SCIENTIFIC VISUALIZATION OF GALAXY BEHAVIOR USING GRID ARCHITECTURE

by

Todd D. Bolinger

A thesis submitted to the Department of Computer Science

and The Graduate School of The University of Wyoming

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Laramie, Wyoming

May, 2006

Table of Contents
11 Introduction

2 Technology
3
3 Architecture and Implementation
12
3.1 Services
14
3.1.1 Service Schemas
15
3.1.2 Deployment Files
17
3.1.3 Mappings Files
18
3.1.4 Installation and Deployment
18
3.2 Master Client
19
3.2.1 FileHandler Module
20
3.2.2 GlobusClient Module
21
3.3 Slave Client
23
3.3.1 GlobusSlave Module
24
3.3.2 IC Module
25
4 Sizable Obstacles and Challenges
39
5 Assessment and Analysis
41
6 Future Work
44
7 Conclusion
46
A Appendix
48
A.1 Master Service Definitions
48
A.2 Factory Service Definitions
52
A.3 Master Client Definitions
53
A.4 Slave Client Definitions
54
B References
58

Table of Figures
6Figure 1 – Example Generated Image

9Figure 2 - The Globus Protocol Architecture (Foster, Kesselman, & Tuecke, 2001)

13Figure 3 - The Project’s Architecture

14Figure 4 – The Service Interactions (Sotomayor & Childers, 2006)

19Figure 5 - Internal Workings of the Master Client

20Figure 6 - Module Interaction of the Iteration Upload

23Figure 7 - Internal Workings of the Slave Client

24Figure 8 - Job Submission File, Job.xml

29Figure 9 - Scaling Example

30Figure 10 - Translation Example

32Figure 11 - Sectors to Consider for Line Drawing

34Figure 12 - A Line with a Slope Equal to One and the Pixels to Illuminate

34Figure 13 - A Line with a Slope Less Than One and the Pixels to Illuminate

35Figure 14 - A Line with Slope Greater Than One and the Pixels to Illuminate

36Figure 15 - Drawing a Rectangle

37Figure 16 - The Symmetric Nature of Circles with Labeled Octants

48Figure A 1 - BodyType and IterType WSDL Definitions

49Figure A 2 - The Resource Property WSDL Definition

49Figure A 3 - The addIterData Method

50Figure A 4 - The getNextIter Method

50Figure A 5 - The getNIterRemaining Method

51Figure A 6 - The setGftpServer Method

51Figure A 7 - The getGftpServer Method

52Figure A 8 - The createResource Factory Service Method

53Figure A 9 - generateResource Factory Service Method

54Figure A 10 - The PNGI Class

56Figure A 11 - The Drawer Class

1 Introduction

Many scientific simulations generate extensive data sets and require a way to heighten the understanding that can be obtained from them. The field of astronomy is no exception to this rule and was targeted to provide a system for use in this project. The goal of this project is to couple visualization techniques for this data with distributed computing, in particular grid computing. Utilizing this technology allows the project to gain the benefits that parallel computing inherently supplies while increasing the knowledge obtained from the astronomical model.

For most of history, science has been dominated by observation and reaction. When a scientist observed a process in the physical world, he or she would try to explain what was occurring. Validation, however, was next to impossible. Without a model and simulation, complex new theories and observations were difficult to verify and explain. Computers offer scientists the ability to thoroughly test complex systems.

Due to this fact, scientific computing has made the leap to mainstream acceptance. The obvious benefits of using computers have led researchers and analysts alike to move their work to the automated world. Scientists have been generating massive sets of data for years now and storage has been an issue ever since. With local data storage combined together in a networked setting which is provided by grid computing, the amount of available storage has increased while the cost of obtaining and maintaining these resources has decreased. The term “data grid” refers to this networked architecture and it has been a boon to such projects as the DataGrid and the Earth Systems Grid (DataGrid, 2003; Foster, Williams, Middleton, & et al., 2006). Data grids are massive amounts of storage resources linked together in a distributed architecture. Grid computing, however, can be applied to more than just data storage, management, and retrieval.

Another type of grid, the one studied and used in this paper, is the computational grid. When scientists study a process, they create models of how they believe the process works. Traditionally, these models were simple. Recently however, these models have become extremely complex and intricate, and can rely on other complex models or even external data sets. These new models tend to depend on hundreds of factors and millions of computations. For example, the ClimatePrediction project attempts to predict the climate of earth fifty years into the future (Allen, Stainforth, Christensen, & et al., 2002). The project takes the readings of the weather from the previous fifty years and feeds them to the model that they have developed. Due to the fact that measurements from fifty years before were not very accurate, the model must be run over a range of possible values based on the actual measurements. If the initial measurements lead the model to produce values that are similar to the current measurements, the simulation is continued for another fifty years in order to generate possible values for the future.

As one can imagine, individual weather calculations are computationally expensive and running weather computations over fifty years is exponentially more complex and costly. Executing these fifty year simulations for each possible value in a range complicates the matter even further. Additionally, if a simulation produces acceptable values, it is continued into the next fifty years. The process is almost unmanageable, requiring immense amounts of resources and time to complete.

In order to tackle this ambitious problem, computational grid techniques are employed. A single simulation takes a long time, but one run does not depend on another. Therefore, the simulations can be separated and computed in parallel, greatly decreasing overall completion time. Using grid computing, distributing the computations to multiple machines and processors can take advantage of this chance for parallelism.

The idea behind the computational grid is to utilize unused processor cycles on remote machines, which can decrease the time required to complete a complex process. The application of these parallel computing ideas is the way this speed-up can be accomplished and are not new ideas, having been extensively studied before. Pooling heterogeneous systems together into one large virtual organization(VO) to realize large scale parallelized processing is a newer push.

Grid computing and visualization have been combined before. For example, implementations such as the Grid Visualization Kernel, which attempts to address a universal visualization service, have been constructed for use in visualization projects (Heinzlreiter & Karnzlmüller, 2003). Employing these ideas by combining an astrophysical model and a corresponding visualization component with the benefits of grid computing was the goal of this project. In order to combine visualization with grid techniques, it was necessary to partition the visualization component of the astronomical model out over a grid. This project sought to experience a computing speed increase, while not requiring supercomputing resources for the visualization process.
2 Technology

A model from the field of astronomy was employed to generate the data for visualization. This model is the treecode 1.4 code found on Joshua Barnes’ website. As an astronomy professor at the University of Hawaii, Professor Barnes is a respected and knowledgeable researcher who has developed a sophisticated model designed to illustrate how a galaxy’s bodies interact with each other. This model and code will hereafter be referred to as just treecode.

The treecode runs complex and costly force computations on the objects in the galaxy, including gravity, movement, and velocity calculations. Each object in the galaxy is referred to as a body, and the collection of all of these bodies makes up the galaxy as a whole. In order to perform calculations on each body, an opening angle is required. This angle is the accuracy measure of the force calculations and will be referred to as theta throughout the remainder of this document (Barnes, 2001).

The treecode also requires certain output parameters, tstop, dtout, dtime, and out. The time at which the treecode is directed to terminate is supplied by the tstop input value. The parameter dtout is the time interval between outputs and can be specified as a number or a fraction. The parameter dtime is the integration time-step, which specifies the time-step length between calculations, and can also be specified as either a number or a fraction. Lastly, the out parameter specifies the file to which the output is written (Barnes, 2001). These parameters are explained in greater detail in Joshua Barnes’ treecode guide.

Barnes (2001) describes his use of interaction lists as “Forces on bodies are computed during a single recursive scan of the entire tree. The scan maintains and continuously updates an interaction list; at each level, the fact that a body b lies somewhere within a cell c is used to winnow the set of possible interactions that b might have” (p. 1). The interaction list that applies to a body b is used when the scan arrives at b to obtain the gravitational force and potentials (Barnes, 2001). Due to the fact that an interaction list is not specific to each body, a single list can be kept for multiple bodies with a small amount of overhead. The treecode generates a large file with measurements for each body at specified time steps.
This work focuses on the scientific visualization of a complex process, the behavior of the bodies in a galaxy, in order to gain insight into the process. Typical computer drawing methods are employed to create a Portable Network Graphics(PNG) image (Lilley, 1994). The drawer module utilizes an access interface to the library Libpng. The library Libpng is an open source library for Linux that provides an simple way of creating, editing, and saving PNG files (Roelofs, 2005). The specification for these types of files can be found at the PNG specification website.

The library Libpng is a freely distributed open source library that allows code level access to PNG images. Releases of the library are available for the Linux operating system. The library implements many interface functions, which, along with the relevant data structures, are described in the Libpng manual (Randers-Pehrson, 2002). This library is written in C, but for this project, the methods are used within C++ code.
[image: image1.png]

Figure 1 – Example Generated Image

After all images are created, ImageMagick, an open source Linux program, is used to string the images together into a Multiple-image Network Graphics(MNG) image (ImageMagick Studio LLC, 1999). MNG images are animations built from PNGs resembling a slideshow of the PNG images (Roelofs, Juyn, & Randers-Pehrson, 1998). ImageMagick is also used in this project to display the generated MNGs, while the MNGer program is a free Windows-compliant MNG viewer (Speirs, 2005). A simple Java Swing program was also written to assist a user by connecting the I/O and web service submission modules.

Along with the visualization component, this project focuses on the use of grid technology. As was mentioned before, the goal of this project is to integrate a visualization component for the treecode with grid architecture. Therefore, when the model is run on a large galaxy and the data is too large to display in an acceptable amount of time, the grid can be used to spread the calculations to other processors, thereby increasing parallelization and completion speed.

Ordinarily, a galaxy has too many objects in it for simulation without the help of a supercomputer. The application of grid computing can help overcome this limitation. Grid technology is a relatively new field of study, with standards and paradigms still changing. It is a form of distributed computing that attempts to handle heterogeneous systems and network resources easily. Technically, grid computing is the study of grid systems, which achieve greater performance and throughput by pooling together resources from different organizations. It handles the coordination, allocation, and sharing of data storage as well as computing, application, and network resources (Grid.org, 2004). Grid computing has three characteristics: it coordinates resources that are not subject to centralized control; it uses standard, open, general-purpose protocols and interfaces; and it delivers nontrivial qualities of service. It is the goal of the grid to handle changing topologies, networking protocols and traffic, and differing systems seamlessly. Adding all of these components together creates a very ambitious problem that grid computing tries to tackle.

The root ideas for grid computing can be traced back to the 1970’s when the first computers were linked together in a network. With the maturation of the Internet in the 1990’s, distributed computing began to show significant returns (Grid.org, 2004). When looking at organizations, the most common computing resources are desktop computers for the employees. Ironically, these are oftentimes the most underutilized of the resources. Grid computing tries to harness all of these wasted resources, most often processor time. It attempts to pool all of these resources into a virtual organization to solve a specific problem (Gamboa, 2006). It can also pool large centers of computing, like supercomputing centers, together into an even more impressive collection of processing power. The SETI@home and distributed.net projects were the first two extremely successful distributed projects (University of California, 2006b; Distributed.net, 1997). Now, there are a number of different frameworks of the grid, including both BOINC and Globus (University of California, 2006a). BOINC is the driving force behind the aforementioned SETI@home and Distributed.net, along with Climateprediction.net, and has a focus on the distributed computing side of grid methology.
[image: image2.png]94n30911Y24Y |020304d I2UIIUT

Application

ransport

ntemet
Link

Cdllective

Application

—

24NP3Y24Y |00030.1d PHUD

Figure 2 - The Globus Protocol Architecture (Foster, Kesselman, & Tuecke, 2001)

The other framework is provided by the Globus Alliance, and tends to be much more flexible (Globus Alliance, 1997). The architecture of the Globus project is separated into five layers. Layer five is the application layer which consists of the applications that are written for the grid. Layer four is the collective layer, which manages multiple resources including discovery, monitoring, scheduling, and data management. Layer three is the resource layer, which handles individual resources including basic information and management. Under this layer is layer two, or the connectivity layer. This layer handles the communications and security infrastructure. The bottom layer is the fabric layer and includes the actual resources that are shared by the grid, such as computers, data storage, databases, instruments, etc (Gamboa, 2006). This is not a strict layered architecture, i.e., the application layer can bypass the collective and go straight to the resource layer.

The Globus Toolkit (GT), beginning with version 3, employs the idea of web services to provide easy access to grid resources. Version 3 used modified web services with included state information in order to manage the resources. The Globus Toolkit version 4 (GT4) is built with theWeb Services Resource Framework(WSRF), that provides web services with state and Web Services Notification(WSN), which allows web services to send notifications (Globus Alliance, 2004). These specifications were originally proposed by the Globus Alliance and IBM. The WSRF standard, like all web service standards, uses the Web Services Description Language (WSDL) and the XML Schema Definition Language (XSD) to describe a service and how it will be deployed to the web services container (Christensen, Curbera, Meridith, & Weerawarana, 2001). Both the WSDL and XSD standards are built on top of XML and have specified ways of interpreting them.

GT4 allows services and clients to be implemented in C/C++ or Java, along with other languages. The Java Web Service (WS) Core provides the components necessary for the use of Java as the language of choice in developing web services (Globus Alliance, 2005b). Java allows for great flexibility, in that a service written in Java can be run on almost any system. The C WS-Core provides the components and methods necessary for the use of C as a way of developing web services (Globus Alliance, 2005a). C has the advantage of running very quickly on most processors, but it needs to be compiled for each system on which it is to be executed. GT4 uses Java by default, but can easily adjust to using other languages, including C. The C core was used extensively at the beginning of the project, but was dropped in favor of the Java core. This decision was made because Java is better supported and is cross-compliant among many systems.

GT4 can be downloaded from the Globus website (Globus Alliance, 1997). The project is downloadable in source form and as well as a binary package. Installation notes can also be found on the Globus website and are a valuable reference when encountering problems. Installing the package is not enough, however, as the system must be protected from malevolent intents.
When the compilation and installation steps are completed, the security of the system must be considered. Privacy, integrity and authentication are the three pillars of security for internet communications and, ideally, should be addressed in a grid setup. Privacy means that only the sender and receiver should be able to understand the message. The integrity pillar refers to the accuracy of a transmitted message; no tampering of the message should occur. Each party involved should be who they claim to be, which can be established through authentication. A typical public and private key scheme is employed in grid systems in order to handle these forms of security (Sotomayor & Childers, 2006).
However, this process can be made more secure still. A digital certificate can create a tighter cover of all of these pillars by certifying that a specific public key is owned by a particular user. This document is signed by a certificating authority (CA), which is a trusted third party repository, and states that the CA trusts that the public key is, in fact, owned by the user. GT4 provides tools which can turn a machine on the grid into a simple CA for testing and research, or an actual CA provider can be contacted. Each user must obtain a signed certificate from the appropriate CA to access the grid system, which can be transmitted to delegated resources in a proxy. This proxy allows the delegated resource to execute tasks in the user’s name (Sotomayor & Childers, 2006).
The Grid Resource Allocation and Management (GRAM) module provides services to submit jobs for execution. A process can be given to the grid and GRAM will schedule and allocate resources for it, all in a remote setting. Jobs can be executed in multiple locations, depending on the desired goals, and require a proxy to verify authenticity. In order to submit a job for processing, the job must be specified using the Resource Specification Language(RSL) standard. GRAM uses the Reliable File Transfer (RFT) to transfer the jobs, which, in turn, utilizes GridFTP internally. The GridFTP protocol is built on the same principles as FTP, but utilizes the architecture of the grid instead. It is built to transfer large data sets efficiently, relying on parallelism and striping. The GridFTP protocol can transfer data to a centralized server at high speeds, but only if it can show that it has the proper authorization to do so.

The Java Native Interface (JNI) was required to couple the Java client and the visualization modules, which use the library Libpng. The visualization modules were implemented in C++, using the Libpng C methods, which, in turn, were called from the Java client using the JNI coupling. The Java JDK 1.5.0 provides an easy way to generate the appropriate C-style header file for use with Java (Sun Developer Network [SDN], 2006a). Building all of the modules into a library allows for the Java client to use the methods that were built natively in C and C++, taking advantage of the library Libpng’s functionality. Numerous examples which use this technology can be found on the Internet, such as the Java Sun JNI Tutorial (SDN, 2006b).
3 Architecture and Implementation

The Architecture of the project consists of three parts: the master client, the service container, and the slave client. The master client is the main client which uploads data into the service. The slave clients obtain data from the service and process it, i.e., generate the appropriate image for the data. Unlike the master client, there can be as many slaves as desired, supporting increased parallelism.

[image: image3]
Figure 3 - The Project’s Architecture

The idea behind the project is simple. The service container is started first. The master client handles the treecode output file parsing as well as body and iteration building, loading iterations from the output file and uploading them to the service’s resource. The service container has multiple services including the SciVizMasterService, which is the name of the service in this project, and its corresponding factory service, SciVizMasterFactoryService.
A resource is associated with the SciVizMasterService and is the state of the web service. The resources associated with the visualization service consist of the iterations that the master client has uploaded. Each slave client asks the service to supply an iteration, which is received by the slave and processed. A PNG image is generated from this data and is transferred to the master client. Each slave client continues to ask the service for another iteration until the service no longer contains any. When every image has been generated and sent to the master client, the master client constructs a MNG image from them.
3.1 Services

[image: image4]
Figure 4 – The Service Interactions (Sotomayor & Childers, 2006)

Each resource is managed and created by the resource home module. The factory service is called by the clients and interacts with the resource home in order to create and find the resources. The master client calls functions in the factory service to create a resource, while slave clients call functions in the factory service to locate a resource. The factory constructs an endpoint reference (EPR), which is an <address, resource key> pair, by obtaining a resource key from the resource home and returns it to the client. The client uses the EPR’s base URL attribute as a handle for the service to call the master service’s methods. These methods use the resource key in the EPR to reference the resource and either read or modify the state.
3.1.1 Service Schemas

In order to deploy a service, a few things are needed. First, the service requires a service schema file written in the WSDL and XSD standards which defines the services to the Globus container. This schema file requires some standard boilerplate definitions and imports at the top of the file, which can be seen in the Java Core Developer’s Guide. The general format to the schema file can also be found in the Java Core Documentation (Globus Alliance, 2005b). The <types> subsection is where everything pertinent to the service is defined and contains two custom types, BodyType and IterType.

The BodyType complex type stores the pertinent data for an individual body in the galaxy. It tracks a specific body’s identifying number, which does not affect how an iteration is drawn, but is instead used for debugging and system verification. The position vector, velocity vector, and mass value of the body are also stored in this type. These values are consulted when the body is drawn and can affect how the final image is rendered.

An iteration of the treecode’s output is represented by the IterType complex type. An array of bodies, represented by BodyType instances, is kept in the iteration as well as the size of this array, which is used in various modules that require a looping mechanism. The desired image resolution is stored for use in the drawing process as is the drawing mode, which specifies the type of image to generate. The various modes rely on iteration-specific data, the maximum and minimum masses seen in the iteration and the maximum and minimum velocities of the iteration, both of which can be found in the IterType complex type. Lastly, the iteration’s sequence number is tracked in order to assist in the naming of its corresponding image file.

The resource type to be used is also defined in the schema file and is the state information that is related to the Master Service, which is modified by calls to the remote methods provided in this service. The SciVizMasterResourceProperties resource definition supplies the service with the prototype for the resource. This resource is stored in memory for the web service and is referenced by each call to the web service. It contains an array of iterations, which represents every iteration that has been loaded into the service. The resource tracks the number of iterations in the service as well as the index of the array where the next iteration resides. Since every image is to be collected into a single repository, the location of this repository also needs to be stored in the resource. This location refers to the addresss of the GridFTP server, which should be accessible by the master client. The protocol of the address should not be supplied as it is assumed to be the default protocol for GridFTP.

An iteration upload method adds a constructed iteration into the service, while a function to get the next iteration in the array is used to obtain an iteration for rendering. Simple get and set operations are enough to manage the address of the GridFTP server instance. A status method allows for the progress of the system to be monitored. These methods are the core functionality that makes the service work correctly.

The factory service must also have a schema file, describing how the factory service will operate and how remote modules can utilize it. It performs two important operations: the creation of a resource and the location of a resource. Both operations accomplish similar tasks, which depend on a unique resource identifier to reference the resource. Resource creation is required when iterations are to be uploaded, while resource discovering is used when the iterations are to be processed.
3.1.2 Deployment Files

There are two deployment files that are required for correct compilation of the services: deploy-jndi-config.xml and deploy-service.wsdd. The file deploy-jndi-config.xml specifies what classes to use for the master service, the factory service for the master service, and the resources and resource home. This configuration file is used to populate the registries accessible to the Java Naming and Directory Interface (JNDI) API in the container (SDN, 2003; Globus Alliance, 2005c).
The file deploy-service.wsdd specifies the service names and schema files to generate in the Globus directories of both the master and factory services. The additional schema files that are generated are based upon the schema files already produced and described above and added into the Globus install directory. Deploy-service.wsdd is the Axis configuration file for the service which contains information about the services, mappings, and handlers (Globus Alliance, 2005c). Axis is the Simple Object Access Protocol (SOAP) message engine implementation used by the GT4 (Apache Web Services Project [AWSP], 2005). SOAP is a simple XML-based protocol that allows applications to pass messages and data using the HTTP protocol (W3C XML Protocol Working Group, 2003).
3.1.3 Mappings Files

The creation of two mapping files allowed for the easy installation of the service. A file build.mappings was created with the master service’s location and schema files and is required in the execution of the globus-build-service.sh script file. This script file can be found in the Globus Service Build Tools for download and is a mechanism for building the appropriate stubs, classes, and deployment file for a service (Sotomayor, 2005a). The file namespace2package.mappings was created to map namespace URLs to Java packages on the file system. The file contains any packages that have been built for the master and factory services.
The stubs generated by the globus-build-service.sh script file include the web service interaction processes and specific network negotiation and are inserted into the package edu.uwyo.cs.scivizmaster.stubs. The mappings namespace2package connect this package to the corresponding namespaces. Now, the parsing of the schema files can interpret the namespace tags to the correct package. The globus-build-service.sh script generates a Grid Archive(GAR) file, which includes everything needed to install and deploy the service to the Globus container. GAR information can be found in the Java Core Documentation (Globus Alliance, 2005b).
3.1.4 Installation and Deployment

The installation and deployment of the master and factory services follow the general installation techniques described in the Java Core Documentation, where examples and tips can be found for each of the features employed in this project (Globus Alliance, 2005b). After the services have been deployed, using the $GLOBUS_LOCATION/bin/globus-deploy-gar command, the $GLOBUS_LOCATION/bin/globus-start-container command starts the Globus web service container, where $GLOBUS_LOCATION is the location on the file system where the Globus software has been installed. The command is supplied the –nosec option, telling it to use port 8080, the HTTP port, instead of the HTTPS port number. The newly deployed services are then found among the available services of the container and are ready for use.
3.2 Master Client

[image: image5]
Figure 5 - Internal Workings of the Master Client

The master client handles the treecode operation, the parsing of the treecode output, and the loading of the data into the master service and resource. The user is required to supply the treecode parameters described above, and the following parameters: the master and factory service base URLs, the mode to run in, the desired width and height of the generated images, and the resource identifier to use for resource creation. The client starts the process by calling the treecode model code with the supplied arguments, which generates the output from the simulation at the appropriate intervals. The output data to use for visualization has been fully created when the treecode finishes.

Next, the client must handle the output file and the Globus web service interface. This portion of the client is partitioned into two parts, the FileHandler and GlobusClient modules. The FileHandler deals with file parsing and iteration creation. The GlobusClient manages the FileHandler and uploads the data created by it to the web service.

[image: image6]
Figure 6 - Module Interaction of the Iteration Upload

3.2.1 FileHandler Module

The FileHandler module accomplishes one specific task, parsing and returning data from the treecode’s output. The output from the treecode needs to be manipulated for use in the service because the linear format of the output does not lend itself to the object-oriented implementation of the architecture. For each iteration contained in the treecode output, the mass of each body is listed, followed by the position vector of each body, followed by the velocity vector of each body. One iteration follows another in a sequential pattern, but for parallelization, each iteration must become its own entity.

In order to build an iteration, the FileHandler creates the proper amount of bodies and a new IterType instance. When a body has been loaded with the appropriate values, it is added to the IterType instance in the bodies array. The FileHandler module also assigns the iteration’s maximum and minimum masses and velocities. Once the module has opened the output file, the stream is not reset until the module is instructed to close it. The calling method will know there are no remaining iterations in the output when this module returns a null next iteration.
3.2.2 GlobusClient Module

The GlobusClient module accepts several parameters as input. The master client passes the master and factory service base URLs, the mode, number of bodies, the desired image width and height, and the resource identifier to this module. In order for this module to work correctly, the stubs and classes of the master and factory services need to be included. Otherwise, the packages and methods needed in this module cannot be found by the Java compiler. Supplying these in the master client compilation and execution ensures that this module has all the pieces needed.

When it is activated, the module starts by contacting the resource factory and asks for a resource for use in the master service. It requests that the factory create and reference a new resource. The EPR obtained from the factory is used by this module to access the master service. Using the EPR, the port type is obtained, which is an actual connection to the service and allows the module to call the remote methods of the service.

After the module has the EPR and port type, it allocates an instance of the FileHandler. It asks the FileHandler to return each iteration in sequential order which still needs to have the drawing mode, iteration sequence number, and image width and height attributes assigned. The GlobusClient fills these in, based on the iteration number counter and the parameters that were received from the master client. Once an iteration is completed, it is added to the service resource’s iteration array using the port type. The iteration number is incremented between successive iteration constructions.

Once every iteration has been loaded into the service, it waits for the process to be completed on the slave client side. Making periodic calls to the service’s status check method allows this module to keep tabs on the progress of the iteration drawing. When there are no more iterations remaining in the service, the client waits for all the images to be transmitted to it. It is important to note that even if the service reports that there are no iterations remaining, it does not mean that all the data has, in fact, been processed and transmitted. When the master client detects that all the images have arrived, it stitches them together using the ImageMagick program into a MNG video animation.

3.3 Slave Client

[image: image7]
Figure 7 - Internal Workings of the Slave Client

The slave client can be broken into two parts, the GlobusSlave and ImageCreation (IC) modules. The integration of these two parts obtains iterations, generates images, and transmits the images back to the master client. The GlobusSlave module handles the interaction with the Globus-specific components, such as GRAM and GridFTP. The IC module creates the images from the iteration data that is passed to it from the GlobusSlave module and is built into a library. The slave client must be supplied the following parameters: the master and factory service base URLs and the resource identifier that matches the resource identifier from the master client.
3.3.1 GlobusSlave Module

The GlobusSlave module is written in Java and needs to be compiled and executed with the master and factory services’ stubs and classes, like the master client. In order to integrate the IC into this module, it loads the native library that contains the JNI access method and declares any native functions that will be used. There is one native method for this module, which creates an image from an iteration. Calling this method from inside the Java class references the method in the library that was loaded. It takes a single parameter of type IterType.

<job>

<executable>($JAVA_HOME)/bin/java</executable>

<directory>($WORKING_DIRECTORY)</directory>

<argument>-classpath</argument>

<argument>($STUB_CLASS_DIRECTORY):($CLASSPATH)</argument>

<argument>edu.uwyo.cs.scivizmaster.slaveclient.
SciVizSlaveClient
</argument>

...
<stdin>/dev/null</stdin>

<stdout>/dev/stdout</stdout>

<stderr>/dev/stderr</stderr>

<count>2</count>

</job>
Figure 8 - Job Submission File, Job.xml
The slave client uses GRAM to send its iteration acquisition and image creation processes to other machines, which must also have the IC and Libpng libraries installed locally for the jobs to operate correctly. The job to submit to the GRAM scheduler is specified in job.xml, which is written using the RSL standard, and includes the job and all arguments to it. RSL is the defined mechanism to describe to the scheduler what job to execute and how that job is modeled (Globus Alliance, 2005d). The GRAM techniques were included in order to automate the spread of processing of the service’s iterations and take full advantage of the distributed nature of the grid.

The module starts operation by contacting the factory service and asking it to locate the resource that is referenced by the resource identifier which is returned as an EPR to the master resource. Using this EPR, the port type is obtained, much like the process that is described in the master client. This port type allows for the module to access the remote methods of the service.

After the EPR and port type have been constructed, the module contacts the master service and receives the service’s next iteration. This iteration is then passed to the IC module for image creation and manipulation by calling the defined native method of the library. Once the IC has created the finished PNG image, the GlobusSlave module transfers the image to the master client. This process is repeated until the master service returns a null iteration, meaning that there are no more iterations available.

In order to transfer the images back to the master service, the GridFTP protocol is used. GridFTP is built to act like FTP but take advantage of the speed and distribution of the grid. It is built for large data transfers specifically, allowing large data sets to be delivered to the destination. This project utilizes the GridFTP’s URL copy functionality to send the generated images back to the master client, relying on the correct security certificates, which can be obtained from the certificating authority.
3.3.2 IC Module

The IC module is where the computationally heavy work is accomplished by the slave client. The module is compiled into a static library and is divided into three main parts; the JNI coupler, the PNGI, and the drawer. The GlobusSlave module accesses the JNI coupler, which, in turn, accesses the PNGI and drawer components. The JNI coupler acts as a bridge between the Java GlobusSlave module and the C++-compiled PNGI and drawer modules.

The JNI coupler allows the GlobusSlave, which is written in Java, to use the methods in the PNGI and drawer classes that are written in C++. The JNI coupler consists of a header file and source file, which are both written in C. The header file is automatically generated from the GlobusSlave package, based on the example provided by Java Sun Tutorial, by using the javah command with the –jni switch (SDN, 2006b). Supplying the compiled package of the slave client to this command generates the function protocols for the native method declared by the GlobusSlave. The JNI coupler file includes the header file jni.h, which supplies the objects that can be used by the Java compiled code. There are many types and methods that are usable C-defined Java objects (Sun Micorsystems, 2003b). Using a pointer to the Java environment, the coupler can access any method of the calling Java class and the methods of the IterType and BodyType classes.

The JNI coupler creates an instance of the PNGI type, maintaining a pointer to it for the length of the coupler’s life, and uses it to open a new file. The image dimensions for this project are 800 by 800 pixels and can be explicitly stated when calling the master client. This is a large image space, almost large enough to fill some modern screens’ resolution. To accomplish this, the JNI coupler asks the PNGI module to create a new image file. A drawer instance is also allocated with the first primitive drawn being a solid rectangle as the background on the image. This rectangle covers the full space of the image and is black in color in order to represent the blackness of space.

The coupler then extracts the mode of the iteration, which dictates the drawing mode and colors to be used. It loops through each body in the iteration, extracting data about them. Using this data, each body is then placed, using the drawer to paint single pixels. The image is finished by using a sequence of PNGI method calls to create the image file.
A closer look is required at the mode as well as the PNGI and drawing methods. The value of the mode and the methods of the drawing and PNGI modules handle the image output. If the mode is zero, a black and white image is to be drawn. If the mode is one, the image should include color based on the range of the mass values. If the mode is two, the image should include color based on the range of the velocity values. The case where the mode is zero is easy - the color of each body is white.
If the mode is one, the color of each body differs. To calculate the color for the body, the range of values must be calculated by subtracting the minimum mass of the iteration from the maximum mass. The body’s blue intensity percentage can then be calculated by taking the result of subtracting the body’s mass from the iteration’s maximum mass and dividing it by the range. This value is where a particular body’s size is in relation to the others. Since each of the red, green, and blue intensities of each pixel has a maximum value of 255, the blue intensity is then multiplied by 255 to determine where in the blue range it should fall. The red intensity is then assigned to be 255 minus the blue intensity and the green intensity is assigned to zero because it is not used. Since PNG images support transparency, the alpha value of each pixel needs to be addressed as well and is assigned to be 255, or no transparency. With each body having its color obtained based on its mass, bodies with similar masses should appear to be the same color. The bodies with the highest mass will be red in color while the bodies with the lowest mass will be blue. Middle-sized bodies will be purple in color, a mix of red and blue.

Similar calculations can be performed when the mode is set to two. The color calculations will depend on the velocity values of the iteration to build the range. The velocity measure of each body is generated by squaring each component of the velocity vector and adding them together to get a magnitude sum, as was done when the maximum and minimum velocity values of the iteration resource were set in the master client. It is subtracted from the iteration’s maximum velocity magnitude which is then divided by the range. The pixel color intensities are generated in the same fashion as in the mass color mode. Bodies with the highest velocity magnitude appear red in color, while bodies moving the slowest are blue. Note that the velocity of an object can change from iteration to iteration, meaning the color of a body can be different in each image. This allows the relative speed change of an object to be easily seen from image to image.

Once the color of the body has been determined, the positioning of it must be calculated. The position vector of the body is extracted from the iteration data. Two common graphics procedures are applied to these values: scaling and translating. It is important to scale before translating because the reverse ordering can cause distortion in the distances between objects. Once these two issues have been addressed, the data can be passed to the drawer for rendering.

[image: image8]
Figure 9 - Scaling Example

First, since body position vectors consist of very small numbers, less than one in most cases and not more than two, drawing them as is would place all the bodies in the same tiny region. Scaling these values, however, will accentuate the distances between the bodies and allow for each body to be better defined in the image. The positions are floating point numbers and need to be rounded to the nearest integer because there is not a <1.5, 2.75> pixel in an image; every pixel is at integer indices. Since this is the case, the bodies can only be placed within a four by four box and only on the integer coordinates creating an indistinguishable image. In order to scale up an image, each component of the position vector is multiplied by a scalar, 100 in this project. Scaling before rounding ensures the greatest precision possible, while rounding before scaling can cause a significant loss of precision when scaling by 100.

[image: image9]
Figure 10 - Translation Example

Secondly, the positions are all centered around the origin in point space. In other words, they are orientated around the <0,0,0> coordinate of the model space. This would seem to be a good idea as it allows for the center of the galaxy to be the point of reference in the model, but the image space has the <0,0> coordinate at the upper left corner of the image. Therefore, each body is clustered in the upper left corner with some of them outside the image space. In order to correct this problem, each object is shifted such that it is centered around the middle of the image, or <400,400> in the 800 by 800 image. Since the z-coordinate does not affect the positioning in the image because there is no z-coordinate in the image, it is not modified. The z-coordinates do have an effect on the rendering of an image, but are handled by the z-buffering scheme in the drawer. This will be discussed in greater detail later.
3.3.2.1 PNGInterface Module

Before drawing the modified bodies, the PNGI module needs to be initialized and prepared for drawing. The PNGI code provides methods that the project can utilize to manipulate PNG images and handle everything required in the library Libpng. Using these methods in a specific combination ensures that the project correctly generates the images for viewing and use. More detailed information on each of the methods can be found in the appendix.
The correct order to call the methods is still ill-defined in this document, but can now be fully explained. This project used the following process to accomplish the image creation and modification. The JNI coupler begins the process by opening a new image to guarantee that the new image exists. Now the image is ready to be written to, with both image file and image row data memory created. The coupler then does any necessary drawing into the PNGI row data memory by using the drawer module. Now that the desired image is created and resides in memory, the JNI tells the PNGI module to open the image file and initialize the ability to write to this file. Next, the image’s header is written, followed by the actual writing of the image’s new data. The image file is then finished and closed by PNGI module, leaving the image on the file system with the appropriate PNG header data.
3.3.2.2 Drawing Module

It is important to note that up until now, the drawing has been assumed to happen automatically, which is obviously not the case. The drawing module, or drawer, has methods implemented to take care of the drawing of the image. These methods correlate to drawing object primitives, or basic shapes, and provide all the rendering needed for this project. It is important to note that these methods draw into the PNGI’s row data, which needs to be supplied by the PNGI.
The methods of this module all rely on two structs, the Point and Color structs, which can be seen in the appendix. The Point struct represents a point in the image with three coordinates, the x, y, and z values of a traditional coordinate system. The Color struct allows for the easy definition of a RGBA color format. Every method in the drawer requires that the color to paint be supplied to it. Each of these structs contain the pertinent data for which the struct represents.

Using these structs allows the JNI coupler to draw to the PNGI row pointers, assuming the row data is accessible. The coupler can pass this data to the drawing method by using the PNGI’s row access method. With a pointer to the image’s row data, the drawer can write into the memory for the image, modifying the color of any pixel.
In order to draw a line, Bresenham’s line algorithm is employed (Angel, 2003). When drawing a line that does not travel in a simple, general direction, it can be difficult to decide which pixels are included in the line. An approximation needs to be made in a timely fashion and often includes rounding (Franklin, 1994). Bresenham’s line algorithm is an accurate and efficient way of calculating these inclusion pixels by finding the pixel nearest the line at each stage in an incremental manner (Feldman, 1999).

[image: image10]
Figure 11 - Sectors to Consider for Line Drawing

Bresenham’s Line algorithm takes advantage of simple delta, or change, values. The method calculates which of the two points has the smaller x value. This becomes the new default start point while the other becomes the end point, effectively cutting the considered sectors in half to the sectors labeled in figure 11, or in other words, the lines in the positive x direction. Assume the origin in the figure is the location of the start point. Two simple cases can now be checked, due to the fact that the check is inexpensive and the lines are common.
If the y values of both the points are the same, the line is a horizontal one, and can be handled by a specialized drawing loop. A horizontal line will have the same y value at every x point along the line. Therefore, a loop from the start x to the end x will be every pixel in the line. Painting each of these pixels to the supplied color results in the line being drawn correctly.
A vertical line is to be drawn when the x values of both points are the same. Another specialized loop can handle this type of line because a vertical line has the same x value at every point along the line. This is similar to drawing a horizontal line and a similar process can be used for it. The pixel at the start position is painted. The y value is incremented, instead of the x value, and this neighboring pixel is also painted. This process is continued until all the pixels of the desired line have been drawn.
Now, the more difficult lines are considered. First, the slope of the line is calculated by the traditional, change in y over change in x equation. This slope dictates what the next appropriate action should be. Intuitively, there are three cases to consider: a slope of less than one, a slope of one, and a slope of greater than one.

[image: image11]
Figure 12 - A Line with a Slope Equal to One and the Pixels to Illuminate

A slope of one, as depicted in figure 12, is easily handled. This slope means that the change in x is the same as the change in y. Therefore, each pixel that needs to be painted is directly diagonal to the last pixel. The pixel at the start position is painted the correct color, the x and y values are incremented by one, and this neighboring pixel is also colored. This process is continued until every pixel along this diagonal line is painted. A slope of negative one is handled with a similar process by decrementing y instead of incrementing it.

[image: image12]
Figure 13 - A Line with a Slope Less Than One and the Pixels to Illuminate

A slope of less than one, as depicted in figure 13, is more difficult to handle. This line would be found in sector B of figure 11. The algorithm is restricted to incrementing the x coordinate as it plots. It becomes clear that once the routine has plotted a point at (x, y), the algorithm has only two places in which it can plot the next x value: either (x+1,y) or (x+1,y+1). Therefore, the line drawing becomes a matter of deciding between two points at each iteration (Flanagan, 2006). The idea is to reach a compromise between what the actual point is and what pixel to use, with the distance between the two viewed as the error. It is the goal to minimize this error, choosing the pixel that is closest to the actual value of the line. The error will range between -0.5 and 0.5. If the difference between the actual y value of the line and the pixel y value is less than 0.5, the point (x+1,y) is painted. Otherwise, the error is too large and the point (x+1,y+1) is plotted. This minimizes the total error between the mathematical line and what is drawn to the screen. In order to handle a line with a slope greater than negative one and less than zero, those in sector C of figure 11, the algorithm decrements the y value by one, instead of incrementing it, when the error dictates the change (Flanagan, 2006).

[image: image13]
Figure 14 - A Line with Slope Greater Than One and the Pixels to Illuminate

The case where the slope is greater than one, shown in figure 14, is very similar to the lines with slopes less than one. Instead, the process iterates over the y value, incrementing x only when needed. Therefore, the calculations change only marginally and the error between the actual line and the pixelated one can be defined in terms of the x coordinate, meaning the process is inverted. Minimizing the error consists of keeping the pixels as close to the actual x coordinate as possible. These lines are found in sector A of figure 11. To handle a line in sector D of figure 11, the loop will decrement y instead of incrementing it when iterating over it.

[image: image14]
Figure 15 - Drawing a Rectangle

Two opposing corners are all that is needed to describe the wireframe of a rectangle. Using these corners, the other two can be calculated, giving the rectangle a definite shape and accurate dimensions. The upper left corner can be seen in figure 15 as point A, the upper right corner is point B, the lower left corner is point C, and the lower right corner is point D. Point C has a greater y value than point A because the positive y direction travels down instead of up. Drawing a line from point A to point B, from point A to point C, from point B to point D, and from point C to point D gives form to the four sides of the rectangle.
Drawing a solid rectangle can be accomplished similarly. Looking at a solid rectangle of width w and height h shows that it is no different than drawing a line of width w at every y index of height h, which is a method very similar to scan line drawing. For every i where i is greater than or equal to the start point’s y value and less than or equal to the end point’s y value, the method draws a line from the point <start point’s x, i> to the point <end point’s x, i>. The solid rectangle is drawn in this way, using simple line drawing to accomplish a solid look.
The module makes use of Bresenham’s Circle Algorithm to approximate the pixels to color for a circle. This coloring operation takes advantage of the symmetric nature of the circle primitive (Franklin, 1994). The following figure shows how a circle can be split up into symmetric octants.

[image: image15]
Figure 16 - The Symmetric Nature of Circles with Labeled Octants

It can be seen that a circle is symmetrical about the x-axis, which leaves 180 degrees to consider. Next, it is easy to see that it is also symmetrical about the y-axis, leaving only 90 degrees left. It is also symmetrical about the diagonals. Thus, the method need only worry about 45 degrees. When these values have been computed, they can be projected across the symmetric lines to make the appropriate opposite point have the correct coloration.

The intuition behind Bresenham’s circle algorithm is the same as behind Bresenham’s line algorithm. Utilizing only integer mathematics, it approximates the position of a circle’s circumference by minimizing the error between the actual circle and the pixels that are chosen to represent it. The decision process is again limited to two options, moving in the x direction or moving in both the x and y directions, focusing only on sector one points. These points can then be mirrored to the other seven symmetric octants (Mai, n.d.).

The process for drawing a solid circle is very similar to drawing a circle’s outline. It is a similar idea to the scan line approach to solid rendering of rectangles. Using figure 16 as a reference, a line is drawn from the point in octant seven to the point in octant eight. A line is drawn from the point in octant six to the point in octant one, from the point in octant five to the point in octant two, and also from the point in octant four to the point in octant three. These lines give a solid look to the circle.
As was mentioned above, the z coordinate is not used in the actual positioning of drawn bodies in any of the drawer’s methods, but there is a reason to keep track of it. With normal galaxies, it is not unusual to have upwards of 100,000 bodies, which would mean that it would be almost impossible for each body to occupy a unique pixel in an 800 by 800 image. There are bound to be at least two bodies that share the same position. The z-buffer technique solves the problem of what body’s color to use in rendering.
In the z-buffer technique, a two dimensional array, or z-buffer, of floating point numbers corresponding to each pixel in the image is kept with the largest z value seen for every pixel (Angel, 2003). When a point <i,j,k> is submitted for drawing, k, the z value for this point, is checked against the <i,j> entry in the z-buffer. If k is larger than the value at this index, this object must be in front, relative to the viewing eye, of any other object that has been seen so far that also shares this pixel point. Therefore, it will be seen while the object behind is blocked, meaning that this object should paint the pixel with its color. The z-buffer at <i,j> is updated to be k and the other objects are considered. If k is instead smaller than the value of the z-buffer at <i,j>, it means that this object is behind some other object, relative to the viewing eye, and should not be seen. Therefore, it is not allowed to paint its color to the pixel. This method can allow a pixel to be painted many times, but will end up with the correct coloring for each pixel. Note that the viewing eye can be seen as the user who is looking at the image on the screen and the negative z direction goes back into the screen while positive z comes out from it.
4 Sizable Obstacles and Challenges

As with any large project, this work encountered various obstacles. The first such problem was that the library Libpng caused numerous problems. A PNG image can only be created with the library Libpng if the correct order of Libpng methods is strictly followed and the discovery of this order was a trial and error process. It began with discovering the correct methodology for opening an existing PNG image for reading and writing and then again for the creation of a new image. These problems arose out of the initialization of the write and read PNG structs, where the info struct was not being initialized correctly and was essentially an empty information block. This empty block was then being written to the header of the image and was causing the library Libpng to crash because all images must have this information in them. A specific order of png_create and png_init macro calls fixed the problem.

Since the original, non-parallelized, non-partitioned implementation of the image creation was written in C++, the first foray into the GT4 was made using its C core, which would have allowed easy coupling of the existing methods to the services and clients of the GT4. The examples and tests, such as a simple Hello World service, using this core were all easy to install and use but were not very complex (Jeremić, 2006). In order to scale the problem, a factory service was required to dole out resources using the EPRs. This architecture is described above and is used for greater partitioning of the problem space.

Very few examples and tutorials for the C core were found, causing the operation of this core to be mysterious in many cases. The original code was pieced together and the services were deployed. When they tried to access another service, which is required in the architecture employed in this project, they crashed. Using a service as a client to another service, the factory service, turned out to be the reason it did not work. The aid of the Globus community was enlisted by registering with the Globus community’s mailing list. The problem was posted and did not receive any responses. Each mailing list focused on the Java core and its issues. These observations, along with the discovery of numerous Java core examples on the Internet and in the literature, led to the decision to abandon the C core. Several books using the Java core were also published and could be consulted, greatly adding to the information available.

Changing cores, however, led to another problem. The original parsing, drawing, and Libpng code was all written using C++, not Java. Since the library Libpng is written in C and cannot be changed, there was no option but to use the JNI interfacing techniques, allowing the new Java core implementation to use the natively compiled PNG interface modules. The JNI technology is heavily documented and supported and using the interface was a matter of understanding it and finding the appropriate function calls that would be useful for the project.

In order to couple the C++ code to the Java core code, a rewrite of the original C++ code was required. Instead of the original non-parallel version, a new modular based system was needed. The centralized controller was discarded and each module was separated. This was not much of a problem, but the compilation of it was. The program, instead of being compiled to an executable, had to be built to a library, which the JNI coupling techniques required. Then, a test using the correct type of library was tried and failed. A properly formatted environment variable, $LD_LIBRARY_PATH, was required for the JNI coupling to work.

The process of finding and eliminating errors and problems within the project was an immense issue. No debugging tool for use in grid services could be found, causing the project to be difficult to troubleshoot. The tried and true process of using standard print statements and logging information is the main way the service can be traced. It is not a line by line debugging process, but it still offers useful data and intuition as to what the problem may be related.
5 Assessment and Analysis

This project successfully tackled a multitude of issues to piece together a system of great worth to both the scientific visualization and astronomical modeling communities. As was mentioned before, some visualization projects have been integrated into the grid architecture and have shown a tremendous amount of potential. This project is another pairing of the two topics to show the benefits, but takes another approach at it. The services described above provide methods that handle rendering, while the master service of this project manages a common pool of iterations. The service dispenses iterations for rendering when it is contacted. So, instead of offering a set of rendering methods, this service offers a set of iterations that need rendering.

As both grid and Globus technologies are relatively new, the more research and work that is done using them leads to greater advancement of the technologies. Expansion and solidification of these topics will occur only if they are embraced by a large group of users and heavily used. Errors and bugs will arise out of this heavy usage, which will then be addressed, providing a more solid experience and a more solid tool for the masses. The practical knowledge and experience gained from this project will also allow the researcher to be better versed in distributed computing environments, which will make him be a better contributor to the grid and Globus communities. He will be able to provide support for any other developers who wish to join the grid movement.

The scientific visualization community will benefit from this project because it pairs traditional visualization techniques with a new tool, the grid. Most of the models and calculations used in the visualization communities are complex and costly. Using the grid for these complex operations makes sense for both the speed and data handling bonuses that can be obtained from using a grid system. This project lays some example groundwork for future projects to do the same thing, with the techniques and methodology employed here giving new researchers a starting point for their own projects and research.

Many professional astronomers have models of their studies but many of these also have very little experience using grid technology to build a visualization of what their research and data is showing. Many programs, such as Joshua Barnes’ treecode, can handle the complex physics, but require the end user to interpret the data that was generated. This project provides a model on how this can be done. The data can be visualized using a grid with a speed-up of rendering and handling of immense data size in a parallelized setting. Therefore, the visualization does not take as much time to realize and can save the researcher the time and money that might otherwise have been devoted to scheduling a supercomputer. Many researchers will be extremely interested in the topics and ideas in this project, as they can provide obvious benefits to their work and research pursuits. The grid, after all, was created with the scientific communities in mind.

In particular, this project handled a basic visualization problem by moving it to a grid system, successfully employing visualization techniques such as Bresenham’s Line and Circle algorithms to generate accurate images. The treecode model was used to provide data for the behaviors of bodies in a galaxy. This data was then the target for visualization and was drawn to a series of images, integrating into the freely available open source library Libpng to draw images in the PNG format. This allows them to be viewed easily on almost all platforms and programs. The images were stitched together into a MNG animation which gives a much better understanding of the data than can be garnered by just perusing the hard data itself.
The project also tackled numerous issues accompanied with grid technology so that future work can focus on other areas for improvement. It handled the posting of a data set into a resource pool as well as handling requests for data from other clients. On top of these, job submission and file transfer back to the original client was handled. The job submission allows for the program to spread to other computers in the grid that can be utilized, while the file transfer allows for the generated images to be stored in one centralized location so that they can be put together into an animation. Each of these parts had to seamlessly fit together to create a working system of interactions and goals. Above all else, the project provided excellent experience and expertise on PNG image manipulation, JNI coupling, grid techniques and technologies, and system interaction.
6 Future Work

There are many things that could be done to further this research. First, the visualization used in this project is somewhat basic. The expansion of the primitives that can be handled would allow for the project to handle some other types of visualization. For example, the project could include a mode for drawing the potentials involved with each body, instead of an image showing the positions of each body. Other types of complex analysis visualization could be utilized, including element meshes, scalar fields, data flow, vector and tensor fields, coloring based on the clustering density, along with a multitude of other more specialized visualization desires (Gallagher, 1995). The addition of these techniques could provide an extremely powerful and useful tool for any type of visualization, allowing for the general use of this project, rather than solely for astronomical processes.

The study of some other models would be a nice path for this project to take, as well. There are many other fields of study than astronomy that could use a simple, powerful tool for visualizing complex processes. Civil and mechanical engineers, for example, often want to study the flow of a fluid or gas through some structure. This project could be of great use to them as well. The geographical modeling community could use it to generate a topology of a region. Substitution of a field’s specific data set as the resource instead of the iteration-based data in this project would allow the quick change to another field. Looking into these other processes is a very important next step.

Another direction to take the project would be to look at the grid side. The use of the C core instead of the Java core could be explored again. Unfortunately, using the JNI coupling can cause a slowdown on the slave client. These are expensive procedures and must be frequently done in order to generate the appropriate images. If, instead, the Globus interfacing code could be written using C, the integration of the drawing and PNGI modules would be much easier and would remove the need for the JNI coupling. The time required to switch from the Java environment to the native environment of the C/C++ code would no longer be an issue. The Globus community would need to again be explored and more time devoted to fully understanding that core.

There are many other partitioning methods that could be pursued. For example, instead of using the resource pool to store iterations that are waiting for rendering, what if the resource pool stored sets of image data and the bodies of the galaxy became the focus? Therefore, a list of a body’s positions paired with the iteration number for that position could be passed to a slave client. It could then proceed to update all the images that are stored in the resource pool. The master client could then ask for each image in order from the service and write them to an image file, removing the need for GridFTP. Another partitioning method could be to split the bodies into similar groups and handle the drawing of these in unison. There are many other approaches that could be explored and no intuition as to which approach would be better. Some could be better for certain types of visualization and not others.

Another area of research in this project could be the parts of the process that were not partitioned in this project. It would be of great interest if the treecode could be partitioned out over a grid. The process is a complex one, with each body being affected by all the other bodies, but techniques for parallelizing have been developed for some of these highly connected processes. Employing some of these techniques might greatly increase the speed at which the model can operate and offer another feature that would be extremely useful in this project. The treecode itself handles some parallelized computing on a multiprocessor system and many only need a small amount of modification to operate on a grid. The partitioning of the models that were mentioned above would also be a worthwhile pursuit, once again adding to the generality of the project and what it can accommodate.

The file parsing has also been neglected when it comes to the grid. This process is still sequential, but a large file can be expensive to parse in this manner. Therefore, if the parsing could also be done by a grid, another of the costly procedures could reap the benefits given by a grid. If the model simulation, data output parsing, and visualization processes could all be partitioned out over a grid, the entire project would be greatly influenced and the required completion time would decrease.
7 Conclusion

The visualization of many simulations is expensive in completion time and resources. This project looked to alleviate some of these problems. Using a grid can allow for a system to experience high gains without the use of a supercomputer. If a group of computers can be linked into a virtual organization, they can all be used to solve a single problem. Therefore, the goal of the project was to pair a common and difficult process with a grid to garner some increase in productivity and computation efficiency. Some individual resource efficiency is lost, while a great amount of parallelization is gained.

The project successfully partitioned the visualization of the treecode simulation’s output, and its architecture was implemented so that the process works correctly and effectively. It implemented a centralized resource pool, a client to start and seed the service, and slave clients to continuously obtain and render iterations from the service. Each image is also transferred back to the main client for stitching into a MNG animation. Thus, visualization was accomplished and the treecode simulation’s interactions have been made easier to analyze.

Extensive experience and knowledge was gained about distributed computing and grid technology in particular. Multiple architectures were tried before the described version was finalized and implemented. Various visualization methods were also studied and implemented. System specific technology was learned and used with effectiveness. Integrating all of these parts together has been an extremely rewarding pursuit, leading to many benefits for various communities and researchers.
A Appendix
A.1 Master Service Definitions

A.1.1 BodyType and IterType Support Types
<xsd:complexType name=“BodyType”>

 <xsd:sequence>

 <xsd:element name=“nbody” type=“xsd:int”/>

 <xsd:element name=“posx” type=“xsd:float”/>

 <xsd:element name=“posy” type=“xsd:float”/>

 <xsd:element name=“posz” type=“xsd:float”/>

 <xsd:element name=“velx” type=“xsd:float”/>

 <xsd:element name=“vely” type=“xsd:float”/>

 <xsd:element name=“velz” type=“xsd:float”/>

 <xsd:element name=“mass” type=“xsd:float”/>

 </xsd:sequence>

</xsd:complexType>

<xsd:element name=“BodyEntry” type=“tns:BodyType”/>

<xsd:complexType name= “IterType”>

 <xsd:sequence>

 <xsd:element name=“iter” type=“xsd:int”/>

 <xsd:element name=“nbodies” type=“xsd:int”/>

 <xsd:element name=“mode” type=“xsd:int”/>

 <xsd:element name=“iwidth” type=“xsd:int”/>

 <xsd:element name=“iheight” type=“xsd:int”/>

 <xsd:element name=“maxmass” type=“xsd:float”/>

 <xsd:element name=“minmass” type=“xsd:float”/>

 <xsd:element name=“maxvel” type=“xsd:float”/>

 <xsd:element name=“minvel” type=“xsd:float”/>

 <xsd:element name=“bodies” minOccurs=“0”

maxOccurs=“unbounded” ref=“tns:BodyEntry”/>

 </xsd:sequence>

</xsd:complexType>

<xsd:element name=“IterEntry” type=“tns:IterType”/>
Figure A 1 - BodyType and IterType WSDL Definitions

A.1.2 Resource Property

<xsd:element name=“SciVizMasterResourceProperties”>

 <xsd:complexType name=“ResourceType”>

 <xsd:sequence>

 <xsd:element name=“curr” type= “xsd:int”/>

 <xsd:element name=“work” type=“xsd:int”/>

<xsd:element name=”gftpServer” type=“xsd:string”/>

 <xsd:element name=“idata” minOccurs=“0”
 maxOccurs=“unbounded” ref=“tns:IterEntry”/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Figure A 2 - The Resource Property WSDL Definition

The curr value of the resource corresponds to the number of iterations that exist in the service, while the work value is the index into the iteration array where the next iteration to be processed resides. The gftpServer string is the address where the GridFTP server is located and should not include the protocol to use, as it will be assumed to the GridFTP’s default. The idata member is the iteration array.
A.1.3 Service Methods

<xsd:element name=“addIterData”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“idata”
 ref=“tns:IterEntry”/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name=“addIterDataResponse”>

 <xsd:complexType/>

</xsd:element>

Figure A 3 - The addIterData Method

The addIterData() method of the web service allows for an iteration to be added to the current resource. As is defined in the schema file of the service, the method takes one parameter and returns a void. The parameter is of type IterType and is a properly constructed iteration. The addIterData() method, when adding the new iteration, increments the resource’s curr value before returning.

<xsd:element name=“getNextIter”>

 <xsd:complexType/>

</xsd:element>

<xsd:element name=“getNextIterResponse”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“idata”
ref=“tns:IterEntry”/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Figure A 4 - The getNextIter Method

The getNextIter() method of the web service returns the next iteration in the resource’s iteration list to the calling client. The schema defines this method as taking a void parameter and returning an IterType value, which is the next iteration in the array. The next iteration is computed by using the work value as the index into the iteration array. Before returning the iteration, the resource’s work value is incremented in order to move to the next iteration for returning when the next call to getNextIter() is submitted.

 <xsd:element name=“getNIterRemaining”>

 <xsd:complexType/>

</xsd:element>

<xsd:element name=“getNIterRemainingResponse”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“niters”
type=“xsd:int”/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Figure A 5 - The getNIterRemaining Method

The getNIterRemaining() method of the web service allows for a calling client to monitor the progress of the process. This method takes a void parameter and returns the number of iterations that remain to be processed. To calculate this number, the service accesses the resource’s curr and work values and returns the value computed by subtracting the work value from the curr value. Too many calls to this method, however, will slow down the process as the service will spend too much time communicating status checks and less time doling out iterations.

 <xsd:element name=“setGftpServer”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“dest”
type=“xsd:string”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name=“setGftpServerResponse”>

 </xsd:complexType/>

</xsd:element>
Figure A 6 - The setGftpServer Method
The setGftpServer method accepts a string referencing the location of the GridFTP server and sets it to the gftpServer member of the resource. The method returns a void type.

 <xsd:element name=“getGftpServer”>

 <xsd:complexType/>

 </xsd:element>

 <xsd:element name=“getGftpServerResponse”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“dest”
type=“xsd:string”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>
Figure A 7 - The getGftpServer Method
The getGftpServer method does not require a parameter and returns the location of the GridFTP server. This location is stored in the service’s resource and is set by the setGftpServer method.
A.2 Factory Service Definitions

A.2.1 Service Methods

 <xsd:element name=“createResource”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“resID”
type=“xsd:string”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=“createResourceResponse”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element
ref=“wsa:EndpointReference”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>
Figure A 8 - The createResource Factory Service Method

The createResource() method of the factory service asks the resource home to create a resource and return the resource key to it. The resID parameter to this method is passed to the resource home and is used as the identifier to the created resource. Using this key and the base address of the factory, this method builds an EPR and returns it to the calling client.
 <xsd:element name=“generateResource”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“resID”
type=“xsd:string”/>

 </xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=“generateResourceResponse”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element
ref=“wsa:EndpointReference”/>

 </xsd:sequence>

</xsd:complexType>

 </xsd:element>
Figure A 9 - generateResource Factory Service Method

The generateResource() factory method is essentially the same as the createResource() method. The schemas for both methods are identical with the exception of the name. This method is used to generate the appropriate EPR for the resource. The generateResource() method passes the resID parameter to the resource home, asking it to generate the corresponding key for the resource identifier instead of creating a new resource and assigning it the supplied resource identifier. These two methods are similar but are used in different situations.
A.3 Master Client Definitions

A.3.1 FileHandler Module

The FileHandler has one public method which the GlobusClient uses to access the output from the treecode. This is the getNextIter() method, which builds an iteration from the output and returns it. If a null iteration is returned, there are no remaining iterations in the output.
A.4 Slave Client Definitions

A.4.1 GlobusSlave Module

The native function of this method is the createImage() process, which creates a method. The prototype of the function is as follows: void createImage(IterType i). It uses the PNGI and drawer modules to create a complete image that accurately reflects the iteration that is passed to it.
A.4.2 PNGI Module

class PNGInterface

{

public:

PNGInterface() {}

PNGInterface(string i_filename, int _width, int _height) {}

~PNGInterface();

bool NewImage(int w, int h); // Open a new image

void ClearImage();
 // Clear the image pixels

bool openFileWrite();

void closeFile();

bool writeHeader();

bool writeImage();

bool initWriteStructs();

bool writeEnd();

...... other interface methods for reading, not creating a file

private:

string filename;

FILE* fp;

...... PNG specific structs

int width, height;

png_bytep* row_pointers; // The pixel row data

};

Figure A 10 - The PNGI Class

The NewImage() method takes the desired width and height as parameters and generates a new file. Once the file has been opened and verified that it does not exist, the row pointers, or the array of pixel information, are allocated, using the C-style malloc() method, to the correct size. Each pixel is then initiated to have a red intensity of 255, a green intensity of 255, a blue intensity of 255, and an alpha value of 255, or, in other words, white with no transparency.

The closeFile() method closes the PNG image that was being written to, while the GetRows() method returns the memory location of the iteration’s row array. This array is what is written to in the drawer module.

The openFileWrite() method opens a file in write mode. This file is where the image data will be deposited, with the initWriteStructs() method handling the initialization of the Libpng-specific write structs that will be placed in the image.

The writeHeader() method writes the important header data to an image file. Since all the images that are generated are of the same type and format, this method can handle the header for all of them. The write and info structs are written to this header area of the file along with some other bits of information, including the width and height of the image and the color format, RGBA for this project.

The writeImage() method takes the row pointers and writes them to the image file. This function is a very simple one, only writing the data using the png_write_image() method provided by the Libpng library, which writes the row image data. While simple, it does the actual pixel creation and specification in the image, thereby being the most important method that the JNI coupler calls. The writeEnd() method handles the second half of the image writing procedure. It calls the Libpng-supplied png_write_end(), which writes the end of the PNG data to which an image has already been written[48].
A.4.3 Drawer Module

class Drawer

{

public:

Drawer(int w, int h);
// Constructor

void DrawLine(Point p1, Point p2, png_bytep* image,
 Color * col);

void WritePoint(png_bytep * img, Point p, Color * col);

void DrawRect(Point lp, Point rp, Color * col,
 png_bytep* img);

void DrawSolidRect(Point lp, Point rp, Color * col,
 png_bytep* img);

void DrawCircle(Point center, int radius, Color * col,
 png_bytep* img);

void DrawSolidCircle(Point center, int radius, Color * col,
 png_bytep* img);

private:

void initDepthBuf();

int iwidth;

int iheight;

float * pdepth;

// The z-buffer

};
Figure A 11 - The Drawer Class
The WritePoint() method is the most basic of the usable methods. It takes three parameters, a point, the row pointers, and a color. The method paints the supplied color to the pixel referenced by the point in the row pointers. Assuming that the point has a x value of i and a y value of j, the value at rows[j][i] is assigned the color’s red value, the value at rows[j][i+1] is assigned the color’s green value, the value at rows[j][i+2] is assigned the color’s blue value, and the value at rows[j][i+3] is assigned the color’s alpha value. This method is used by the other draw methods of the drawer module.

The DrawLine() method requires four parameters. It takes the start point, the end point, the row pointers, and the color to draw. The DrawRect() method draws a wireframe rectangle to the image in the supplied color. This method takes four parameters as well, the upper left point corner of the rectangle, the lower right point corner of the rectangle, the row pointers, and the color to the lines. The DrawSolidRect() method behaves in a similar fashion. It takes four parameters, like its cousin DrawRect(), the upper left corner, the lower right corner, the row pointers, and the drawing color, and draws a solid rectangle using a scan line approach.
The DrawCircle() method draws a wireframe circle into the image data. It also takes four parameters: the radius of the circle, the center point of the circle, the row pointers, and the drawing color. The DrawSolidCircle() method accepts the same parameters as the DrawLine() method and draws a scan line solid circle.
B References

Allen, M., Stainforth, D., Christensen, C., & et al. (2002). Climateprediction.net. Retrieved December 15, 2005, from http://climateprediction.net/
Angel, E. (2003). Interactive computer graphics: a top-down approach using OpenGL. Boston: Addison Wesley.

Apache Web Services Project. (2005). Web services – Axis. Retrieved March 20, 2006, from http://ws.apache.org/axis/
Barnes, J. (2001). Treecode guide. Retrieved October 8, 2005, from http://www.ifa.hawaii.edu/~barnes/treecode/treeguide.html
Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web services description language (WSDL) 1.1. Retrieved February 13, 2006, from http://www.w3.org/TR/wsdl
DataGrid Project. (2003). Retrieved December 15, 2005, from http://web.datagrid.cnr.it/servlet/page?_pageid=1407&_dad=portal30&_schema=PORTAL30&_mode=3
Distributed.net. (1997). Projects. Retrieved January 22, 2006, from http://www.distributed.net/
Feldman, M. (1999). Bresenham’s line and circle algorithms. Retrieved September 28, 2005, from http://www.gamedev.net/reference/articles/article767.asp
Flanagan, C. (2006). The Bresenham line-drawing algorithm. Retrieved October 3, 2005, from http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
Foster, I. (2005). A Globus Primer. Retrieved February 12, 2006, from http://www.globus.org/toolkit/docs/4.0/key/
Foster, I., Kesselman, C., & Tuecke, S. (2001). The Anatomy of the Grid: enabling scalable virtual organizations. International J. Supercomputer Applications, 15(3).
Foster, I., Williams, D., Middleton, D., & et al. (2006). Earth system grid. Retrieved February 3, 2006, from https://www.earthsystemgrid.org/
Franklin, W. (1994). Bresenham line and circle drawing. Retrieved September 28, 2005, from http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/bresenham.html
Free Software Foundation, Inc. (2006). GCC homepage. Retrieved March 20, 2006, from http://gcc.gnu.org/
Gallagher, R. (Ed.). (1995). Computer visualization: graphics techniques for scientific and engineering analysis. Florida: CRC Press, Inc.

Gamboa, R. (2006). Grid computing for scientific applications. Retrieved January 10, 2006, from http://www.cs.uwyo.edu/moodle/
Globus Alliance. (1997). Welcome to Globus. Retrieved January 28, 2006, from http://www.globus.org/
Globus Alliance. (2004). The WS-resource framework. Retrieved February 12, 2006, from http://www.globus.org/wsrf/
Globus Alliance. (2005a). GT 4.0 C WS core: developer’s guide. Retrieved February 3, 2006, from http://www.globus.org/toolkit/docs/4.0/common/cwscore/developer-index.html

Globus Alliance. (2005b). GT 4.0 Java WS core: developer’s guide. Retrieved February 25, 2006 from http://www.globus.org/toolkit/docs/4.0/common/javawscore/developer-index.html

Globus Alliance. (2005c). GT 4.0 Java WS core glossary. Retrieved February 25, 2006, from http://www.globus.org/toolkit/docs/4.0/common/javawscore/Java_WS_Core_Glossary.html
Globus Alliance. (2005d). The Globus resource specification language RSL v.1.0. Retrieved March 22, 2006, from http://www-fp.globus.org/gram/rsl_spec1.html
Grid.org. (2004). Grid computing. Retrieved January 14, 2006, from http://www.grid.org/about/gc/
Heinzlreiter, P., & Kranzlmüller, D. (2003). Visualization services on the grid: the grid visualization kernel. Austria: World Scientific Publishing Company.

Image Magick Studio LLC. (1999). Introduction to ImageMagik. Retrieved September 30, 2005, from http://www.imagemagick.org/script/index.php
Jeremić, I. (2006). Hello world service. Retrieved February 5, 2006, from http://www.jwork.net/GT4WSC/HelloWorldService/
Lilley, C. (1994). PNG (portable network graphics). Retrieved September 13, 2005, from http://www.w3.org/Graphics/PNG/
Mai, L. (n.d.). Introduction to computer vision and image processing. Retrieved March 30, 2006 from http://www.netnam.vn/unescocourse/computervision/computer.htm
McGuire, R. (2005). ModelWeb. Retrieved December 16, 2005, from http://modelweb.gsfc.nasa.gov/
Randers-Pehrson, G. (2002). A description on how to use and modify libpng. Retrieved September 15, 2005 from http://www.libpng.org/pub/png/libpng-1.2.5-manual.html
Roelofs, G. (2005). Libpng. Retrieved September 13, 2005, from http://www.libpng.org/
Roelofs, G., Juyn, G., & Randers-Pehrson, G. (1998). Multiple-image network graphics. Retrieved September 13, 2005, from http://www.libpng.org/pub/mng/
Silva, V. (2006). Grid computing for developers. Massachusetts: Charles River Media.

Sotomayor, B. (2005a). Globus service build tools. Retrieved March 20, 2006, from http://gsbt.sourceforge.net/
Sotomayor, B. (2005b). The Globus toolkit 4 programmer’s tutorial. Retrieved February 25, 2006, from http://www.casa-sotomayor.net/gt4-tutorial/multiplehtml/ch05s03.html

Sotomayor, B., & Childers, L. (2006). Globus toolkit 4: programming java services. San Francisco: Morgan Kaufman.

Speirs, T. (2005). MNGer – a simple Windows MNG animation player. Retrieved March 17, 2006, from http://tomspeirs.com/mnger/
Sperberg-McQueen, C., & Thompson, H. (2000). XML schema. Retrieved February 13, 2006, from http://www.w3.org/XML/Schema
Stell, A. (2005). How to write GT4 services – version 1.2. Retrieved January 26, 2006, from http://labserv.nesc.gla.ac.uk/projects/etf/gt4howto/gt4_howto.html
Sun Developer Network. (2003). Java naming and directory interface. Retrieved February 13, 2006, from http://java.sun.com/products/jndi/
Sun Developer Network. (2006a). Core Java. Retrieved March 4, 2006, from http://java.sun.com/j2se/1.5.0/
Sun Developer Network. (2006b). JNI example. Retrieved March 4, 2006, from http://java.sun.com/developer/onlineTraining/Programming/JDCBook/jniexamp.html
Sun Microsystems. (2003a). JNI functions. Retrieved March 4, 2006, from http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/functions.html
Sun Microsystems. (2003b). Java native interface specifications – contents. Retrieved March 5, 2006 from http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html
University of California. (2006a). Berkeley open infrastructure for network computing. Retrieved January 5, 2006, from http://boinc.berkeley.edu/
University of California. (2006b). SETI@home. Retrieved January 22, 2006, from http://setiathome.berkeley.edu/
W3C XML Protocol Working Group. (2003). SOAP version 1.2 part 1: messaging framework. Retrieved March 20, 2006, from http://www.w3.org/TR/soap12-part1/
Master Client

Service Container

Resource - Iterations

The Client reads an iter in and loads it into the service

The Client repeats the process until complete

Slave Client 1

Slave Client n

The Slave asks for iters and processes them

The Slave asks for iters and processes them

Other resources

Client

Master Client

Master Service

Factory Service

Resource Home

Resource 1

Resource n

Treecode outputs the position, mass, and velocity of each body at each output time step

Iteration and body data output file for n iterations and m bodies in each iteration

Master Globus Client

Obtain Iter 1 Data

Send the Iter 1 Data to the Service

Send the Iter n Data to the Service

Obtain Iter n Data

FileHandler

Treecode output file

Globus Client

Master Service

Master and Factory Services

Master Client

(GridFTP Server)

Slave Client

Image

B

A

B

A

Positive X

Positive Y

D

C

C

D

1

2

3

4

5

6

7

8

PAGE
41

