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Introduction
M1 is a simple (“toy”) model of the JVM, developed by
Moore to teach formal modeling and mechanized code
proof.

Details are in the paper and in ACL2 input scripts
distributed with the ACL2 Community Books (as per the
paper).

Feel free to email questions to moore@cs.utexas.edu.
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Typical M1 Programming Challenge
Write a program that takes two natural numbers, i and j, in
reg[0] and reg[1] and halts with 1 on the stack if i < j and 0
on the stack otherwise.
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top-of-stack equals 0”!



Typical M1 Programming Challenge
Write a program that takes two natural numbers, i and j, in
reg[0] and reg[1] and halts with 1 on the stack if i < j and 0
on the stack otherwise.

Difficulty: The only test in the M1 language is “jump if
top-of-stack equals 0”!

Solution: Count both variables down by 1 and stop when
one or the other is 0.
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Java Bytecode Solution
ILOAD 1 // 0
IFEQ 12 // 1 if reg[1]=0, jump to 13;
ILOAD 0 // 2
IFEQ 12 // 3 if reg[0]=0, jump to 15;
ILOAD 0 // 4
ICONST 1 // 5
ISUB // 6
ISTORE 0 // 7 reg[0] := reg[0] - 1;
ILOAD 1 // 8
ICONST 1 // 9
ISUB // 10
ISTORE 1 // 11 reg[1] := reg[1] - 1;
GOTO -12 // 12 jump to 0;
ICONST 0 // 13
IRETURN // 14 halt with 0 on stack;
ICONST 1 // 15
IRETURN // 16 halt with 1 on stack;

Output by javac compiler, except pcs shown as instruction counts.
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An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if reg[1]=0, jump to 13;
(ILOAD 0) ; 2
(IFEQ 12) ; 3 if reg[0]=0, jump to 15;
(ILOAD 0) ; 4
(ICONST 1) ; 5
(ISUB) ; 6
(ISTORE 0) ; 7 reg[0] := reg[0] - 1;
(ILOAD 1) ; 8
(ICONST 1) ; 9
(ISUB) ; 10
(ISTORE 1) ; 11 reg[1] := reg[1] - 1;
(GOTO -12) ; 12 jump to 0;
(ICONST 0) ; 13
(HALT) ; 14 halt with 0 on stack;
(ICONST 1) ; 15
(HALT)) ; 16 halt with 1 on stack;

Call this constant κ.
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M1
The M1 state provides

• a program counter

• a fixed (but arbitrary) number of registers whose values
are unbounded integers

• an unbounded push down stack

• a program which is a fixed, finite list of instructions
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M1
The M1 instruction set:

• load/store between top-of-stack and registers
• push numeric constants
• add, subtract, and multiply
• jump, conditional jump (if 0), and halt



M1
The M1 instruction set:

• load/store between top-of-stack and registers
• push numeric constants
• add, subtract, and multiply
• jump, conditional jump (if 0), and halt

M1 does not provide subroutine call and return!
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Each instruction is formalized with a state transition
function.

Given a state s and a natural n, we define M1(s, n) to be
the result of stepping n times from s.
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Each instruction is formalized with a state transition
function.

Given a state s and a natural n, we define M1(s, n) to be
the result of stepping n times from s.

It is possible to prove properties of M1 programs, e.g., that
if reg[0] and reg[1] contain natural numbers, program κ

halts and leaves 1 or 0 on the stack, depending on whether
reg[0] < reg[1].

Partial correctness results can be proved too, e.g., κ does
not terminate if reg[0] and reg[1] are negative integers.
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Turing Machines
Description∗ trace of TMI(st, tape, tm, n)

tm =*rogers-tm* n st tape

((Q0 1 0 Q1) ‖ 0 Q0 (1 1 1 1 1)
(Q1 0 R Q2) ‖ 1 Q1 (0 1 1 1 1)
(Q2 1 0 Q3) ‖ 2 Q2 (0 1 1 1 1)
(Q3 0 R Q4) ‖ 3 Q3 (0 0 1 1 1)
(Q4 1 R Q4) ‖ 4 Q4 (0 0 1 1 1)
(Q4 0 R Q5) ‖ 5 Q4 (0 0 1 1 1)
(Q5 1 R Q5) ‖ 6 Q4 (0 0 1 1 1)
(Q5 0 1 Q6) ‖ 7 Q4 (0 0 1 1 1 0)
(Q6 1 R Q6) ‖ 8 Q5 (0 0 1 1 1 0 0)
(Q6 0 1 Q7) ‖ 9 Q6 (0 0 1 1 1 0 1)
(Q7 1 L Q7) ‖ 10 Q6 (0 0 1 1 1 0 1 0)
(Q7 0 L Q8) ‖ . . . . . . . . .

(Q8 1 L Q1) ‖ 75 Q7 (0 0 0 0 0 0 1 1 1 1 1 1 1 1)
(Q1 1 L Q1)) ‖ 76 Q7 (0 0 0 0 0 0 1 1 1 1 1 1 1 1)

‖ 77 Q7 (0 0 0 0 0 0 1 1 1 1 1 1 1 1)
‖ 78 Q8 (0 0 0 0 0 0 1 1 1 1 1 1 1 1)⇐ halted

∗
A Theory of recursive functions and effective computability, Hartley Rogers, McGraw-Hill, 1967
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A Turing Machine Interpreter in ACL2

tmi(st, tape, tm, n) =
{

final tape if halts within n steps
nil otherwise
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A Turing Machine Interpreter in ACL2

tmi(st, tape, tm, n) =
{

final tape if halts within n steps
nil otherwise

A tape is represented as a pair of extensible half-tapes
< Left,Right >, where the read/write head is at the start
of Right.

A tape is never nil.

The definition of tmi is the ACL2 translation of the
definition of NQTHM’s tmi used in [Boyer-Moore 1984].
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Turing Completeness
“M1 can emulate TMI”

Approach: Implement TMI as an M1 program and prove it
correct.
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Turing Completeness
“M1 can emulate TMI”

Approach: Implement TMI as an M1 program and prove it
correct.

The types of objects in the TMI model of computation are
different from the types of objects in the M1 model.

TMI deals with symbols (e.g., Q1, L, R, etc) and conses
(e.g., machine descriptions and tapes) whereas M1 only
has integers.

We must set up a correspondence a la Gödel so that TMI
objects can be represented as integers and manipulated by
M1 programs.
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Turing Completeness
“M1 can emulate TMI (modulo correspondence)”

Approach: Implement TMI as an M1 program and prove it
correct.

The types of objects in the TMI model of computation are
different from the types of objects in the M1 model.

TMI deals with symbols (e.g., Q1, L, R, etc) and conses
(e.g., machine descriptions and tapes) whereas M1 only
has integers.

We must set up a correspondence a la Gödel so that TMI
objects can be represented as integers and manipulated by
M1 programs.
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Conventions
Let tm, st, and tape be a Turing machine description, initial
state symbol, and initial tape.

Define s0 be the corresponding M1 state with



Conventions
Let tm, st, and tape be a Turing machine description, initial
state symbol, and initial tape.

Define s0 be the corresponding M1 state with

• pc = 0
• 13 registers, initially containing 0s,
• a stack containing (the numeric correspondents of)
tm, st, tape and certain constants used to
decode them, and

• the program Ψ discussed below.
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Theorems
Theorem A: If TMI runs forever on st, tape, and tm,
then M1 runs forever on s0.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after some k steps and returns the
same tape (modulo correspondence).
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Theorems
Theorem A: If TMI runs forever on st, tape, and tm,
then M1 runs forever on s0.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after find-k(st, tape, tm, n) steps and
returns the same tape (modulo correspondence).
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Theorems
Theorem A: If TMI runs forever on st, tape, and tm,
then M1 runs forever on s0.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after find-k(st, tape, tm, n) steps and
returns the same tape (modulo correspondence).
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Theorems
Theorem A: If M1 halts on s0 after i steps,
then TMI halts on st, tape, and tm after some j steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after find-k(st, tape, tm, n) steps and
returns the same tape (modulo correspondence).
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Theorems
Theorem A: If M1 halts on s0 after i steps,
then TMI halts on st, tape, and tm after some j steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after find-k(st, tape, tm, n) steps and
returns the same tape (modulo correspondence).
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Theorems
Theorem A: If M1 halts on s0 after i steps,
then TMI halts on st, tape, and tm after find-j(st, tape, tm, i)
steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after find-k(st, tape, tm, n) steps and
returns the same tape (modulo correspondence).
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Theorems
Theorem A: If M1 halts on s0 after i steps,
then TMI halts on st, tape, and tm after find-j(st, tape, tm, i)
steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s0 after find-k(st, tape, tm, n) steps and
returns the same tape (modulo correspondence).

Creative Steps:
• reducing TMI to an equivalent numeric version, TMI3, by

successive refinements: TMI ≈ TMI1 ≈ TMI2 ≈ TMI3
• defining Ψ and proving it implements TMI3
• defining find-j (to count TMI steps given M1 steps)
See the paper and scripts.
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Implementation Ψ =
((ICONST 2) ; 0 ‖ (ISUB) ; 19 ‖ (GOTO 15) ; 38 ‖ (GOTO -132) ;877
(GOTO 843) ; 1 ‖ (ILOAD 1) ; 20 ‖ (ISTORE 12) ; 39 ‖ (ISTORE 9) ;878
(HALT) ; 2 ‖ (ICONST 1) ; 21 ‖ (ISTORE 7) ; 40 ‖ (ISTORE 8) ;879
(ISTORE 12) ; 3 ‖ (ISUB) ; 22 ‖ (ISTORE 6) ; 41 ‖ (ISTORE 7) ;880
(ISTORE 7) ; 4 ‖ (ISTORE 1) ; 23 ‖ (ILOAD 0) ; 42 ‖ (ISTORE 6) ;881
(ISTORE 6) ; 5 ‖ (ISTORE 0) ; 24 ‖ (ILOAD 1) ; 43 ‖ (ISTORE 12) ;882
(ILOAD 0) ; 6 ‖ (GOTO -12) ; 25 ‖ (ILOAD 12) ; 44 ‖ (ISTORE 5) ;883
(ILOAD 1) ; 7 ‖ (ICONST 1) ; 26 ‖ (ILOAD 6) ; 45 ‖ (ISTORE 4) ;884
(ILOAD 12) ; 8 ‖ (GOTO 2) ; 27 ‖ ... ... ‖ (ISTORE 3) ;885
(ILOAD 6) ; 9 ‖ (ICONST 0) ; 28 ‖[824 lines elided]‖ (ISTORE 2) ;886
(ILOAD 7) ; 10 ‖ (ISTORE 6) ; 29 ‖ ... ... ‖ (ISTORE 1) ;887
(ISTORE 1) ; 11 ‖ (ISTORE 12) ; 30 ‖ (ISTORE 0) ;869 ‖ (ISTORE 0) ;888
(ISTORE 0) ; 12 ‖ (ISTORE 1) ; 31 ‖ (ILOAD 0) ;870 ‖ (ILOAD 6) ;889
(ILOAD 1) ; 13 ‖ (ISTORE 0) ; 32 ‖ (ILOAD 1) ;871 ‖ (ILOAD 7) ;890
(IFEQ 14) ; 14 ‖ (ILOAD 6) ; 33 ‖ (ILOAD 2) ;872 ‖ (ILOAD 8) ;891
(ILOAD 0) ; 15 ‖ (ILOAD 12) ; 34 ‖ (ILOAD 3) ;873 ‖ (ILOAD 9) ;892
(IFEQ 10) ; 16 ‖ (ICONST 107); 35 ‖ (ILOAD 4) ;874 ‖ (GOTO -891) ;893
(ILOAD 0) ; 17 ‖ (ISUB) ; 36 ‖ (ILOAD 5) ;875 ‖ (GOTO 0) ;894
(ICONST 1) ; 18 ‖ (IFEQ 70) ; 37 ‖ (ICONST 878);876 ‖ (GOTO 0)) ;895
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If we had some eggs. . .
we could have eggs and ham, . . .

if we had some ham. – Groucho Marx
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If we had some eggs. . .
we could have eggs and ham, . . .

if we had some ham. – Groucho Marx

If we had M1 code for less than, mod, floor, log2, and
exponentiation, . . .

we could write M1 code to decode the bit-packed
description tm and read/write/shift the tape, . . .

if we had subroutine call and return.
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Verifying Compiler
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Verifying Compiler
To solve these problems, and automate the proofs, we
wrote a verifying compiler from “Toy Lisp” to M1.

It maps a system of Toy Lisp programs and specifications
into M1 code and lemmas to prove that each compiled
routine meets its specifications when called properly.



Verifying Compiler
To solve these problems, and automate the proofs, we
wrote a verifying compiler from “Toy Lisp” to M1.

It maps a system of Toy Lisp programs and specifications
into M1 code and lemmas to prove that each compiled
routine meets its specifications when called properly.

It supports symbolic names, formal parameters, multiple
return values, and a call/return protocol that protects the
caller’s environment.



Verifying Compiler
To solve these problems, and automate the proofs, we
wrote a verifying compiler from “Toy Lisp” to M1.

It maps a system of Toy Lisp programs and specifications
into M1 code and lemmas to prove that each compiled
routine meets its specifications when called properly.

It supports symbolic names, formal parameters, multiple
return values, and a call/return protocol that protects the
caller’s environment.

It generated and verified Ψ above from input like this:
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(defsys
:modules
((lessp
:formals (x y)
:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code
(ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))



(defsys
:modules
((lessp
:formals (x y)
:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code
(ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))
(mod . . .

:code (ifeq (lessp x y)(mod (- x y) y) x))



(defsys
:modules
((lessp
:formals (x y)
:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code
(ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))
(mod . . .

:code (ifeq (lessp x y)(mod (- x y) y) x))
. . . ; 12 modules elided, building toward:
(tmi3 . . . :code . . .)



(defsys
:modules
((lessp
:formals (x y)
:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code
(ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))
(mod . . .

:code (ifeq (lessp x y)(mod (- x y) y) x))
. . . ; 12 modules elided, building toward:
(tmi3 . . . :code . . .)
(main . . .

:code (tmi3 st tape pos tm w nnil) . . .))
:edit-commands . . .) ; user provided hints
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What the Compiler Generates
(lessp
:formals (x y)
:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code
(ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))
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What the Compiler Generates
(lessp
:formals (x y)
:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code
(ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))

• M1 code for :code in Ψ (including call/return support)

• Proofs that the generated code satisfies :input/:output
specifications

The compiler succeeds iff all proofs succeed.
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Some Statistics
The M1 Turing Machine Interpreter uses 13 registers, 16
subroutines, and 896 M1 instructions.

The reduction of TMI to its numeric counterpart, TMI3,
requires 92 user-supplied (automatically proved) lemmas.

The correctness of Ψ requires 92 proved lemmas, of which
82 are generated automatically.

The proofs of Theorems A and B require 37 lemmas.

Total proof time is about 3.5 minutes on a Macbook Pro
2.6GHz Intel Core i7 running CCL.
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Emulating Turing Machines with M1
Given our constructive clocks, we can determine, for any
Turing Machine test run (description tm, initial st, tape, and
number of steps), how many M1 instructions it will take.

Recall *rogers-tm* (slide 12) on the tape (1 1 1 1 1)
takes 78 steps to compute the tape

(0 0 0 0 0 0 1 1 1 1 1 1 1 1)

M1 requires

(find-k ’Q0 *example-tape* *rogers-tm* 78)

So how many steps is that?
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Emulating Turing Machines with M1
Given our constructive clocks, we can determine, for any
Turing Machine test run (description tm, initial st, tape, and
number of steps), how many M1 instructions it will take.

Recall *rogers-tm* (slide 11) on the tape (1 1 1 1 1)
takes 78 steps to compute the tape

(0 0 0 0 0 0 1 1 1 1 1 1 1 1)

M1 requires

(find-k ’Q0 *example-tape* *rogers-tm* 78)
=
291202253588734484219274297505568945357129888612375663883
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=
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We can compute find-k efficiently because of additional
theorems reducing each “clock function” to a closed-form
algebraic expression.
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(find-k ’Q0 *example-tape* *rogers-tm* 78)
=
291202253588734484219274297505568945357129888612375663883

≈ 1056 steps!

We can compute find-k efficiently because of additional
theorems reducing each “clock function” to a closed-form
algebraic expression.

Good News: ACL2 can execute M1 programs at about
500,000 bytecode instructions/second!

Bad News: It would take about 1.8× 1043 years to emulate
this Turing machine run!
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Emulating Turing Machines with M1
Why so long?

M1 is using repeated subtractions of 1 and 2 to recover bits
from large (e.g., 50 digit) numbers encoding the Turing
Machine Description.

It would be much faster if M1 included more arithmetic
primitives (e.g., JVM’s IFLT, RSH, MOD).

It would be a little faster if M1 included the JVM’s JSR and
RET or INVOKESTATIC and IRETURN. Other ACL2 models
include these.
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Conclusion
This project demonstrates that we can reason about
computations that are wildly impractical to carry out!

This is only the second mechanically checked Turing
Complete proof. The other is [Boyer-Moore 1984] which
used the same TMI.

This is the first one for an imperative machine model.

The 896 instruction M1 program is the largest M1 program
Moore has verified.

The project is a great Formal Methods exercise. Try it with
your favorite prover!
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Thank You

(Supplemental material follows.)
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(defsys :ld-flg nil
:modules
((lessp :formals (x y)

:input (and (natp x)
(natp y))

:output (if (< x y) 1 0)
:code (ifeq y

0
(ifeq x

1
(lessp (- x 1) (- y 1)))))

(mod :formals (x y)
:input (and (natp x)

(natp y)
(not (equal y 0)))

:output (mod x y)
:code (ifeq (lessp x y)

(mod (- x y) y)
x))

. . . ; 12 modules elided
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(tmi3
:formals (st tape pos tm w nnil)
:dcls ((declare (xargs :measure (acl2-count n))))
:input (and (natp st) (natp tape)

(natp pos) (natp tm) (natp w)
(equal nnil (nnil w)) (< st (expt 2 w)))

:output (tmi3 st tape pos tm w n)
:output-arity 4
:code
(ifeq
(- (ninstr1 st (current-symn tape pos) tm w nnil) -1)
(mv 1 st tape pos)
(tmi3 (nst-out (ninstr1 st (current-symn tape pos) tm w nnil) w)

(new-tape2 (nop (ninstr1 st (current-symn tape pos))
tm w nnil w)

tape pos)
tm w nnil))

:ghost-formals (n)
:ghost-base-test (zp n)
:ghost-base-value (mv 0 st tape pos)
:ghost-decr ((- n 1)))
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(main :formals (st tape pos tm w nnil)
:input (and (natp st) (natp tape)

(natp pos) (natp tm) (natp w)
(equal nnil (nnil w)) (< st (expt 2 w)))

:output (tmi3 st tape pos tm w n)
:output-arity 4
:code (tmi3 st tape pos tm w nnil)
:ghost-formals (n)
:ghost-base-value (mv 0 st tape pos)))

:edit-commands . . .) ; user provided hints
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What the Compiler Generates
(lessp :formals (x y)

:input (and (natp x) (natp y))
:output (if (< x y) 1 0)
:code (ifeq y 0 (ifeq x 1 (lessp (- x 1) (- y 1)))))

• M1 code for :code in Ψ (incl call/return support)

• clock function (number of steps from call through ret)

• algorithm function, !LESSP (ACL2 translation of Toy Lisp)

• proof that code implements algorithm:
“good call leaves !LESSP(x, y) on stack”

• proof that algorithm implements :input/:output spec:
“!LESSP(x, y) is (if (< x y) 1 0)”
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M1 Code for LESSP (within Ψ)
. . . ‖ (ICONST 1) ; 21 color coding
(ISTORE 12) ; 3 ‖ (ISUB) ; 22 ‖ entry prelude
(ISTORE 7) ; 4 ‖ (ISTORE 1) ; 23 ‖ loop
(ISTORE 6) ; 5 ‖ (ISTORE 0) ; 24 ‖ exit postlude - regs
(ILOAD 0) ; 6 ‖ (GOTO -12) ; 25 ‖ exit postlude - returning
(ILOAD 1) ; 7 ‖ (ICONST 1) ; 26 ‖
(ILOAD 12) ; 8 ‖ (GOTO 2) ; 27 ‖
(ILOAD 6) ; 9 ‖ (ICONST 0) ; 28 ‖
(ILOAD 7) ; 10 ‖ (ISTORE 6) ; 29 ‖
(ISTORE 1) ; 11 ‖ (ISTORE 12) ; 30 ‖
(ISTORE 0) ; 12 ‖ (ISTORE 1) ; 31 ‖
(ILOAD 1) ; 13 ‖ (ISTORE 0) ; 32 ‖
(IFEQ 14) ; 14 ‖ (ILOAD 6) ; 33 ‖
(ILOAD 0) ; 15 ‖ (ILOAD 12) ; 34 ‖
(IFEQ 10) ; 16 ‖ (ICONST 107); 35 ‖
(ILOAD 0) ; 17 ‖ (ISUB) ; 36 ‖
(ICONST 1) ; 18 ‖ (IFEQ 70) ; 37 ‖
(ISUB) ; 19 ‖ (GOTO 15) ; 38 ‖
(ILOAD 1) ; 20 ‖ . . .
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Defs of Clock and Algorithm
Functions
(DEFUN LESSP-CLOCK (RET-PC X Y)

(CLK+ 10 ; cost of entry
(LESSP-LOOP-CLOCK X Y) ; cost of loop
4 ; cost of restoring regs
1 ; cost of returning to right pc
(EXIT-CLOCK ’LESSP RET-PC)))

(DEFUN !LESSP (X Y)
(IF (AND (NATP X) (NATP Y)) ; :input pre-condition

(IF (EQUAL Y 0) ; Toy Lisp :code trans’d to ACL2
0
(IF (EQUAL X 0)

1
(!LESSP (- X 1) (- Y 1))))

NIL)) ; Don’t-care value
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Thm: Code Implements Semantics
(IMPLIES
(AND
(READY-AT *LESSP* (LOCALS S) 3 S) ; well-formed call stack
(MEMBER (CDR (ASSOC CALL-ID *ID-TO-LABEL-TABLE*)); this call known

(CDR (ASSOC ’LESSP *SWITCH-TABLE*))) ; to compiler
(EQUAL (TOP (STACK S)) ; top of stack is ret pc

(FINAL-PC ’LESSP CALL-ID)) ; for this call
(EQUAL Y (TOP (POP (STACK S)))) ; actuals on rest
(EQUAL X (TOP (POP (POP (STACK S))))) ; of stack
(AND (NATP X) (NATP Y))) ; pre-conditions ok

(EQUAL (M1 S (LESSP-CLOCK CALL-ID X Y)) ; running M1 for clock steps
(MAKE-STATE ; produces a state with
(TOP (STACK S)) ; pc set to ret pc
(UPDATE-NTH* 0 ; restored locals
(LIST (NTH 0 (LOCALS S)) . . . (NTH 5 (LOCALS S)))
(LESSP-FINAL-LOCALS CALL-ID X Y S))

(PUSH (!LESSP X Y) ; alg’m val pushed after
(POPN 3 (STACK S))) ; popping actuals & ret pc

(PSI)))) ; our program Ψ
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Thm: Semantics Implements Spec
(IMPLIES (AND (NATP X) (NATP Y)) ; :input pre-condition implies

(EQUAL (!LESSP X Y) ; semantic function equals
(IF (< X Y) 1 0))) ; :output spec
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Ghost Parameters
Two Toy Lisp programs, TMI3 and MAIN, describe
algorithms – and generate compiled code – that may not
terminate.

Their translations to ACL2 (!TMI3 and !MAIN) must be
total.

The ghost parameters insure termination of the ACL2
functions used to express the programs’ correctness.

The :input/:output spec for TMI3 establishes that if !TMI3
halts, Ψ halts with the same answer, and if !TMI3 runs out
of time, Ψ runs out of time.

See paper or TMI3-IS-!TMI3 (gen’d by defsys).
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Some Statistics
The M1 Turing Machine Interpreter uses 13 registers, 16
subroutines, and 896 M1 instructions.

book (i.e., file) defun defthm defconst in-theory time
m1 29 10 0 5 1.12
tmi-reductions 56 92 2 6 88.40
defsys-utilities 4 21 0 2 0.42
defsys 54 0 0 0 0.87
implementation 1 10 0 5 2.82
autogenerated 94 81 108 33 68.28
theorems-a-and-b 15 37 0 6 16.25
find-k! 34 67 0 34 29.75

totals 287 318 110 91 207.91

Proof times in seconds on Macbook Pro 2.6GHz Intel Core
i7 running CCL. Total proof time is about 3.5 minutes.
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