
State Space Discovery by Guided Dynamic Analysis

Nadya Kuzmina, John Paul, Ruben
Gamboa, and James Caldwell

∗

University of Wyoming
P.O. Box 3315

Laramie, WY 82071-3315
{nadya, jpaul, ruben, jlc}@cs.uwyo.edu

ABSTRACT
Dynamic constraint inference techniques give precise results, but
are usually limited to relatively few properties. This limitation
often prohibits a dynamic constraint inference approach from ex-
pressing the essential behavior of a given program. This paper in-
troduces the state space partitioning technique which applies the
partitions implicit in a program’s source code to effectively intro-
duce several types of disjunctive program-specific properties into
the language of dynamic constraint inference. Disjunctive proper-
ties considered by our approach include object invariants and tran-
sitions between abstract states of the target program.

The state space partitioning technique has been implemented in a
tool called ContExt, which relies on Daikon for dynamic constraint
inference tasks. We demonstrate that our approach specifies the es-
sential behavior on five examples from different domains. In each
case pure dynamic constraint inference fails to capture important
constraints on the essential behavior of the program under analy-
sis. The primary reason for this failure is the inexpressibility of
a general and effectively computable disjunctive constraint in the
language of dynamic constraint inference.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Class invariants—auto-
matic specification recovery

Keywords
dynamic constraint inference, class invariants, disjunctive constraints

1. INTRODUCTION
Dynamic constraint inference techniques output likely constraints
by examining program executions. Likely constraints are proper-
ties that hold on the examined program runs [24]. In practice many
of these likely constraints coincide with a program’s essential spec-
ification. Dynamic constraint inference techniques have been suc-

∗This material is based upon work supported by the National Sci-
ence Foundation under Grant No. NSF CNS-0613919.

cessfully applied to a variety of problems, such as automating the-
orem proving tasks [19, 20], verifying safety properties [23, 22,
30], generating and prioritizing test cases [28], program refactor-
ing [15], and error detection [26, 25] among others. Aside from
the fact that it is unsound, dynamic constraint inference typically
suffers from two limitations.

The first one which is shared by most constraint inference tech-
niques whether static or dynamic is that the types of properties
considered must be fixed by a human operator prior to analysis.
The second one which is typical of the dynamic approach alone is
that it is not designed to exploit structured property spaces.

The first limitation often results in analysis with the same fixed set
of a priori identified properties that do not take the logic of the pro-
gram under analysis into account. A fixed set of properties or tem-
plates is justified for a task like fault detection [8] which may only
require the discovery of a pre-defined set of fault-specific proper-
ties for its success. A fixed property set, however, presents serious
limitations for tasks like comprehension which often require the
discovery of unforeseen properties.

That the dynamic approach does not depend on structured prop-
erty spaces can perhaps be seen to mitigate this first limitation: it
is easier to add a new property if this can be done independently
of what is already there. It also, however, makes the inference of
disjunctive combinations of properties, something that is quite easy
to do certain structured domains, prohibitively expensive. Further-
more, if new properties are introduced by templates as they are in
Daikon [9] for instance, then due to its unrelatedness to the oth-
ers each new template will perforce be instantiated independently
of all the others. So, a cost accrues to introducing new templates
that would be avoided if the analysis were capable of maintaining
dependencies between certain property instances when they are as-
sumed to exist.

This paper attempts to overcome both limitations at once by view-
ing the conditional statements in the source code of the program
under analysis, which is assumed to be a class with protected data
members in an object-oriented language, as guiding the automatic
construction of property domains whose structure can be used ef-
ficiently to generate hypotheses to be checked against a set of ex-
ecution traces. Primarily this paper concentrates on the tests that
a class performs on its own internal variables from within the con-
structors and methods it defines. The technique that allows for the
inference of constraints based on these tests is called state space
partitioning.

The state space partitioning technique automatically derives an ab-
stract state space for the class under analysis. From this space the
technique constructs three types of hypotheses: object invariants,
method preconditions, and the transitions induced by each method
on this space. The hypotheses are then checked against a set of
execution traces involving instances of the class. The result of the
technique is a set of disjunctive constraints on the abstract states of
the class. As is characteristic of dynamic approaches, the results of
the state space partitioning technique are precise, but unsound.

The state space partitioning technique has been implemented in a
tool called ContExt. ContExt relies on a cursory static analysis to
determine its property spaces and on Daikon for dynamic constraint
inference tasks. We demonstrate the inferences that ContExt was
able to perform on five simple but non-trivial examples presented in
Section 3. On each example, Daikon fails to infer at least a part of
the essential specification due to the inexpressibility of disjunctive
constraints in its language.

The rest of this paper is organized as follows. Section 2 is devoted
to the description of the state space partitioning technique. More
specifically, Section 2.1 provides the motivation behind the tech-
nique. Section 2.2 presents a formal algorithm for our approach.
Section 2.2.6 discusses the implementation of ContExt. Section 3
presents and compares constraints inferred by ContExt and Daikon
on five simple but non-trivial examples. Section 4 provides an eval-
uation framework for constaint inference tools. Discussion of our
approach is presented in Section 5. Related work is discussed in
Section 6, and finally, Section 7 presents our conclusions.

2. STATE SPACE PARTITIONING
2.1 Motivation
Throughout this paper we are concerned with the task of automat-
ically inferring constraints on the behavior of correct target pro-
grams via program analysis. The ultimate goal of this task is to re-
cover a program specification from the program itself that closely
approximates its essential specification, the essential specification
being a declarative description of the program’s essential behav-
ior. In the best case, the task we have outlined will recover the
complete essential specification of a given program, where we are
really only limiting ourselves to classes in an object-oriented pro-
gramming language.

The languages of current dynamic constraint detection techniques
are often specified by a fixed grammar of universal properties [9,
30]. These universal property languages often provide a means to
obtain a kind of rough initial approximation of the program under
analysis, but they are often not sufficient to express more subtle
facts that describe the particular logic of this program apart from
most others. It would, furthermore, be computationally prohibitive
to go after these facts in the same way as the universal ones.

Instead we offer a technique to automatically specialize the lan-
guage of constraint detection to a particular program on a per-
program basis. The key observation for our technique is that cer-
tain constructs from the source code can be mapped to assump-
tions about the target program, an idea that goes back to the ad-
vent of structured programming [6]. Such assumptions are then
used to generate constraint hypotheses that are checked dynami-
cally against a set of execution traces.

Our approach bears some similarity to that of Engler et. al. [8]
who infer programmer “beliefs” (facts implied by code) and then

if (x < 0) {. . .} P1 ≡ x < 0,
else if (y > 0) {. . .} ⇒ P2 ≡ x ≥ 0 ∧ y > 0,
else {. . .} P3 ≡ x ≥ 0 ∧ y ≤ 0

Figure 1: An if-then-else statement and its corresponding
partition

cross-check them for contradictions with the purpose of discover-
ing program errors. The similarity lies in that both Engler’s ap-
proach and ours use source code to guess the programmer’s inten-
tions. Engler, however, is interested in the error-revealing beliefs
of the form “pointer p is non-null” and “a call to lock must be
followed by a call to unlock” in the context of large kernel pro-
grams, whereas we hypothesize constraints about what the state
space of a particular class in an object oriented program looks like
based on the way the programmer appears to partition this space
with if-then-else statements.

One way to view a class in an object-oriented system is as defining
the space of all states attainable by instances of this class. The indi-
vidual dimensions of this state space are indexed by the attributes
declared in the class, and the space itself is contained within the
Cartesian product of the domains of those attributes. A conditional
statement appearing in the class can then be seen to distinguish ob-
ject states into two or more subspaces that are used by the program-
mer to anticipate the distinctive behavior of objects whose states
are thus categorized. Being disjoint from the others, each subspace
serves as an abstract state representing the set of object states that
it contains. Also, since the subspaces together exhaust the possi-
bilities for the attribute dimensions they contain, they comprise an
abstract state space.

In particular, each test in an if-then-else-statement exclu-
sive of the preceding tests defines a partition on the values of at-
tributes that participate in the tests of the statement. For example,
the tests x < 0 and y > 0 in Figure 1 partition the state space
{〈x, y〉 | − 231 ≤ x, y < 231} consisting of all possible pairs
of int values for attributes x and y into three disjoint subspaces,
or states, that are characterized by the additional facts that either
x < 0, or x ≥ 0 ∧ y > 0, or x ≥ 0 ∧ y ≤ 0. The questions that
can be asked for each method in the class are then “Is the method
always called by objects in a particular abstract state?” and “What
transitions does the method induce on the abstract state space?”. In
terms of finite state machines (FSM), each conditional statement
identifies the states of an FSM, and each method specifies transi-
tions on these states just as the letter in an input alphabet would.
Any nondeterminism in the FSM is described by a disjunction of
abstract states.

Our technique operates on object-oriented programs and uses state
space partitions to effectively introduce a number of different types
of disjunctive constraints into the language of constraint detection.
Disjunctive hypotheses based on state space partitions include con-
straints on the distinctive behavior of objects while they are in each
abstract state, as well as constraints on the transitions between ab-
stract states induced by class methods, and crucially, object invari-
ants as will be seen in section 2.2.5. Since general disjunctive
relations are expensive to compute, the universal properties of tra-
ditional dynamic analysis exclude disjunctive constraints.

2.1.1 The Calculator Example

p u b l i c c l a s s CalcEngine {

// object invariant:
// (!adding || !subtracting)

//number which appears in the Calculator display
p r i v a t e i n t d i s p l a y V a l u e ;
//store a running total
p r i v a t e i n t t o t a l ;
//true if #’s pressed should overwrite display
p r i v a t e boolean newNumber ;
//true if adding
p r i v a t e boolean adding ;
//true if subtracting
p r i v a t e boolean s u b t r a c t i n g ;

/* preconditions:
* P1 || P2, Q1 || Q2 || Q3
* post-conditions:
* orig(P1) ==> P2, orig(P2) ==> P2
* orig(Q1) ==> Q1, orig(Q2) ==> Q2
* orig(Q3) ==> Q3
* orig(P1) <==> (displayValue == orig(number))
* orig(P2) ==>
* (displayValue == 10*orig(displayValue)+orig(number))
*/

p u b l i c vo id numberPressed (i n t number) {
i f (newNumber)

d i s p l a y V a l u e = number ;
e l s e

d i s p l a y V a l u e = d i s p l a y V a l u e ∗ 10 + number ;
newNumber = f a l s e ;
}

p u b l i c vo id eq ua l s () {
i f (adding)

d i s p l a y V a l u e = d i s p l a y V a l u e + t o t a l ;
e l s e i f (s u b t r a c t i n g)

d i s p l a y V a l u e = t o t a l − d i s p l a y V a l u e ;
. . .

}

/* preconditions:
* P1 || P2, Q3
* post-conditions:
* orig(P1) ==> P1, orig(P2) ==> P1
* orig(Q3) ==> Q3
*/

p u b l i c vo id c l e a r () { . . . }

}

Figure 2: Calculator Example with two partitions

The CalcEngine class in Figure 2 represents a state-based calcu-
lator. The values of the newNumber, adding, and subtract-
ing attributes participate in the state of a CalcEngine object and
determine the action taken when a button on the calculator’s key-
board is pressed. For example, when a number button is pressed,
the numberPressedmethod is called. The behavior of the num-
berPressed method is determined by the newNumber value. If
newNumber is true, then displayValue is assigned the num-
ber that was pressed; if newNumber is false then display-
Value is set to displayValue * 10 + number.

Our technique forms two state spaces for the CalcEngine objects
based on the tests of the conditional statements in the source code
of the class. The first space IP 1 is derived from the if-statement
in the body of the numberPressed method and consists of two
abstract states, one called P1 where newNumber is true and
one called P2 where newNumber is false. The second space
IP 2 originates from the if-statement in the body of the equals
method and consists of three abstract states Q1, Q2, and Q3 de-

fined by the predicates adding, ¬adding ∧ subtracting,
and ¬adding ∧ ¬subtracting respectively.

The constraints automatically inferred by our technique are pre-
sented on Figure 2. The precondition on the numberPressed
method indicates that this method was called by CalcEngine
objects in every abstract state of IP 1 and IP 2. The precondition
on clear, however, suggests that this method was only invoked
by objects in P1, P2, or Q3. Preconditions reveal the “use-cases”
of each method observed over a set of execution traces.

Post-conditions reflect the state transitions induced by a method, if
any, by relating an initial abstract state observed at the precondi-
tion to the disjunction of abstract states that were observed at the
post-condition of this method. For example the postconditions for
the numberPressed method reveal that this method performs a
transition from any initial IP 1-state into P2 and serves as identity
function on the IP 2 states.

Our technique also automatically infers the object invariant (¬add-
ing ∨ ¬subtracting) for the CalcEngine class. This object
invariant is an essential constraint which says that adding and
subtracting are mutually exclusive in all CalcEngine in-
stances.

2.2 Our Approach
Naively it appears that the computation of the disjunctive postcon-
ditions in the Calculator example would require us to check a num-
ber of state combinations exponential in the size of the state space
for each possible transition. This section describes an algorithm
that by exploiting the structure of the abstract state spaces must
only consider a linear number of constraints per transition.

2.2.1 Test Conditions to Partitions
Every if-then-else statement defines a sequence of boolean
expressions consisting of the test expressions mentioned by the
statement in the order in which they appear in the statement. One
arrives at a disjoint partition of the state spaces of the program vari-
ables involved in expressing these tests by making the semantics of
the relative position of each test in this sequence explicit.

This is accomplished by conjoining each test with the negations of
all the tests preceding it in the sequence and by adding an explicit
else-partition that is the combined negation of all the tests in the
sequence. The result is a set of logically disjoint formulas whose
disjunction is a tautology. The cardinality of this set is one greater
than the length of the original sequence.

For example, consider an if-then-else statement of the form

if (cond1) { ... }
else if (cond2) { ... }
else { ... }

The disjoint partition of the state space of the variables involved in
cond1 and cond2 is constructed as follows: P1 = cond1, P2 =
cond2 ∧ ¬cond1, and P3 = ¬cond2 ∧ ¬cond1. Each symbol P1,
P2, or P3 is used to denote both a logical formula and the respective
subspace or state induced by this formula within the overall state
space.

The symbol IP will be used to denote an arbitrary partition whose

δ(m, IP) 1 2 . . . n
m J(1, m, IP) J(2, m, IP) . . . J(n, m, IP)

Figure 3: Transition relation computed for method m and par-
tition IP = {P1, P2, . . . , Pn}

formulas are indexed by the set IIP = {1, . . . , |IP |} of the first
|IP | positive integers in such a way that condi refers to the ith test
for each i < |IP |. Thus, P1 is identical with cond1, and the final
formula, when i = |IP |, always coincides with the else-formula.
The simplest partitions are, therefore, those derived from single if-
then-else statements and are indexed by the set {1, 2}.

It will also prove convenient to be able to refer to the method con-
taining the conditional statement from which IP is derived, and this
will be denoted by m(IP).

If each condi can be expressed in terms of instance variables and
constants alone then IP is said to be class scoped. If some condi

contains additional mention of a formal parameter to m(IP) then
IP is said to be an m(IP) scoped input partition. The notion of
partition scope makes it possible to distinguish those partitions that
can be evaluated anywhere in the class and are hence class scoped
from those that can only be evaluated within the context of a spe-
cific method and are hence method scoped.

2.2.2 Computing the Transition Relation
Once the partitions and their respective scopes have been extracted
from a class by a precursory static analysis, it is possible to approx-
imate the transition relation δ(m, IP) induced by method a m with
respect to any class scoped partition IP .

To do this we approximate for every i ∈ IIP the smallest subset
J(i, m, IP) ⊆ IIP such that the disjunction_

j∈J(i,m,IP)

Pj

holds upon exit of method m given that Pi holds upon entry of m.
The resulting transition relation is shown in Figure 3. A transition
from Pi to Pj is said to be possible under m if j ∈ J(i, m, IP).

Stated in terms of Hoare triples, each J(i, m, IP) is the smallest
subset such that

{Pi}m

8<: _
j∈J(i,m,IP)

Pj

9=;
is a valid Hoare triple.

This minimum is well-defined: IIP itself satisfies the above triple
since the logical disjunction over the entire partition is true, and as
the following argument shows next, if J(i, m, IP) and J ′(i, m, IP)
both satisfy the triple so does their intersection.

If each disjunction individually satisfies the triple, then so does the
conjunction of both

{Pi}m

8<:
0@ _

j∈J(i,m,IP)

Pj

1A ∧

0@ _
j′∈J′(i,m,IP)

Pj′

1A9=; .

Redistributing yields the disjunction over all possible combinations
Pj ∧ Pj′ . Since Pj and Pj′ are, however, logically disjoint unless
j = j′, this goes to show that only those indexes contained in both
J(i, m, IP) and J ′(i, m, IP) are the relevant part of each set.

The approach taken in this paper is to use a dynamic invariant de-
tector to approximate each J(i, m, IP) with a potentially smaller
set. The basic algorithm for a single partition IP whose scope in-
cludes method m is given next.

1. For each i ∈ IIP , initialize local variable Jc(i, m, IP) to IIP .

2. Perform dynamic analysis, and whenever a counterexample
of

{Pi}m{¬Pj}

is exhibited for some i ∈ IIP and j ∈ Jc(i, m, IP), remove
j from Jc(i, m, IP).

3. Approximate J(i, m, IP) with the set difference J∗(i, m, IP) =
IIP − Jc(i, m, IP).

The algorithm relies on the fact that each IP is a valid logical par-
tition. In particular, it leverages the fact that for any two comple-
mentary subsets J and Jc such that Jc ∩ J = ∅ and Jc ∪ J = IIP_

j∈J

Pj =
^

j∈Jc

¬Pj .

Thus, step 2 of the algorithm effectively constructs the largest con-
junction of negated partition formulas that is consistent with the ob-
served runs over a particular dynamic analysis, and step 3 merely
coverts this into the equivalent smallest disjunction. It is this last
possibility that allows us to avoid having to work directly with the
2|IP | disjunctions that may be the outcome of a single transition.
Instead the algorithm must only consider |IP | constraints per tran-
sition.

Because dynamic analysis is perfectly precise, any {Pi}m{¬Pj}
eliminated in step 2 is a truly impossible Hoare triple. However,
because dynamic analysis is unsound it may not eliminate all of
the impossible triples. Thus, the approximation computed by the
algorithm is related to the actual solution in the following way:
J∗(i, m, IP) ⊆ J(i, m, IP) for each i ∈ IIP . Seen from a logical
point of view, the disjunctions indexed by the J∗s are potentially
stronger, in the sense of entailment, than those indexed by the Js.
The inequality therefore exemplifies the unsoundness that is asso-
ciated with the dynamic approach in general.

2.2.3 Refining the Transition Relation
The discussion so far has focused on a transition relation δ(m, IP)
computed with respect to a class scoped partition IP . It is now
shown how to refine this relation in the presence of any m scoped
input partition II .

Instead of computing only one set J(i, m, IP) for every i ∈ IIP

we now compute |III | separate sets Jk(i, m, IP), one for every for
every Qk ∈ II . The interpretation of Jk(i, m, IP) is that it is the
smallest subset of IIP such that

{Qk ∧ Pi}m

8<: _
j∈Jk(i,m,IP)

Pj

9=;

δ(m, IP , II) 1 2 . . . n
m, 1 J1(1, m, IP) J1(2, m, IP) . . . J1(n, m, IP)
m, 2 J2(1, m, IP) J2(2, m, IP) . . . J2(n, m, IP)

.
m, l Jl(1, m, IP) Jl(2, m, IP) . . . Jl(n, m, IP)

Figure 4: Transition relation as refined by the input partition
II = {Q1, Q2, . . . , Ql}

is a valid Hoare triple.

The algorithm for approximating these sets is essentially the same
as before, and the resulting transition relation is depicted in Fig-
ure 4. A transition from Pi to Pj is now said to be possible under
m with input Qk if j ∈ Jk(i, m, IP).

The new transition relation δ(m, IP , II) refines δ(m, IP) in the sense
that

J(i, m, IP) =
[

k∈II

Jk(i, m, IP),

and the new transitions are therefore possibly less non-deterministic
than the old ones.

2.2.4 Product Partitions
Finer partitions result in possibly more deterministic transitions.
By considering the cross-product of all class-scoped partitions of
a class, the algorithm in Section 2.2 can be made to work with the
finest partition for the class under analysis.

The cross-product partition of a class is the Cartesian product of the
state spaces of all class-scoped partitions belonging to the class.
The cross-product is itself a class-scoped partition. For instance,
in the Calculator example IP 1 partitions the value space of the
newNumber variable while IP 2 is a three state partition including
the adding and subtracting fields. The cross-product parti-
tion for the CalcEngine class is IP 1 × IP 2 =
{adding ∧ newNumber,
¬adding ∧ newNumber ∧ subtracting,
¬adding ∧ newNumber ∧ ¬subtracting,
adding ∧ ¬newNumber,
¬adding ∧ ¬newNumber ∧ subtracting,
¬adding ∧ ¬newNumber ∧ ¬subtracting}.
In this case partitions IP 1 and IP 2 are disjoint with respect to their
variables. In general, when all partitions participating in the prod-
uct are disjoint from each other with respect to their variables, the
transition relation for the product space is just the Cartesian prod-
uct of the individual transition relations. Therefore, state transitions
within the cross-product are completely determined by the compo-
nent transitions in this case, and taking the cross-product does not
refine our insight into the behavior of the class.

A cross-product partition is more interesting for a class whose par-
titions involve an overlapping set of variables. The product formed
over non-overlapping partitions may contain states and transitions
that any of its component partitions individually fail to specify. For
instance, the states and transitions observed of the cross-product
partition in the example presented later in Section 3.2 correspond
exactly to the nine (x, y) coordinates of that class and the moves
between them, even though no single partition was fine enough to
do this.

Just as with ordinary partitions, certain states in a product may be
unobserved over all the execution traces. In the case of a product of
overlapping partitions this can now happen for three possible rea-
sons: either the conjunction specifying the state may be logically
false; or, as can happen with other partitions, the state may be inher-
ently unreachable by the class, or it may simply have been avoided
by the runtime environment. Although some of the logically false
state descriptions can be eliminated by an elementary simplification
procedure to be described next, our approach is generally unable to
distinguish between these three cases.

In order to eliminate patently false state descriptions and to im-
prove readability of otherwise lengthy formulas by eliminating re-
dundancy where possible, the simplification of state descriptions
into their prime implicants [21] has been applied. This simple ap-
proach eliminates some logically false formulas and performs well
on our examples. For instance, the object invariant for the Loan
example in Section 3.3 is simplified from six subformulas to just
two by this kind of elementary propositional reasoning.

Other than serving as the finest class scoped partition of the class,
the product partition may help reveal a heretofore unnoticed refine-
ment relation between two individual partitions of a class. Parti-
tion IP 1 is a refinement of a partition IP 2 if and only if each sub-
space in IP 1 refines a subspace in IP 2. This is just the familiar
notion of one equivalence relation refining another. To establish
whether a partition IP 1 refines partition IP 2, an algorithm would
check whether the observed states of the cross-product IP 1 × IP 2

represent a many-to-one mapping of IP 1 states to IP 2 states. By
the nature of dynamic analysis, the conclusion of such a refinement
analysis is unsound.

2.2.5 Object Invariants
Complementary to the view that partitions define transition rela-
tions on methods is the one that some partitions may also define
object invariants. An object invariant is just a formula Φ such that

{true}m{Φ}

is a valid Hoare triple for each method and constructor m.

Each partition IP is constructed so that its states are mutually ex-
clusive. In particular, for each i, j < |IP | the implication

Pi ⇒ ¬Pj

is a tautology whenever i 6= j. Although tautologies strictly count
as object invariants, tautologous invariants contain no information
about the class under analysis. For the purposes of identifying non-
tautologous object invariants, implications

condi ⇒ ¬condj

paralleling the form of those above but arising when Pi and Pj are
replaced by their underlying test expressions are considered next.

In order for an implication of this kind to exist IP must be based on
an if-then-else statement involving two or more user-defined tests.
In practice programmers tend to express their tests in highly eco-
nomical fashion with each test making use of implicit assumptions
about the given problem domain and its chosen representation that
are not true in all models. Thus, if it holds at all, any pairwise
mutual exclusion among the tests is unlikely to be a logically valid
truth, but rather one that is heavily implicated by the chosen repre-
sentation of the class.

Taking the CalcEngine class of Section 2.1.1 as an example it
will be noted that there is nothing a priori valid about the mutual
exclusion of adding and subtracting which are on the surface just
two independent boolean variables. Instead it is as a consequence
of the significance attributed to each of these variables in the current
representation of the CalEngine class and the correctness of its
overall implementation that this exclusion is found to hold. The
current approach considers every pairwise exclusion for a given
partition IP in an attempt to discover relevant object invariants for
the class under analysis.

In much that same way as the transition relation for IP is approxi-
mated over all the runs of a chosen dynamic analysis, a set E∗(i, IP)
can be computed for each condi approximating the largest set E(i, IP)
⊆ IIP − {i, |IP |} such that

condi ⇒
^

j∈E(i,IP)

¬condj

is an object invariant. Once again this approximation is unsound
because the actual maximum E(i, IP) may in fact be smaller. This
maximum is, however, well-defined because the empty set makes
the above implication a tautology, and whenever two sets satisfy
the implication so does their union.

A final way considered under the current approach to obtain an
object invariant from a given partition IP is to conjecture that the
disjunction _

i<|IP |

condi

of all test expressions is exhaustive in describing the relevant object
states for the class. To do so is effectively to conjecture the irrele-
vance of the else-state. The rationale for doing this is that there is
always an implicit else-state whether the programmer has use for it
or not.

It would be possible to go even further and question the relevance of
some of the other states for which the programmer actively wrote
tests to identify. This possibility is, however, not pursued in the
current approach. Instead, it is assumed that every test indicates
a relevant object state. Just as with the other object invariants, the
status of this conjecture as an actual object invariant can be approx-
imated over a specified dynamic analysis.

2.2.6 Implementation
The state space partitioning approach is implemented in a tool called
ContExt which is based on Daikon [1, 24], a general tool for dy-
namic constraint detection implemented in Java. In ContExt, static
analysis extracts test expression groups from the conditional state-
ments belonging to the methods of a target class C. These expres-
sion groups are then used to define state partitions for C as de-
scribed in Section 2.2.1. Each partition participates in the creation
of two types of hypotheses: constraints on the transitions relating
states at the pre- and postconditions of each method, and object
invariants for class C. The partition hypotheses are then suitably
encoded to allow them to be dynamically checked in Daikon along
with Daikon’s universal properties. Thus, ContExt infers both “na-
tive” Daikon constraints and the new partition constraints. A post
processing step as outlined in Section 2.2.2 lets us infer the transi-
tion relation and recover the disjunctive precondition constraints.

Even though ContExt considers all of Daikon’s constraints, it may
not infer some of the unconditional constraints Daikon alone would

have on the same test suite. Due to an increased context sensitivity
per program point, which we have implemented by means of an in-
creased number of contextualized program points, a given program
point in ContExt may observe fewer data samples than the corre-
sponding program point in Daikon. This may result in some con-
straints losing their statistical justification at these program points.
Since statistical justification of constraints is used to filter out the
less likely ones, some of these may fail to be reported by ContExt.
Application of a finer test suite will solve this problem.

As is to be expected, the state space partitioning implementation is
more expensive in terms of space and time than pure Daikon, but
not prohibitively so. In the current implementation the main in-
crease occurs in the number of program points considered for con-
straint inference. The state space partitioning technique increases
the number of program points by about a factor of the size of the
largest transition relation. Both time and space complexities of
Daikon are linear in the number of program points [24]. Because
each program point is more context sensitive than the unconditional
one it replaces, ConText typically generates more constraints than
Daikon as is discussed in Section 4.1. In practice this added cost
has not yet shown itself to be prohibitive, and ConText runs com-
parably to Daikon.

3. EXTENDED EXAMPLES
This section presents the results of applying the state space parti-
tioning technique to five simple but non-trivial examples. For each
example we compare the constraints produced by our approach to
the constraints inferred by Daikon on the same test suite. The sen-
sitivity to state context at program points allows our approach to
identify an object invariant and construct finite state machines that
reflect the state transitions of target objects.

This section views the results of the state space partitioning tech-
nique in terms of finite state machines (FSMs). As discussed pre-
viously, the technique identifies transitions induced by a method of
an object in terms of its states. The state transitions for all meth-
ods of an object can be combined into a finite state machine (FSM)
which then represents the behavior of this object as a whole. The
FSM for objects of class A is constructed as follows: the subspaces
identified by state partitions of A are used as its states and the names
of methods in class A correspond to the input alphabet of the FSM.
The transitions of the FSM are specified by the state space parti-
tioning technique.

3.1 Calculator Example
We start with the Calculator example which originates from an in-
troductory course in object-oriented programming and is described
in detail in section 2.1.1. Figure 5 presents the FSM for the CalcEn-
gine inferred by the state space partitioning approach. In particu-
lar, the FSM highlights that, for example, the plus operation puts
a CalcEngine object into the adding state independently of its
initial state. The numberPressed method serves as an identity
function on the IP 2 partition, but causes any IP 1 state to transition
into the ¬newNumber state (P2). Any other method transitions
each IP 1 state into P1.

Even though in this example Daikon infers single variable post-
conditions which are comparable to the consequents specified by
the state partitioning technique, it does not capture the state tran-
sitions induced by a method, nor does it identify the implicit state

Figure 5: Transition diagram for CalcEngine with two state parti-
tions: IP 1 = {P1, P2} = {newNumber, ¬newNumber},
IP 2 = {Q1, Q2, Q3} = {adding, ¬adding ∧
subtracting, ¬adding ∧ ¬subtracting}, where +, -, =

and n respectively correspond to plus, minus, equals and
numberPressed methods of the CalcEngine class.

IP 1 = {P1, P2} P1 ≡ x > 0
P2 ≡ x ≤ 0

IP 2 = {Q1, Q2} Q1 ≡ x < 2
Q2 ≡ x ≥ 2

IP 3 = {R1, R2} R1 ≡ y > 0
R2 ≡ y ≤ 0

IP 4 = {S1, S2} S1 ≡ y < 2
S2 ≡ y ≥ 2

IP 5 = {T1, T2, T3, T4} T1 ≡ y = 0
T2 ≡ y = 2 ∧ y 6= 0
T3 ≡ x = 1 ∧ y 6= 2 ∧ y 6= 0
T4 ≡ x 6= 1 ∧ y 6= 2 ∧ y 6= 0

Figure 6: Partitions for the Puzzle class

machines which control the behavior of CalcEngine. By its na-
ture the state space partitioning technique identifies the parts of the
state that control the behavior of an object and therefore reveals the
state variables whose value changes are of interest. Because Con-
tExt subsumes Daikon, conditional constraints on state variables
also enable it to infer the changes that occur in other variables. An
example is the constraint on the displayValue field at the post-
condition of the numberPressedmethod orig(¬newNumber)
⇒ displayV alue==10∗orig(displayV alue)+orig(number).

The state space partitioning approach also reports disjunctions of
observed subspace partitions at the preconditions of the methods of
the CalcEngine class and the essential object invariant (¬adding∨
¬subtracting) as discussed in more detail in section 2.1.1. Since a
generalized disjunction would be too expensive to compute, Daikon’s
grammar of properties omits it. This inexpressibility prevents Daikon
from inferring these constraints on the CalcEngine.

3.2 Puzzle Example
The next example is a Puzzle class which represents an envi-
ronment with an agent. The environment is a 3x3 board which
tracks the location of the agent with the x and y fields and the
status of two doors at one end of the room. Each door toggles

Figure 7: Recovered behavior of the moveBackward (a) and
moveRight (b) methods of the Puzzle

i f (ex p i ry == n u l l) { . . . }
e l s e i f (matur i ty == n u l l) { . . . }
e l s e { . . . }

i f (ex p i ry != n u l l && maturi ty != n u l l) { . . . }
e l s e i f (matur i ty != n u l l) { . . . }
e l s e i f (ex p i ry != n u l l) { . . . }

Figure 8: Conditional statements in the Loan class that identify three
different kinds of loans based on the tests on expiry and maturity

from open to closed depending on its previous state and where
the agent moves next. The agent is allowed to move left, right,
forward and backward in the environment. The moves respec-
tively correspond to moveLeft, moveRight, moveForward,
and moveBackward methods of the Puzzle class. The goal is
for the agent to cross the room to the location of the doors with both
doors open. This example was given as a homework assignment in
a programming class. Figure 6 depicts the partitions constructed
for Puzzle by the state space partitioning technique and Figure 7
presents the recovered specification.

None of the partitions in Figure 6 alone enables our approach to
characterize the moves of the agent precisely. It is the cross-product
partition constructed over all state space partitions of the Puzzle
that results in the precise specification of the “move”-methods of
the Puzzle as depicted on Figure 7. Each conjunction in the
cross-product partition identifies either a single square on the game
board, or an impossible state (i.e., false). Also, IP 5 is seen to refine
IP 3 and IP 4.

On this example, Daikon is able to infer constraints that approxi-
mate the behaviors of the “move”-methods, but do not specify them
precisely. For example, Daikon infers that the x coordinate of a
player does not change and y one of {1, 2} at the postcondi-
tion to the moveBackward method. These constraints, however,
do not capture that the moveBackward method always moves a
player only one square back. The comparison with Daikon is dis-
cussed further in Section 4.1.

3.3 Bank Loan Example
Next we report on the results the state partitioning approach pro-
duced for the Bank Loan example. This example is presented in
the “Refactoring to Patterns” book [16] in order to demonstrate the
application of the Replace Conditional Calculations with Strategy
pattern. In this example the author starts with the Loan class that
has two fields expiry and maturity of type Datewhich deter-

IP 1 = P1 ≡ expiry = null
{P1, P2, P3} P2 ≡ maturity = null ∧ expiry 6= null

P3 ≡ maturity 6= null ∧ expiry 6= null
IP 2 = Q1 ≡ expiry 6= null ∧maturity 6= null
{Q1, Q2, Q3, Q4} Q2 ≡ maturity 6= null ∧ expiry = null

Q3 ≡ expiry 6= null ∧maturity = null
Q4 ≡ expiry = null ∧maturity = null

Figure 9: Partitions for the Loan class

IP = {Q1, Q2, Q3, Q4, Q5, Q6}
Q1 ≡ state = INIT
Q2 ≡ state = SP ONE
Q3 ≡ state = SP TWO
Q4 ≡ state = EP ONE
Q5 ≡ state = EP TWO
Q6 ≡ state 6= (INIT ∨ SP ONE ∨ SP TWO∨

EP ONE ∨ EP TWO)
II = {T1, T2, T3}
T1 ≡ mouse = DOWN ∧ button = LEFT
T2 ≡ mouse = UP ∧ button = LEFT
T3 ≡ mouse 6= (UP ∨DOWN) ∧ button 6= LEFT

Figure 10: Partitions for the mouseEvent method. IP is a class
scoped partition. II is an input scoped partition

mine three different kinds of loans: a term loan, when expiry is
null and maturity is not null; a revolver loan, when expiry
is not null and maturity is null; and a RCTL loan, when
both expiry and maturity are not null. The key observation
required of the reader is to recognize that the two conditional state-
ments in Figure 8 identify the same three types of loans, which is
not obvious from the way the conditional statements are written.
Critical to this is the observation that the code for Loan assumes
that a Loan object can never be in a state when both expiry and
maturity are null.

Given the two conditional statements in Figure 8 the state space
partitioning approach considers two partitions, IP 1 and IP 2 pre-
sented on Figure 9. The simplified cross-product of the two parti-
tions constructed by our approach is IP 1×IP 2 = {〈P1∧Q2〉, 〈P1∧
Q4〉, 〈P2 ∧ Q3〉, 〈P3 ∧ Q1〉}. This cross-product reveals that par-
tition IP 2 is a refinement of partition IP 1, because Q2 and Q4 re-
fine P1. This, combined with the fact that Q4 is never observed
is the main observation that the author of the example expects the
reader to make. Furthermore, our approach discovers that a Loan
object does not make any transitions on the identified partitions.
Such a case, when an object does not make any transitions on
any of its partitions, allows our tool to hypothesize that the tar-
get class is a “union” class, meaning that the target class com-
bines the functionality of several classes in itself. Also, the state
space partitioning technique infers the essential object invariant for
Loan, expiry 6= null ∨ maturity 6= null, which reflects that a
Loan object can never have both expiry and maturity equal
to null.

In this example again Daikon is limited by the fact that disjunction
is not in its language, and it is unable to make any of the important
inferences about the relationship of these variables to null.

3.4 Mouse Event Handler Example

Figure 11: Recovered behavior of the mouseEvent method in the
RectangleHandler class

Our next example originates from a state-based class, Rectan-
gleHandler, used to handle mouse events for drawing two rect-
angles consecutively. This example originates from a project as-
signment for a graphics course.

In this example, the state space partitioning technique considers
the class scoped partition IP and input scoped partition II for the
mouseEvent method that performs that state transitions for the
RectangleHandler class. It is the refinement provided by the
input scoped partition II on the class scoped partition IP that en-
ables our approach to accurately specify the transitions induced by
the mouseEvent method as presented in Figure 11. Without this
refinement, our approach can only infer non-deterministic transi-
tions for the states of IP , such as Q1 → {Q1, Q2}.

3.5 ATM Example
The Automated Teller Machine simulation [2] was written by Dr.
Bjork as an example of good object-oriented design and program-
ming practices. The author used the state chart in Figure 12 to
specify the transitions between the states for a single user session
with an ATM. The states and transitions highlighted in green on
Figure 12 refer to the states and transitions recovered by the state
space partitioning technique. As the diagram suggests, the tech-
nique was able to identify the states and the corresponding transi-
tions specified by the author of the simulation. Since the algorithm
is, however, not concerned with identifying which states are initial
or terminal in the FSMs it constructs, ConText does not actually
label these for the ATM.

Figure 12: State chart for a single ATM session. Recovered states and
transitions are highlighted.

Daikon is not able to infer the transitions for the Mouse Event Han-
dler and the ATM examples. In these two examples a variety of
states are observed at both preconditions and postconditions to the
method that performs the transitions. Therefore a simple uncon-
ditional equality check between the visible variables is insufficient
to capture the behavior of this method. Being once again hindered
by its inability to observe disjunctive constraints, Daikon does not
recognize the ATM and the RectangleHandler for the state
machines that they are.

4. EVALUATION
The five examples presented in the last section provide a qualitative
evaluation for our approach. Due to the subjective nature of a spec-
ification in terms of constraints, objective quantitative evaluation
of a constraint inference technique presents a challenge. This sec-
tion briefly introduces a methodology for a quantitative evaluation
of constraint inference techniques and then presents a case study of
the comparative evaluation of the state space partitioning technique
versus Daikon on the Puzzle example.

Our evaluation methodology is based on a modeling language called
Alloy [14]. We use Alloy to create a model of the class under anal-
ysis, constrain the behavior of the model, and then check the es-
sential specification against the model. The model for the class is
defined in terms of several Alloy signatures, which can be auto-
matically derived from the class fields and method signatures in the
source code. Alloy facts constraining the model are automatically
translated from the constraints produced by a particular constraint
inference tool (e.g., ContExt or Daikon). Each constraint corre-
sponds to exactly one Alloy fact. In this way two Alloy models
are created for the target class, one for each tool. Each model uses
the same signatures but is constrained by the automatically inferred
constraints produced by its respective tool.

number of number of number of
assertions checked facts

assertions
Daikon 35 18 (51%) 35
Daikon (w/split) 35 23 (66%) 124
ContExt 35 28 (80%) 554

Figure 13: Comparative evaluation of the inferred constraints for
ContExt and Daikon on the Puzzle example

In order to evaluate the recovered specification, one needs the “goal”
set of constraints that define the essential specification of the class.
By its nature, this “goal” set of constraints has to be produced man-
ually. The essential specification can be manually translated into
Alloy unit assertions. A unit assertion is a statement about a single
aspect of behavior. For example, the fact that the moveBackward
method in the Puzzle class does not affect the x-coordinate of
the agent is a unit assertion. Alloy assertions provide a high-level
abstraction from the constraints expressed in the language of a par-
ticular inference tool.

The Alloy solver is then used to check each assertion about the
expected behavior of the model against the facts produced by a
particular inference tool. If Alloy does not find a counterexample to
an assertion, the essential behavior corresponding to this assertion
is said to have been recovered by the tool. This approach allows
us to evaluate quantitatively how much of the essential behavior
is captured by a particular constraint inference tool. It provides a
means to measure the completeness of the recovered specification,
also known as recall. We also plan to extend this procedure in order
to be able to measure the correctness, or precision, of the inferred
specification by approximating the minimum set of facts that enable
Alloy to check the assertions.

The advantages of the presented methodology include abstraction
from the languages of particular constraint detection tools, higher-
level specification of the essential behavior of the class under anal-
ysis, and an objective criterion for the evaluation of the recovered
specification.

4.1 Comparative Evaluation of the Puzzle
For a preliminary quantitative comparison of Daikon and ContExt
on the Puzzle example introduced in Section 3.2, both tools were
run with the same test suite. An Alloy model with signatures and
assertions for the Puzzle example was constructed manually. One
copy of this model was constrained with the facts inferred by Daikon
to produce Daikon’s recovered specification. Another copy of this
model was constrained with the facts inferred by ContExt to pro-
duce ContExt’s recovered specification. Comparison of the two
specifications is presented in the first and third rows of Figure 13.

The second row shows the results for Daikon when its native split-
ting mechanism is enabled. At first we used Daikon’s own static
analysis tool [7] to generate context sensitive program points. This
caused Daikon to use the boolean expressions in the Puzzle to
establish context at points corresponding to the methods where the
expressions were found. Somewhat surprisingly, the outcome was
the same as for pure Daikon. Next we distributed the statically es-
tablished contexts at program points non-local to the expressions in
order to mimic class scoped partitions. These results are shown in
the second row.

Figure 13 shows that in this example ContExt recovered about 60%
more of the essential behavior than pure Daikon at the cost of in-
creasing the number of inferred constraints by a factor of about 16.
In between these results is row two which corresponds to the naive
mimicking of the state space partitioning technique in Daikon. This
row illustrates an improvement of 30% over pure Daikon at the cost
of increasing the number of inferred constraints by a factor of 3.5.
These results seem to suggest that even a naive application of the
state space partitioning technique considerably improves specifica-
tion recovery.

They also show that attempts to improve recovery often result in an
additional cost in terms of the number of constraints reported. Such
increases will undoubtedly obscure the recovered specification for
a human reader, but they do not seem to obstruct Alloy’s reason-
ing about them. If the results can be viewed through the higher
abstraction of such tools, then the cost of the increased number of
constraints is counterbalanced by a more complete specification.

5. DISCUSSION OF OUR APPROACH
The state space partitioning technique is primarily a dynamic anal-
ysis which results in the unsoundness of the reported constraints.
When a transition on a state is missing, the technique is unable to
distinguish between truly unreachable states and states omitted by
the test suite. The unsoundness of the transitions results in report-
ing potentially stronger constraints as is detailed in Section 2.2.2.

Even though state partitions are derived from the source code of a
class, the state space partitioning technique is not limited to static
facts. The dynamic nature of the analysis enables it to reveal behav-
ior that is not directly present in the program’s text. For example,
preconditions reveal the “use cases” of a method, and cross-product
partitions reflect the possible combinations of state subspaces for
different variables. Neither type of fact is obvious from the source
code.

The state space partitioning technique potentially requires finer tests.
To infer a transition for a particular state, our approach needs to ob-
serve this state at runtime. The state space partitioning technique
produces more complete results for a test suite which exercises each
state subspace at the precondition to each method1 of an object. On
one hand writing such a test suite may seem like it places a signifi-
cant burden on the programmer; on the other hand a good test suite
should cover all execution paths of a class. From the point of view
of test coverage, our technique is biased towards better test suites.

To conclude we would like to note that the state partitioning tech-
nique is particularly useful for classes that represent explicit or im-
plicit state machines as well as union classes. The technique is
designed to specify state transitions, which allows it to capture the
behavior of classes that function as state machines. Union classes
are classes that represent several types of objects, where each type
has a distinct behavior. Typically such a class will attempt to iden-
tify the type of the current object by means of conditional checks
on its state so that the class can act appropriately for each particular
type of object. Of course, practices of good design suggest the ap-
plication of “Replace Conditional with Polymorphism” refactoring
to a union class. The state space partitioning approach identifies
state partitions based on the conditional tests in the source code

1Provided that each state subspace is permitted at the precondition
to each method of the class by the underlying logic of this class and
its intended environment, which may not always be the case.

but also discovers the absence of transitions between the partitions.
This allows it to hypothesize that the target class is a union class.
In the future versions of ContExt such an hypothesis will result in
a suggested application of the “Replace Conditional with Polymor-
phism” refactoring.

6. RELATED WORK
This section presents the work related to state space partitioning
that was not discussed earlier in this paper.

Csallner et al. [5] also investigated the combination of static and
dynamic analysis methods in order to infer program-specific con-
straints in a tool called DySy. The DySy authors employ a dynamic
symbolic execution technique, which performs symbolic execution
over an existing test suite. Preconditions and postconditions are
then inferred from the path-conditions and symbolic variable val-
ues constructed by a symbolic execution over the program’s test
suite. The constraints inferred by this approach may overlap with
those produced by state space partitioning. It is, however, unlikely
that either set will contain the other. Since state space partition-
ing transplants context that it finds in one part of a class to other
parts, it is likely to infer certain pre- and postconditions that an
approach like DySy, which holds to the letter of the source code,
cannot. On the other hand, symbolic execution is likely to net DySy
many program specific expressions that would prove useful for full
specification recovery. Further comparison of the results produced
by the two tools on the same programs certainly deserves a closer
investigation.

With Perracotta, Yang et al. [29, 30] focus on dynamic inference
of temporal properties. Temporal properties specify the order of
occurrence of program events. Temporal properties can also be
thought of as transitions, and as such are similar to the postcon-
ditions inferred by our approach. However, similarly to Engler et
al. [8], the authors of Perracotta are interested in a small number
of error-revealing property templates. The state space partition-
ing technique, in contrast, pursues the different goal of providing
a flexible program-specific language for constraint inference which
captures the essential behavior of programs.

The structure of the property spaces used for state space partition-
ing resemble those favored by pure static analysis [4]. Namely,
the set of all disjunctions of subspaces associated with a particu-
lar partition forms a finite lattice of predicates that are ordered by
logical entailment. The transitions computed by the algorithm in
Section 2.2.2 can be viewed as a dynamic approximation of each
method’s semantics as a predicate transformer [3] upon such a lat-
tice. The most complete account of a purely static approach to
object-oriented constraint inference is Logozzo’s [18]. As is char-
acteristic, his analysis is sound. The example programs he consid-
ers are comparable to our examples in Section 3. Given the nature
of the static and dynamic approaches, the constraints inferred by
Logozzo are likely to be more approximate in certain cases than
ours. A detailed evaluation of the results produced by the two tech-
niques on the same examples would be interesting to conduct.

A lot of recent work has been done in the field of extracting models
or specifications using either pure-dynamic techniques or a combi-
nation of dynamic and static methods. These approaches are quite
different from the state space partitioning technique either in terms
of their goals, implementation strategies, or results.

Whaley et al. applied dynamic and static methods to infer finite

state machine models for correct method call sequences to ensure
the correct usage of an API [27]. Henkel and Diwan developed
a tool that discovers high-level algebraic specifications from Java
classes in the form of axioms using dynamic analysis [12, 13]. Caf-
feine [10], developed by Guéhéneuc et al., is a tool for dynamic
analysis of Java programs, which allows the developer to check
conjectures about the behavior of a Java program.

Other research concentrates on aiding in software error detection.
Hangal and Lam created DIDUCE - a tool which dynamically for-
mulates constraints for a program and can inform the user when the
formulated constraints are violated at runtime [11]. Pytlik et al. [25]
built an automatic debugging tool called Carrot based on Daikon.
Liblit et al. have developed a general sampling infrastructure for
gathering information from executions from multiple users [17] in
order to use the data traces to discover software bugs.

7. CONCLUSIONS
Fully specifying the essential behavior of an arbitrary program re-
mains beyond the state-of-the-art automatic techniques. On the
bright side, our work demonstrates that a combination of static and
dynamic methods can be used to make a step towards this goal. The
state space partitioning technique described in this paper devises a
flexible language for constraint inference which provides for detec-
tion of program-specific disjunctive properties. Our examples show
that the technique performs well on classes that function as explicit
or implicit state machines as well as union classes.

Our future work involves a more extensive qualitative and quanti-
tative evaluation of the state space partitioning technique. We also
plan to investigate other source code fragments that can be mapped
to other assumptions about the program.

8. REFERENCES
[1] Daikon invariant detector.

http://pag.csail.mit.edu/daikon.

[2] R. Bjork. Automated teller machine simulation.
http://www.math-cs.gordon.edu/courses/
cs211/ATMExample/.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL ‘77, pages 238–252,
1977.

[4] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In POPL ‘79, pages 269–282, 1979.

[5] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy:
Dynamic symbolic execution for invariant inference.
Technical Report MSR-TR-2007-151, Microsoft Research,
November, 2007.

[6] E. Dijkstra. A Discipline of Programming. Prentice Hall,
Englewood Cliffs, N.J., 1976.

[7] N. Dodoo, L. Lin, and M. Ernst. Selecting, refining, and
evaluating predicates for program analysis. Technical Report
MIT-LCS-TR-914, MIT Laboratory for Computer Science,
Cambridge, MA, July 21, 2003.

[8] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in
systems code. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, 2001.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants. Science of
Computer Programming, 2007.

[10] Y. Guéhéneuc, R. Douence, and N. Jussien. No Java without
caffeine – a tool for dynamic analysis of Java programs. In
W. Emmerich and D. Wile, editors, 17th conference on
Automated Software Engineering, pages 117–126. IEEE
Computer Society Press, September 2002.

[11] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In ICSE ’02:
Proceedings of the 24th International Conference on
Software Engineering, pages 291–301, New York, NY, USA,
2002. ACM Press.

[12] J. Henkel and A. Diwan. Discovering algebraic specifications
from java classes. In L. Cardelli, editor, ECOOP 2003 -
Object-Oriented Programming, 17th European Conference,
Darmstadt, July 2003. Springer.

[13] J. Henkel and A. Diwan. A tool for writing and debugging
algebraic specifications. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering,
pages 449–458, Washington, DC, USA, 2004. IEEE
Computer Society.

[14] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[15] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin.
Automated support for program refactoring using invariants.
In ICSM 2001, Proceedings of the International Conference
on Software Maintenance, pages 736–743, 2001.

[16] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 2004.

[17] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, San Diego,
California, June 9–11 2003.

[18] F. Logozzo. Class invariants as abstract interpretations of
trace sematics. Computer Languages, Systems and Structure,
in press, 2006.

[19] T. Ne Win. Theorem-proving distributed algorithms with
dynamic analysis. Master’s thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge,
MA, May 2003.

[20] T. Ne Win, M. D. Ernst, S. J. Garland, D. Kırlı, and
N. Lynch. Using simulated execution in verifying distributed
algorithms. Software Tools for Technology Transfer,
6(1):67–76, July 2004.

[21] R. J. Nelson. Simplest normal truth functions. The Journal of
Symbolic Logic, 20(2):105–108, 1955.

[22] J. Nimmer and M. Ernst. Invariant inference for static
checking: An empirical evaluation. In Proceedings of the
ACM SIGSOFT 10th International Symposium on the
Foundations of Software Engineering (FSE 2002), pages
11–20, Charleston, SC, November 20–22, 2002.

[23] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In ISSTA 2002, Proceedings of the
2002 International Symposium on Software Testing and
Analysis, pages 232–242, Rome, Italy, July 22–24, 2002.

[24] J. H. Perkins and M. D. Ernst. Efficient incremental
algorithms for dynamic detection of likely invariants. In
Proceedings of the ACM SIGSOFT 12th Symposium on the
Foundations of Software Engineering (FSE 2004), pages
23–32, Newport Beach, CA, USA, November 2–4, 2004.

[25] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss.
Automated fault localization using potential invariants. In
AADEBUG’2003, Fifth International Workshop on
Automated and Algorithmic Debugging, pages 273–276,
Ghent, Belgium, September 8–10, 2003.

[26] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly
detection in online data sources. In ICSE’02, Proceedings of
the 24th International Conference on Software Engineering,
pages 302–312, Orlando, Florida, May 22–24, 2002.

[27] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces.
SIGSOFT Softw. Eng. Notes, 27(4):218–228, 2002.

[28] T. Xie and D. Notkin. Tool-assisted unit test generation and
selection based on operational abstractions. Automated
Software Engineering Journal, 2006.

[29] J. Yang. Automatically inferring temporal properties. In
ICSE ’05: The Doctoral Symposium, 27th International
Conference on Software Engineering, St. Louis, Missouri,
USA, May 15–21, 2005.

[30] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das.
Perracotta: Mining temporal api rules from imperfect traces.
In ICSE ’06: Proceedings of the 28th International
Conference on Software Engineering, Shanghai, China,
May 20–28, 2006.

