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ABSTRACT

The languages of current dynamic constraint detection techniques
are often specified by fixed grammars of universal properties. These
properties may not be sufficient to express more subtle facts that
describe the essential behavior of a given program. In an effort to
make the dynamically recovered specification more expressive and
program-specific we propose the state space partitioning technique
as a solution which effectively adds program-specific disunctive
properties to the language of dynamic constraint detection. In this
paper we present ContExt, a prototype implementation of the state
space partitioning technique which relies on Daikon for dynamic
constraint inference tasks.

In order to evaluate recovered specifications produced by Con-
tExt, we develop a methodology which allows us to measure quan-
titatively how well aparticul ar recovered specification approximates
the essential specification of a program’s behavior. The proposed
methodology is then used to comparatively evaluate the specifica
tions recovered by ContExt and Daikon on two examples.
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F.3.1 [Logics and Meanings of Programs|: Specifying and Ver-
ifying and Reasoning about Programs—Invariants, Specification
techniques

General Terms
Algorithms

Keywords
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1. INTRODUCTION

Dynamic constraint detection isadynamic program analysiswhich
strives to recover (part of) a program’s specification in the form of
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if (x < 0) {...} P =z <0,
else if (y > 0) {...} = P =z>0Ay>0,
else{...} Ps=x>0Ay<0

Figurel: An if-then-else statement and itscorresponding
partition

constraints. The languages of current dynamic constraint detec-
tion techniques are often specified by fixed grammars of universal
properties [7, 13]. While a fixed universal language serves well
for problems which require the discovery of a well-defined set of
problem-specific, but program-independent properties, it may be
insufficient to capture the logic of aparticular program.

Our goal isto extend dynamically recovered specifications with
program-specific properties that capture the subtle essential prop-
erties of a program under analysis automatically. With this goal
in mind, we propose the state space partitioning technique which
combines static and dynamic program analysis to automatically
specialize the language of constraint detection to a particular pro-
gram on aper-program basis. The key observation for the technique
isthat certain constructs from the source code can be mapped to the
assumptions about the target program. Such assumptions are then
used to infer likely constraints on partitions by observing execution
traces.

The constraints produced by the technique are about what the
state space of a particular classin an object oriented program looks
like based on the way the programmer appears to partition this
space with if-then-else statements. In particular, each test
inan if-then-else-statement exclusive of the preceding tests
defines a partition on the values of attributes that participate in the
tests of the statement. For example, thetestsx < oandy > 0in
Figure 1 partition the state space {(z,y) | — 2% < z,y < 2%}
consisting of all possible pairs of int values for attributes x and
y into three digjoint subspaces, or states, that are characterized by
the additiona facts that either z < 0, orx > 0 Ay > 0, or
x > 0 Ay < 0. Once these spaces are identified for a class, then
methods of this class can be viewed as potentially inducing transi-
tions between state subspaces.

In such away the state space partitioning technique introduces a
number of different types of disunctive constraints into the lan-
guage of constraint detection. Digjunctive constraints based on
state space partitionsinclude an object invariant, constraints on dis-
tinct behavior for each abstract state, as well as constraints on tran-
sitions between abstract states induced by the methods of a class.
Our object invariant is of the form —a Vv —b which says that prop-
erties a and b are mutually exclusive. Transitions induced by a

! Assuming 32 bit integer representation.



method m are depicted as p = ¢, where p is an abstract state on
variables at precondition of m while g is a disunction of abstract
states on variables at postcondition of m. Our preliminary evalua-
tion results in Section 4 seem to suggest that such disjunctive con-
straints provide for models that capture the essential behavior of
certain programs more completely than traditional dynamic anal-
ysis as implemented in Daikon which avoids general disunctive
relations since they are expensive to compute.

In this paper we provide an overview of the state space partition-
ing technique and describe its prototype implementation in a tool
called ContExt. ContExt relies on a cursory static analysis to de-
termine its property spaces and on Daikon for dynamic constraint
inference tasks.

The rest of this paper is organized as follows. The next section
presents a motivational example, introduces the state space parti-
tioning technique, details the implementation of the technique in
ContExt and concludes with comparative complexity analysis. Sec-
tion 3 discusses the limitations of our approach. Section 4 intro-
duces an evaluation methodology and then applied it to two exam-
plesin order to comparatively eval uate the recovered specifications
produced by ContExt and Daikon. Section 5 presents related work.
And Section 6 concludes.

2. OUR APPROACH

We start this section with a simple, but illustrative example for
the state space partitioning technique which serves as both our mo-
tivational example and running example for the rest of the section.

2.1 TheCalculator Example

The calcEngine class in Figure 2a represents a state-based

calculator. Thevaluesof thenewNumber, adding, and subtract -

ing attributes participatein the state of aCalcEngine object and
determine the action taken when a button on the calculator’s key-
board is pressed. For example, when a number button is pressed,
thenumberPressed methodiscalled. Thebehavior of thenum-
berPressed method isdetermined by the newNumber value. If
newNumber iStrue, thendisplayValue isassigned the num-
ber that was pressed; if newNumber is false then display-
ValueissettodisplayValue x 10 + number.

Our technique forms two state spaces for the CalcEngine ob-
jects based on the tests of the conditional statements in the source
code of the class. The first space IP; is derived from the if-
statement in the body of the numberPressed method and con-
sists of two abstract states, one called P, where newNumber is
true and one caled P, where newNumber is false. The sec-
ond space IP; originates from the i £-statement in the body of the
equals method and consists of three abstract states 1, 2, and
Qs defined by the predicatesadding, maddingAsubtracting,
and —adding A —subtracting respectively.

The constraints automatically inferred by our technique are pre-
sented on Figure 2b. The precondition on the numberPressed
method indicates that thismethod was called by CalcEngine ob-
jects in every abstract state of /P, and IP>. The precondition on
clear, however, suggests that this method was only invoked by
objectsin Pi, P», or Q3. Preconditions reveal the “use-cases’ of
each method observed over a set of execution traces.

Postconditions reflect the state transitions induced by a method,
if any, by relating an initial abstract state observed at the precondi-
tion to the disjunction of abstract states that were observed at the
postcondition of this method. For example the postconditions for
the numberPressed method reveal that this method performs a
transition from any initial 1P, -state into P2 and serves as identity
function on the IP, states.
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public class CalcEngine {

//number which appears in the Calculator display
private int displayValue;

//store a running total

private int total;

//true if #’s pressed should overwrite display
private boolean newNumber;

//true if adding

private boolean adding;

//true if subtracting

private boolean subtracting;

public void numberPressed(int number) {
if (newNumber)
displayValue =
else
displayValue =
newNumber = false;

}

public void equals() {
if (adding)

displayValue = displayValue + total;
else if (subtracting)

displayValue = total — displayValue;

number ;

displayValue % 10 + number;

}

public void clear () { ... }
public void plus() { ... }
public void minus() { ... }

}
a. Codefragment for the Calculator class

Object Invariant:
context CalcEngine inv:
('this.adding || !this.subtracting)

Method Constraints:
context CalcEngine: :numberPressed(int number)
pre: P1 || P2, Q1 || Q2 || @3

post: orig(Pl) ==> P2, orig(P2) ==> P2
orig(Ql) ==> Q1, orig(Q2) ==> Q2
orig(Q3) ==> Q3
orig(Pl) <==> (displayValue == orig (number))
orig(P2) ==>

(displayValue ==

10xorig(displayValue) +orig (number) )
context CalcEngine::clear()
pre: P1 || P2, Q3
post: orig(Pl) ==> P1,
orig(Q3) ==> Q3

b. Constraintsinferred by ContExt

orig(P2) ==> P1,

Figure 2: Calculator Example

Our technique also automatically infers the object invariant
—adding V —subtracting for the CalcEngine class. This
object invariant is an essential constraint which saysthat adding
and subtracting are mutualy exclusive in al CalcEngine
instances.

Next we proceed to present the overview of the state space parti-
tioning technique. The Calculator exampleisused asarunning
example to illustrate the key concepts.

2.2 Overview of the State Space Partitioning
Technique
Every if-then-else statement definesasequence of boolean



expressions consisting of the test expressions mentioned by the
statement in the order in which they appear in the statement. The
technique starts by forming digjoint partitions of the state spaces
of the program variables involved in expressing these tests. Such
a partition is obtained by conjoining each test with the negations
of al the tests preceding it in the sequence. To account for the
complete state space of the involved variables, we form an explicit
else-partition that is the combined negation of all the testsin the
if-then-else sequence. Thus, an if-then-else statement
with n tests results in n + 1 digoint state partitions. For exam-
ple, adding followed by subtracting defines the sequence
of boolean expressions from the if-then-else statement of
the equals method of the CalcEngine class. Following the
above procedure, the tests are conjoined into three digoint parti-
tions @1 = adding, Q2 = —adding A subtracting, and
Q3 = —adding A —subtracting. Let us aso note that a
partition, such as @1, is used to denote both a logical formula,
adding is true, and the respective subspace of al object states
where the adding attributeis true.

The state space partitioning technique considers partitions of two
scopes: class and input. Class-scoped partitions are expressed in
terms of instance variables and constants alone and can be eval-
uated anywhere in the class. Input-scoped partitions also contain
a variable which serves as an input parameter to the method from
which the partition has been extracted, and as such, they can only
be evaluated in the context of this method. In the Calculator
example all partitions are expressed in terms of CalcEngine’s
attributes and are therefore class-scoped.

Intuitively, the partitions constructed above represent the abstract
states explicitly identified by the developer with the conditional
logic of the class. Having identified potentially interesting par-
titions in terms of program variables, we now define the precon-
ditions, postconditions and object invariants based on these parti-
tions. The preconditions are designed to identify the use cases of a
particular method. A precondition is then represented by a disunc-
tion of states, P, ..., P, fromthe samepartition space, \/ P;.

jE[1..n]
For instance, @1 VvV Q2 V Qs is the precondition to the plus
method of the CalcEngine class.

The postconditions considered by the state space partitioning ap-
proach take the form of transitions on the identified abstract states
induced by a particular method of aclass. For example, the plus
method induces the transition from the abstract state Q2 into the ab-
stract state Q1 inthe CalcEngine object, denoted as Q2 = Q1.

Object invariant expressions are designed to check whether the
tests of the corresponding if-then-else statement are mutu-
ally exclusive. For this purpose object invariants are constructed
on the test expressions from an i f -then-else statement rather
than partitions. A hypothesized object invariant is a digunct that
asserts that each test in the sequence of boolean tests is digoint
from the others. For example, the object invariant hypothesis for
the space P> checks for the mutual exclusion of adding and
subtracting attributesand is denoted by (adding A —subtrac-
ting) V (madding A subtracting) V (—adding A —subtracting).

The constraints presented above are all disjunctions. If a dis-
junctive template were to be used in the computation of disunctive
pre- and postconditions, it would require a number of state com-
binations exponential in the size of each abstract state space. This
approach iscomputationally prohibitive, instead we designed an al-
gorithm that only considers alinear number of such combinations.

The following algorithm allows a dynamic constraint detector to
approximate transitional postconditions with potentially stronger
ones. Let IP be an abstract space that consists of three abstract
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states, P1, P>, and Ps. To support the inference of state transitions,
the initial state is considered over variable values at precondition,
denoted as PP, while the disjunctive result is inferred over vari-
able values at postcondition, denoted as PP°** for somei € [1..3].
At the postcondition program point for a method M compute the
transitional postcondition for each PP"¢, i € [1..3], asfollows:

1. Awmethat 131:;77‘6 = _|P1POSt, Pip're = _‘P2post’ and }Dip're =
—-P?°*" are dl possible transitions. Denote this by the set S
of indices S = {1, 2, 3}.

2. Perform dynamic analysis, and whenever P’ and P;"’“
both hold, remove j from S.

3. Approximate the transitional postcondition for P; with adis-
junction of abstract states whose indices are contained in the

complement of S, P’ = \/ PP,
kese

The agorithm for precondition inference is analogous to the one
above, except that no transitional relation is computed.

Thefollowing exampleisused to provide the intuition behind the
algorithm. Suppose that ¢ = 1 and after step 2, S = {1, 3}. This
means that P’™® = —PP°*" and P’"* = —P?°** are consistent
with the observed data. Also, PP v P?°*" v PP°*" istrue by con-
struction. Then, the transition PP"¢ = P?°**, which is computed
by the algorithm, follows by propositional logic.

Currently our approach considers a Cartesian product of the par-
titions which originate from separate conditionalsin order to refine
the state space and improve the precision of theinferred constraints.
This section presents an overview of the state space partitioning
technique. To keep the discussion short, some details, such as the
use of product partitions and refined transition relations for post-
conditions, have been omitted [10].

The main advantage of the technique isthe efficient introduction
of the program-specific disjunctive constraints into the language of
dynamic constraint inference.

2.3 ContExt: Implementation

The implementation for the state space partitioning technique
uses lightweight static analysis of Java source code for abstract
state extraction. Dynamic analysistasks are delegated to Daikon [1,
12] which isageneral and publicly available tool for dynamic con-
straint detection implemented in Java. At the end, ContExt com-
bines the constraints inferred by our approach with those inferred
by Daikon in its output. For better understanding of our approach
as well its advantages and limitations, we start with a short intro-
duction to the dynamic constraint inference mechanism of Daikon.
We then proceed on to the description on the implementation for
the state space partitioning technique.

The constraints inferred by Daikon are determined by program
points, a fixed grammar of properties, and the variables visible at
the various program points. A program point is a location within
the target program where constraints are inferred. A fixed gram-
mar of properties is a list of templates that describe possible re-
lationships between variables. Each template is instantiated with
all possible combinations of the program variables of correct type
visible at aprogram point. In the end Daikon reports the likely con-
straints as the instantiated templates that are never invalidated by
any datatrace.

Daikon attempts to minimize the number of reported constraints.
First, it uses statistical justification to distinguish chance relation-
shipsfrom likely constraints. Daikon establishes the properties that
hold on the given datatrace, and then for each property, it computes
the probability that the observed property could have happened by



chance aone on a random set of samples. Only properties whose
probability is smaller than the user-defined confidence parameter
qualify aslikely constraints and are reported. Second, Daikon sup-
presses constraints that are easily derived from one that is reported.

Daikon outputs two kinds of likely constraints: accidental prop-
erties and true constraints. The latter are constraints in the tradi-
tional sense, whereas accidental properties are an artifact of the
values observed during the examined executions and are not uni-
versally true for al program runs.

A fixed grammar of propertiesisused to describe the language of
constraints. In general, the grammar is insensitive to the context of
aparticular program. However, Daikon also supports a mechanism
to infer conditional constraints in the form of implications p = ¢
(if p holds then ¢ holds). An antecedent in a conditional constraint
can be thought to provide context sensitivity with respect to some
state of the target program.

Checking conditional hypotheses for al properties in the gram-
mar of properties is computationally prohibitive. Instead, Daikon
uses splitting conditions, or splitters for short, for the computation
of implications. A splitting condition is a boolean expression in
terms of some program variables visible at a program point 7. A
splitter a partitions the data trace into two mutually exclusive sub-
sets: the first subset T, contains the data values that satisfy the
splitting condition a, and the second, T-.,,, contains the data val ues
such that the splitting condition a does not hold. After splitting
the data, constraints are independently inferred on each set, 7;, and
T-.. Then, constraints inferred over T, and T-, are combined
into implications based on the key observation that each mutually
exclusive constraint implies the other constraints inferred over its
own subset of data. The agorithm for the creation of implications
in Daikon is described in [5].

In our approach, static analysis extracts the sequence of boolean
test expressions cond; , conds, ..., cond,, from each 1if-statement
with class-scoped test conditions in the source code for aclass C.
This sequence is then used to construct a state space partition IP =
{P1, Ps, ..., Py, Poi1} for the objects of class C, such that P, =
condy, P» = conds N\ —condy, ..., P, = cond, N —cond,_1 A

.. A\ =conds, and P41 = —cond,, N\ ~condn—1 A ... A =conds
as described in section 2.2.

After the partitions for class C' have been identified, partition-
based constraints are created. Each sequence of condition tests
drives the construction of an object invariant hypothesis. Each par-
tition participates in the creation of two types of constraints: a dis-
junctive constraint on the partition states as a precondition to each
method of class C' and transition constraints between the state par-
titions as postconditions to methods of class C.

An object invariant initially assumes that al conditions in a se-
quence are mutually exclusive. As data samples are observed, an
object invariant may be weakened so that only some of the condi-
tions are mutually exclusive. In its weakest form, an object invari-
ant says that some conditions always hold throughout the lifetime
of the object. For the partition IP, the strongest form of the object
invariant is (condi A —conda A ... A=condy, ) V (—condy A conda A
... A\=condy, ) V (mcondy A —condz A ... A cond,,) and the weakest
formiscond; V conds V ... V cond,,.

Theinference of transition constraintsinvolvesthe splitting mech-
anism of Daikon. Each abstract state P; from partition /P is used
as a splitter on the data trace at postcondition program points of the
enclosing class. This arrangement provides for convenient checks
when PP"¢ and Pf"“ both hold. The agorithm from Section 2.2
is then executed for each splitter P; from partition /P in order to
obtain transition relations for P;. For example let P, be a split-
ting state from the set IP. Then the data trace for the postcondi-

60

tion of some method M of class C' is split into the data samples
that satisfy PP" and the data samples that satisfy =P, Sup-
pose, that method M induces the transformation of P into P
or Ps; and both cases are present in the data trace. Then, the dis-
junctive constraint inferred at the postcondition to method M over
the data samples in PP is PP°*" v PP°*'. And the transition
PP = prest PPost isinferred for the postcondition of method
M. Let us aso note that Daikon’s built-in implication inference is
also performed for all splitters that originate from the state space
partitions. Daikon-inferred implications potentially provide insight
into the state of a class not covered by partitions, which may be
referred to as the “what is being controlled” part of the state. For
example, the displayValue in the CalcEngine class serves
asthe controlled part of the CalcEngine’s state.

A precondition to method M is determined to be the disjunction
of all abstract states from which atransition was observed.

Since partition creation may result in lengthy formulas that are
hard to read, we simplify partition formulas into their prime impli-
cants [11]. This simple approach eliminates some logically false
formulas and performs well on our examples. For instance, the ob-
ject invariant for the CalcEngine classis simplified from (add-
ing A —subtracting) V (madding A subtracting) V (—adding A
—subtracting) t0 —adding V —subtracting with this proposi-
tional reasoning.

At the present moment our implementation is capable of evalu-
ating any Java expression on the variables visible to Daikon. Con-
ditional expressions which contain local variables or method calls
with parameters are currently ignored. Our future work involves
augmenting the implementation to consider conditional testswhich
contain pure method callsor local variablesthat can be expressed in
terms of class attributes and input parameters. The types of condi-
tional expressions considered by ContExtinclude i f-then-else
statements as well as switch-statements. The need to be able to
evaluate arbitrary Java expressions on the data trace prohibits us
from using the template mechanism for constraint creation. In-
stead, a test expression is compiled into Java bytecode and eval-
uated by the VM on the supplied variable values.

2.4 Comparative Complexity Analysis

The state space partitioning technique effectively computes dis-
junctions. This section compares the time and space costs of our
approach to those of Daikon.

First let us consider the costs of introducing a generalized dis-
junctive template into Daikon’s grammar of properties. In this case
Daikon would have to consider the powerset of al hypothesized
constraints at each program point. The total number of hypothe-
sized constraints would then increase to 2 for each program point,
where k isthe number of hypothesized non-disjunctive constraints.
Obviously, thisnumber of hypothesized constraintsis computation-
ally prohibitive.

Second | et us compare the time and space complexity of Daikon’s
algorithm to those of the state space partitioning technique. Let
us approximate® the space complexity of Daikon’s constraint in-
ference with S = O(P = C) and the time complexity with T' =
O(P x C = L), where P is the number of program points in the
target program, C' is the number of hypothesized constraints at a
program point, and L isthe number of data samples observed [12].

The approximate complexities of the state space partitioning ap-
proach are presented next. Suppose, there are m class-scoped par-
titions. Let n be the maximum number of states per class-scoped

2For simplicity, we approximate Daikon’s space and time complex-
ities with those of the simple incremental algorithm for constraint
detection.



partition. Then, the total number of states considered by the state
space partitioning technique is m * n. S0, the state space par-
titioning approach increases the number of program points, P,
at which the constraints are inferred by a factor of m « n. The
number of hypothesized constraints per program point, C’, isin-
creased by an additive factor m * n. Therefore, for the state space
partitioning technique the relative worst-case space complexity is
S" = P'C" = O(mnP * (mn + C)) and the relative worst-case
time complexity isT’ = O(P'+«C’*L) = mnxPx(mn+C)x* L.
As expected, the state space partitioning technique is more expen-
sive than plain Daikon inference, but not prohibitively so.

If the technique considers the Cartesian product of al m par-
titions, then the analysis contends with one partition of size n™
rather than m partitions with n. states each. Thisexponential cost is
to be expected for the more path sensitive analysis. Cartesian prod-
uct analysis is an option that can be used to increase the precision
of the inferred constraints at an extra cost.

3. LIMITATIONS

The state space partitioning technique is primarily a dynamic
analysiswhich resultsin the unsoundness of thereported constraints.
When atransition on a state is missing, the technique is unable to
distinguish between truly unreachable states and states omitted by
the test suite. The unsoundness of the transitions results in report-
ing potentially stronger constraints.

Daikon’'simplication inferenceis performed on the splitterswhich
originate from the state space partitioning technique. This infer-
ence often provides the insight into the controlled part of the state
of aclass, however it also results in the increase in the number of
accidental constraints reported and loss of precision of the results.

Given the same test suite, the state space partitioning approach
may not infer some unconditional constraints that Daikon would.
State space partitioning technique infers constraints at split pro-
gram points. A split program point observes less data samples than
the corresponding program point which may result in some con-
straints being statistically unjustified at a split program point. If a
constraint isnot statistically justified at a split program point, it will
not be reported.

At the moment, we applied the technique only to one class at a
time. The future work involves extending the state space partition-
ing technique to consider the state interactions between composed
classes.

4. COMPARATIVE EVALUATION

A quantitative eval uation of constraint inference techniques presents

achallenge due to the subjective nature of recovered constraints. In
this section we propose a methodology for a quantitative evaluation
of constraint inference techniques and then present the results of
applying this methodology to comparatively evaluate Daikon and
ContExt on several examples.

Our evaluation methodology is based on the Alloy modeling lan-
guage [9]. First, the class under analysisis modeled in Alloy. Sec-
ond, the behavior of this model is constrained with inferred con-
straints, and then the essential specification is checked against the
model as depicted in Figure 3. The percentage of the essential spec-
ification that Alloy finds valid serves as a quantitative measure of
how well a particular recovered specification captures the essential
behavior of the class under analysis.

The Alloy model for the class consists of three parts: represen-
tation of the class, the essential specification of its behavior, and
constraints on the behavior of the model. The representation for
the class under analysis is defined in terms of several Alloy signa-
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tures, which can be automatically derived from the class fields and
method signatures in the source code.

Alloy facts constraining the model are automatically translated
from the constraints produced by a particular constraint inference
tool (e.g., ContExt or Daikon). Each inferred constraint corre-
sponds to exactly one Alloy fact. In this way two Alloy models
are created for the target class, one for each tool. Each model uses
the same signatures but is constrained by the automatically inferred
constraints produced by its respective tool. To check that the re-
sulting model is not over-constrained, we use a show predicate to
produce a number of representative non-trivial instances.

In order to evaluate the recovered specification, one needs the
“goa” set of constraints that define the essential specification of
the class. By its nature, this “goal” set of constraints has to be
produced manually. The essential specification can be manually
trandated into Alloy unit assertions. A unit assertion is a state-
ment about a single aspect of behavior. For example, the fact that
pressing a number of the Calculator after the plus sign results
in this number being displayed. Alloy assertions provide a high-
level abstraction from the constraints expressed in the language of
aparticular inference tool.

This step introduces the sensitivity of the evaluation methodol-
ogy to the subject who performs the translation of the specification
into Alloy. The subject may potentially introduce errors or skew
the specification in favor of one tool. One possible solution to this
problem is to have a neutral person perform the translation. How-
ever, inthe situation of the absence of such a person with the knowl-
edge of Alloy’s language, we to operate under the assumption of a
fair trandation of the specification.

After the Alloy model has been created, the Alloy solver is used
to check each assertion about the expected behavior of the model
against the facts produced by a particular inference tool. If Alloy
does not find a counterexample to an assertion, the essential behav-
ior corresponding to thisassertion is said to have been recovered by
the tool. In short, we check how many of specification assertions
hold given the inferred constraints (facts). This approach allows
us to evaluate quantitatively how much of the essential behavior
is captured by a particular constraint inference tool. It provides a
means to measure the completeness of the recovered specification,
also known asrecall. We aso plan to extend this procedure in order
to be able to measure the correctness, or precision, of the inferred
specification by approximating the minimum set of facts that en-
able Alloy to check the assertions.

The advantages of the presented methodology include abstrac-
tion from the languages of particular constraint detection tools,
higher-level specification of the essential behavior of the class un-
der andlysis, and an objective criterion for the evaluation of the
recovered specification.

4.1 Evaluation Case Studies

The two case studies present preliminary results of comparative
evaluation of the specifications recovered by ContExt and Daikon
based on the methodology introduced in Section 4.

The first case study was performed on the Puzzle example,
which was given as a homework assignment in a programming
class. The Puzzle classrepresents an environment with an agent.
The environment is a 3x3 board which tracks the location of the
agent with the x and vy fields and the status of two doors at one
end of the room. Each door toggles from open to closed depend-
ing on its previous state and where the agent moves next. The
agent is alowed to move left, right, forward and backward in the
environment. The moves respectively correspond to moveLeft,
moveRight, moveForward, and moveBackward methods of
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Figure 3: Evaluation technique

Assertion in Alloy

English-language specification

assert moveForward 1 {
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit))
(p’ .yPosition = p.yPosition <=> p’.yPosition =
}

assert moveForward 2 {
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit))
(p’ .yPosition - 1 =
}

assert moveForward 3
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit))
p.yPosition =< p’ .yPosition
}

assert moveForward 4 {

all p’: Puzzle, p : Puzzle |
(p in (p’ .moveForward.Unit))
(p.xPosition = p’ .xPosition)

=>

=>

=>

=>

p.yPosition <=> p’ .yPosition > 0)

The y-coordinate of the agent is to remain
the same only when it attempts a moveForward

0) from the top edge of the board (y is 0).

Otherwise,
one square

an agent moves forward exactly
(y-coordinate decreases by one) .

The y-position of the agent at the post-
condition of the moveForward method is
less than or equal to the y-position at
precondition.

Moving forward does not affect the
x-coordinate of the agent.

Figure4: Specification of themoveForward method of the Puzzle.

number of number of  number of
assertions  checked facts
assertions
Daikon 35 18 (51%) 35
Daikon (w/split) 35 23 (66%) 124
ContExt 35 28 (80%) 554

Figure5: Comparative evaluation of theinferred constraints for Con-
tExt and Daikon on the Puzzle example

number of  number of
number of checked facts
assertions  assertions
Daikon 15 12 (80%) 55
ContExt 15 15 (100%) 89

Figure6: Comparative evaluation of theinferred constraints for Con-
tExt and Daikon on the Employee example

the Puzzle class. The goal is for the agent to cross the room to
the location of the doors with both doors open.

Figure 4 presents the specification in terms of the unit assertions
in Alloy for the moveForward method of the Puzz1le and their
respective trand ation into the English language. The unit assertions
for themoveLeft, moveRight, and moveBackward methods
of the Puzzle are similar to the moveForward method. We
believe that the presented assertions provide afair specification for
the Puzzle example. These assertions are used on Alloy models
for both Daikon and ContExt.

For a preliminary quantitative comparison of Daikon and Con-
tExt on the Puzzle example, both tools were run with the same
test suite. An Alloy model with signatures and assertions for the
Puzzle example was constructed manualy. One copy of this
model was constrained with the facts inferred by Daikon to pro-
duce Daikon’s recovered specification. Another copy of this model
was constrained with the factsinferred by ContExt to produce Con-
tExt’s recovered specification. Comparison of the two specifica
tionsis presented in the first and third rows of Figure 5.

The second row shows the results for Daikon when its native
splitting mechanism is enabled. At first we used Daikon’s own
static analysistool [5] to generate context sensitive program points.
This caused Daikon to use the boolean expressionsinthe Puzzle
to establish context at points corresponding to the methods where
the expressions were found. Somewhat surprisingly, the outcome
was the same as for pure Daikon. Next we distributed the statically
established contexts at program points non-local to the expressions
in order to mimic class scoped partitions. These results are shown
in the second row.

Figure 5 shows that in this example ContExt recovered about
60% more of the essential behavior than pure Daikon at the cost of
increasing the number of inferred constraints. For instance, while
Daikon-recovered facts failed to demonstrate the stronger asser-
tion that an agent moves exactly one sguare forward by using the
moveForward method when not on the top edge of the board
(assertion moveForward_2 on Figure 4), they were sufficient to
validate the weaker assertion that an agent either moves one square
forward or remains on its current square when the moveForward
is called (assertion moveForward_ 3 on Figure 4). The condi-
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tional logic of themoveForward method distinguishesthe agent’s
locations in which either no move occurs (top row) from the ones
where a one square move forward occurs (second and third row).
By considering the partitions which are based on the conditional
tests, ContExt is able to recover the facts which enable the Alloy
Analyzer to show both assertionsmoveForward_1 andmoveFor-
ward_2.

Between the results for pure Daikon and ContExt, on Figure 5
is row two which corresponds to the naive mimicking of the state
space partitioning technique in Daikon. This row illustrates an im-
provement of 30% over pure Daikon at the cost of increasing the
number of inferred constraints. These results seem to suggest that
even a naive application of the state space partitioning technique
considerably improves specification recovery.

The second case study is based on the initial design of the Emp -
loyee examplefrom Fowler'sRefactoring book [8]. The Employ -
ee classprovidesapay2Amount method which computes the month-
ly earnings of an employee based on his or her occupation. The
same approach was taken for evaluating the recovered specifica
tions for Daikon and ContExt on the Employee example as on
the Puzzle example. The results are presented on Figure 6. On
this example, the partitions enable ContExt to distinguish between
Employees with different occupations and the equations used to
compute their respective salaries.

In summary, the results suggest that the inference of digunctive
constraints improves the completeness of the recovered behavioral
specification over plain dynamic constraint inference.

5. RELATED WORK

Csallner et a. [3] employ a dynamic symbolic execution tech-
nique, which performs symbolic execution over an existing test
suite, in order to obtain program-specific constraints. The con-
straints inferred by this approach may overlap with those produced
by state space partitioning. It is, however, unlikely that either set
will contain the other. Since state space partitioning transplants
context that it finds in one part of a class to other parts, it islikely
to infer certain pre- and postconditions that an approach like DySy,
which holds to the letter of the source code, cannot. On the other
hand, symbolic execution islikely to net DySy many program spe-
cific expressions that would prove useful for full specification re-
covery. Further comparison of the results produced by the two tools
on the same programs certainly deserves a closer investigation.

Engler et al. [6] and Yang et a. [13] focus on arelatively small
number of error-revealing properties. The latter consider temporal
properties, which can also be thought of as transitions, and as such
are similar to the postconditions inferred by our approach. The state
space partitioning technique, in contrast, pursues the different goal
of providing aflexible program-specific language for constraint in-
ference which captures the essential behavior of programs.

Dallmeier et al. [4] use acombination of static and dynamic anal-
ysisto construct state machines that represent an object’s behavior
in terms of the object’s inspector and mutator methods. Concrete
values are abstracted via a state abstraction function. Our approach
issimilar to that of Dallmeier at a. in that both seek to recover an
abstract state model of a program. The difference lies in the state
construction techniques and dynamic inference mechanisms. Our
approach relies on the conditional logic identified by the devel oper
of aclassto provide the states of the automaton, while Dallmeier at
al. represent the state with the abstracted return values of inspector
methods.

Similar to our work, Arumuga Nainar et a. [2] are interested
in finding relevant boolean formulae. In their case, the formulae
partition the program state space into only two subspaces, one in
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which abug is expressed and the other one in which it is not.

6. CONCLUSIONS

Fully specifying the essential behavior of an arbitrary program
remains beyond the state-of-the-art automatic techniques. On the
bright side, our work demonstrates that a combination of static and
dynamic methods can be used to make a step towards this goal.
The state space partitioning technique described in this paper de-
vises a flexible language for constraint inference which provides
for detection of program-specific disunctive properties. The pre-
liminary results suggest that the technique performs well on classes
that function as explicit or implicit state machines as well as union
classes.
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