory state

but (empirically) relatively good exploration of set of
executions – Luc Maranget’s litmus magic, ∼1010

iterations/test

(opposite situation for pre-silicon testing)

– p. 16

Operational h/w memory models
Observability of implementations

Test generation [Alglave,Maranget] Model inspired, not
model-generated

enumerate non-SC cycles (Rfe PodRR Fre DMBdWW) and
generate:

ARM MP+dmb+po

{ %x0=x; %y0=y; %y1=y; %x1=x; }

P0 | P1

MOV R0, #1 | LDR R0, [%y1]

STR R0, [%x0] | LDR R1, [%x1]

DMB |

MOV R1, #1 |

STR R1, [%y0] |

exists (1:R0=1 and 1:R1=0)
– p. 16

Operational h/w memory models
Observability of implementations

Legal and Social
Opaque designs — so black-box testing

But can talk with architects and designers to limited extent:

intuition for internal structure

judgment calls on architectural intent

(IBM, ARM, Qualcomm, AMD)

– p. 16

Operational h/w memory models
Mathematical form of semantics

unlabelled transition system s −→ s′

observation function obs from final s to register and
memory state

massively nondeterministic (cf ppcmem)

– p. 17

Operational h/w memory models
Mathematical form of semantics

unlabelled transition system s −→ s′

observation function obs from final s to register and
memory state

massively nondeterministic (cf ppcmem)

But interesting examples are small, so can compute

{obs(s)|s0 −→
∗ s 6−→}

by exhaustive search

and check set inclusion wrt experimental observations

Can also explore single paths interactively (or heuristically)

– p. 17

Operational h/w memory models
Mathematical form of semantics

unlabelled transition system s −→ s′

observation function obs from final s to register and
memory state

massively nondeterministic (cf ppcmem)

Intensional structure matters

s = sstorage | sthread 1 | . . . | sthread N

abstracting microarchitecture in architect-friendly way
(intensional and intentional validation...)

c.f. sync acks and DMB

– p. 17

Operational h/w memory models

Inventing precise architectural abstractions

incrementally...

– p. 18

Axiomatic h/w memory models
[Alglave,Maranget,Sela Mador-Haim,...]

Same experimental context

Different mathematical form of semantics

1. Threadwise semantics

program 7→ set of candidate complete executions

Each corresponds to a control-flow unfolding and an
arbitrary choice of memory read values

Inductive on program structure, “routine”

2. then filter with predicate on candidate execution
(acyclicity of various relations,...)

– p. 19

Axiomatic h/w memory models

Algorithmically: can find all executions of small examples.
Still exponential, but rather faster in practice than
(intentionally naive) path exploration

{obsax (xt, xw)|xt ∈ threadwise(prog)∧

xw ∈ all_rf_co(xt)∧
consistent(xt, xw)}

But can’t explore single paths (e.g. to walk along emulation
trace)

Simpler for some proofs; harder for others (induction?)

Harder to relate to microarch

– p. 19

Aside: Testing Metatheory Too

For equivalence between operational and axiomatic
models:

compare allowed outcomes on same test suite
(9 000 litmus tests)

– p. 20

Aside: Testing Metatheory Too

For equivalence between operational and axiomatic
models:

compare allowed outcomes on same test suite
(9 000 litmus tests)

make mappings between operational and axiomatic
executions executable and test

if setup right, easy first step before (and complement to)
hand or mechanised proof

– p. 20

C/C++11 axiomatic PL memory model
[Batty, Owens, Sarkar, Sewell,...]

behaviour emerges from compiler + hardware

Existing implementations? Not during design

Now supported by GCC and Clang — code open but
inscrutable

Hard to restrict existing optimisations, but compilation of
atomics mutable

– p. 21

C/C++11 axiomatic PL memory model

Mathematical form of semantics

1. threadwise semantics produces set of candidate
complete executions

2. filter with consistency predicate

3. if any consistent execution is racy, program is undefined

(far from traditional opsem or densem)

Also massively nondeterministic

Again can enumerate exhaustively for litmus test examples,
but combinatorics gets tricky quickly (cppmem)

(Equivalent operational version by Nienhuis — out-of-order
and symbolic)

– p. 21

C/C++11 axiomatic PL memory model

Experimental testing
much harder:

much bigger examples needed to trigger compiler
optimisation
(much too big to run semantics on them exhaustively)

harder to explore set of executions

– p. 21

C/C++11 axiomatic PL memory model

Experimental testing
much harder:

much bigger examples needed to trigger compiler
optimisation
(much too big to run semantics on them exhaustively)

harder to explore set of executions

but devious scheme of [Morisset, Pawan, Zappa Nardelli]
avoids reliance on randomness:

experimental observability of single-thread memory
trace, by binary rewriting

prove facts about what changes are legal; use those
rather than evaluating semantics directly

– p. 21

TCP
[Bishop, Norrish, Ridge, Sewell, Wansborough,...]

Existing implementations? Yes - and they are de facto
standard

Observability of implementations

Experimental visible wire, Sockets API, and debug
events
Need medium-length traces to explore behaviour, and
test harness to fake wire events

Test generation semi-systematic of 6000 traces

Legal and social BSD, Linux open; Windows closed.
Code semi-scrutable – some reverse engineering of
spec

– p. 22

TCP
Mathematical form of semantics

labelled transition system s
l
−→ s′ labelled with wire, API,

debug events, and time passage

lots of nondeterminism, in implementations and in spec
— and much is internal

Given experimental trace l1, . . . , ln, try to decide whether

admitted (∃s. s0−→∗ l1−→ −→∗ l2−→ . . .−→∗ ln−→ s)

maintain symbolic state as HOL4 formula

simplify

backtrack occasionally

Heavy!

– p. 22

TCP
Conformance testing along trace is highly discriminating:

The received urgent pointer is not updated in the fast-path code, so if
2GB of data is received in the fast path, subsequent urgent data will
not be correctly signalled.

After 232 segments there is a 16 segment window during which, if the
TCP connection is closed, the RTT values will not be cached in the
routing table.

The receive window is updated on receipt of a bad segment.

Simultaneous open can respond with an ACK rather than a
SYN,ACK.

The code has an erroneous definition of the TCPS_HAVERCVDFIN

macro, making it possible, for example, to generate a SIGURG signal
from a socket after its connection has been closed.

listen() can be (erroneously) called from any state, which can
generate pathological segments (with no flags or only a FIN).

– p. 22

Moral

minimise internal nondeterminism

(by protocol/API design and test harness instrumentation)

make the standards testable (executable as test oracle)

– p. 23

Programming languages

bizarrely, almost no testing of relationship between
semantics and implementations!

or of basic properties, eg type preservation

– p. 24

Impact

many pre-verification benefits

identify key examples and phenomena

establish de facto standards

fix industry specs

build exploration tools

provide test suites

...

(all things that practitioners can readily engage with)

plus base semantics for verification

– p. 25

Part 2: writing specifications

– p. 26

Need reusable models

Establishing (justified, validated, accepted) models can be
a big undertaking.

Must be generally reusable, by many groups for many
purposes.

– p. 27

Lem
[Owens, Mulligan, Tuerk, Gray, Bohm, Zappa Nardelli, Sewell,...]

Language and tool for engineering such specifications

System available; rough diamond in ITP 2011; paper at
ICFP 2014

Discuss requirements, design, experience
(c.f. prover front-ends)

– p. 28

Moderately large-scale definitions
Power/ARM operational concurrency model: 3000 LoS

Power/ARM axiomatic concurrency model: 1100 LoS

C/C++11 axiomatic concurrency model: 1500 LoS

TCP and Sockets API: 6700 LoS

OCamllight semantics: 3100 LoS (Owens, from Ott)

CakeML semantics, compiler: 4900 LoS (Kumar et al.)

C Core semantics: 8200 LoS (Memarian)

C/C++11 operational concurrency: 1100 LoS (Nienhuis)

Operational no-thin-air model: 1100 LoS (Pichon)

– p. 29

Modest mathematical demands
FP features:

pure higher-order functions (plus monads, sometimes)

recursive definitions

recursive algebraic datatypes, lists, records

pattern matching

top-level ML parametric polymorphism

simple type classes for overloading

simple module system

Logic and sets:

universal and existential quantification (higher-order)

sets and set comprehensions, relations, finite maps

inductive relation definitions

lemma statements
– p. 30

Modest mathematical demands

No variable binding

No dependent types (or very simple ones)

No type abstraction

No functors

...these things are behaviourally subtle, but their
whole-system models can be mathematically
straightforward

– p. 30

Tool requirement 1: Executability as Test Oracle

Everything is finite (in executions of small test cases) —
quantify only over concrete finite sets

Power/ARM operational model: computable transition
preconditions and resulting states

Power/ARM and C/C++11 axiomatic models: exhaustively
enumerate candidate complete executions, computable
predicates over those

C/C++11 operational models: need some symbolic
execution

TCP: needed very symbolic execution (HOL4, not Lem)

– p. 31

Tool requirement 1: Executability as Test Oracle

System integration:

need executable code in conventional PL that can be linked
with front-end test parser, memoising exploration, and GUI

Lem lem
−−→ OCaml

ocamlopt
−−−−−→ Batch executable

Lem lem
−−→ OCaml ocamlc

−−−−→ OCaml bytecode
js_of_ocaml
−−−−−−−→JavaScript

– p. 31

Tool requirement 1: Executability as Test Oracle

Performance?

sometimes can be (almost) completely naive

sometimes mildly tweak model or execution harness

state spaces on the limit of viability, and symbolic is worse
(cluster for ppcmem, 100 machines for weeks for TCP...)

– p. 31

Tool requirement 2: Presentation

We have to quote definition fragments in multiple
documents.

Scale, intricacy, and lifetime means this must be automatic

To be comprehensible, need decent typesetting and manual
control of layout

– p. 32

Tool requirement 2: Presentation

let visible_side_effect_set actions hb =

{ (a,b) | forall ((a,b) IN hb) |

is_write a && is_read b && (loc_of a = loc_of b) &&

not (exists (c IN actions). not (c IN {a;b}) &&

is_write c && (loc_of c = loc_of b) &&

(a,c) IN hb && (c,b) IN hb) }

– p. 33

Tool requirement 2: Presentation

let visible_side_effect_set actions hb =

{ (a,b) | forall ((a,b) IN hb) |

is_write a && is_read b && (loc_of a = loc_of b) &&

not (exists (c IN actions). not (c IN {a;b}) &&

is_write c && (loc_of c = loc_of b) &&

(a,c) IN hb && (c,b) IN hb) }

To use Lem-typeset version:

\LEMvisibleSideEffectSet

from

alldoc-inc.tex

– p. 34

Tool requirement 2: Presentation

let visible_side_effect_set actions hb =

{ (a,b) | forall ((a,b) IN hb) |

is_write a && is_read b && (loc_of a = loc_of b) &&

not (exists (c IN actions). not (c IN {a;b}) &&

is_write c && (loc_of c = loc_of b) &&

(a,c) IN hb && (c,b) IN hb) }

To use Lem-typeset version:

let visible_side_effect_set actions hb =

{ (a, b) | ∀ (a, b) ∈ hb |

is_write a ∧ is_read b ∧ (loc_of a = loc_of b) ∧

¬ (∃ c ∈ actions . ¬ (c ∈ {a, b}) ∧

is_write c ∧ (loc_of c = loc_of b) ∧

(a, c) ∈ hb ∧ (c, b) ∈ hb) }
– p. 35

Tool requirement 2: Presentation

And linkable HTML

——

And automatic production of execution graphs

And hand-translations into English

And for TCP more elaborate special-purpose structuring

– p. 36

Tool requirement 3: Simplicity
simple usage model:

must fit into more complex build process and workflow:
command-line tool (compiler-style)
typechecks definitions
generates executable code, typesetting, prover defns

clean language design

decent library for specification

scales to large specs (1–10k LOS)

Make writing specifications more like programming
(accessible to FP-friendly systems people)

– p. 37

Tool requirement 4: usable prover definitions

Routinely need to make models available in multiple provers
(HOL4, Isabelle/HOL, Coq). Have to avoid prover lock-in.

Need usable source definitions, not opaque lambda terms.

In general v. hard, but here in simple fragment. Doable?

Previous state of the art for porting definitions: sed

– p. 38

Tool requirement 4: usable prover definitions
Whitespace

Where possible, preserve source whitespace layout and
comments

Try to generate readable idiomatic code.

– p. 39

Tool requirement 4: usable prover definitions
Target-specific encodings

Encode around annoying target differences, eg pattern
matching:

OCaml Coq HOL4 Isabelle/HOL
record patterns y y n n
as-patterns y y n n
zero-and-succ n y y y
arb. patterns in lets y n n n
non-exhaustive y n y y
redundant rows y n some n

...minimal pattern-match compilation.

– p. 39

Tool requirement 4: usable prover definitions
Equality

Isabelle/HOL and HOL4 have pervasive boolean equality
constant α → α → BOOL

OCaml has pervasive equality constant safe to use at some
types

Coq’s equality has type α → α → PROP

...use Lem’s type-class machinery, but with mechanism to
suppress dictionary-passing for HOL4 and Isabelle/HOL

– p. 39

Tool requirement 4: usable prover definitions
Target-specific bindings

Sophisticated binding and renaming mechanism

Lem understands backend namespaces, automatically
renames constants

Can e.g. change order of arguments to a bound function in
a backend, inline a definition completely, rename functions,
etc.

– p. 39

Tool requirement 4: usable prover definitions
Lem library

Functions, relations, sets, lists, finite maps, machine words
etc.

Partitioned:

standard library portable in all backends

‘extra’ may only be in some, or be underspecified

nat and natural etc.

– p. 39

Tool requirement 4: usable prover definitions
Meaning preservation?

– p. 39

Lem Implementation
[Owens, Mulligan, Tuerk, Gray, Bohm, Zappa Nardelli, Sewell,...]

Tool typechecks Lem definitions and generates

LaTeX and (simple) HTML

OCaml

HOL4, Isabelle/HOL, and (preliminary) Coq

Implementation in 29 000 lines OCaml, 7 700 of Lem
libraries, 3 800 of target libraries. 3.5 person-years.

Tool available. Paper in ICFP 2014.

– p. 40

Lem in use

Operational concurrency model for Power and ARM (3000 LoS, Sarkar et al)

Axiomatic concurrency model for C/C++11 (1500 LoS, Batty et al)

Correctness proofs for compilation scheme from C/C++11 concurrency primitives to
Power (900 LoS for lemmas, Batty et al)

Axiomatic memory model for Power (1100 LoS, Mador-Haim et al)

TCP/IP protocols and Sockets API specification (6700 LoS, Bishop et al. ported from
HOL4

OCamllight specification (3100 LoS, Owens et al, generated from Ott)

CakeML language semantics and verified compiler (4900 LoS, Kumar et al.)

C Core semantics (8200 LoS, Memarian)

Operational concurrency model for C/C++11 (1100 LoS, Nienhuis)

Operational no-thin-air model (1100 LoS, Pichon)

– p. 41

Lem and Ott

Ott: earlier tool [Sewell, Zappa Nardelli, Owens]

user-defined syntax

inductive relations

generate LaTeX, and provers (Coq, HOL4, Isabelle), not
execution

Lem:

FP-style fixed syntax

types, functions, and inductive relations

generate LaTeX, OCaml, and provers (Coq-ish, HOL4,
Isabelle)

Complementary — and can generate Lem from Ott.
– p. 42

Lem Status

It’s great

– p. 43

Lem Status

It’s great

except:

Lem’s type classes are a bit too simple

really idiomatic?
(esp. to generate good Coq code, need refined typing)

inductive relation code generation not fully implemented

want random test generation

internals could do with reengineering

really want Lem+Ott upper bound, including parser/pp
gen.

– p. 43

Conclusion

investigate behaviour of extant abstractions

...as foundation for verification and for its own sake

with combination of experiment, white-box investigation,
testing, and engagement with designers.

Key technical point: semantics must be

executable as a test oracle

– p. 44

Conclusion

investigate behaviour of extant abstractions

...as foundation for verification and for its own sake

with combination of experiment, white-box investigation,
testing, and engagement with designers.

Key technical point: semantics must be

executable as a test oracle

what language and tool support do we need for
large-scale specification?

Lem, as a step towards that

Path to incremental engagement with mainstream practice?

– p. 44

	Things I Know About Software
	Things I Know About Software
	Things I Know About Software

	This Talk
	This Talk
	This Talk

	This Talk
	This Talk

	Current Practice
	Current Practice

	Investigating existing abstractions
	``Executable'' Models?
	Any nondeterminism or loose specification?
	Any nondeterminism or loose specification?
	Any nondeterminism or loose specification?

	Operational h/w memory models onlySlide *{1}{(Power/ARM)}
	Operational h/w memory models onlySlide *{1}{(Power/ARM)}
	Operational h/w memory models onlySlide *{1}{(Power/ARM)}
	Operational h/w memory models onlySlide *{1}{(Power/ARM)}
	Operational h/w memory models onlySlide *{1}{(Power/ARM)}

	Operational h/w memory models
	Operational h/w memory models
	Operational h/w memory models

	Operational h/w memory models
	Operational h/w memory models
	Operational h/w memory models

	Operational h/w memory models
	Axiomatic h/w memory models
	Axiomatic h/w memory models

	Aside: Testing Metatheory Too
	Aside: Testing Metatheory Too

	C/C++11 axiomatic PL memory model
	C/C++11 axiomatic PL memory model
	C/C++11 axiomatic PL memory model
	C/C++11 axiomatic PL memory model

	TCP
	TCP
	TCP

	Moral
	Programming languages
	Impact
	Need emph {reusable} models
	Lem
	Moderately large-scale definitions
	Modest mathematical demands
	Modest mathematical demands

	Tool requirement 1: Executability as Test Oracle
	Tool requirement 1: Executability as Test Oracle
	Tool requirement 1: Executability as Test Oracle

	Tool requirement 2: Presentation
	Tool requirement 2: Presentation
	Tool requirement 2: Presentation
	Tool requirement 2: Presentation
	Tool requirement 2: Presentation
	Tool requirement 3: Simplicity
	Tool requirement 4: usable prover definitions
	Tool requirement 4: usable prover definitions
	Tool requirement 4: usable prover definitions
	Tool requirement 4: usable prover definitions
	Tool requirement 4: usable prover definitions
	Tool requirement 4: usable prover definitions
	Tool requirement 4: usable prover definitions

	Lem Implementation
	Lem in use
	Lem and Ott
	Lem Status
	Lem Status

	Conclusion
	Conclusion

