A Formal Criterion for Comprehensibility of
Design

Nadya Kuzmina, John Paul, Ruben Gamboa, and James Caldwell*

University of Wyoming, Laramie WY 82070, USA,
{nadya, jpaul, ruben, jlc}@cs.uwyo.edu

Abstract. We believe that comprehensibility can be used as a unify-
ing application-oriented criterion for evaluating the quality of structural
design. This paper describes a formal apparatus for measuring compre-
hensibility of refactored design. The main contribution of this paper is a
precise and formal definition for three refactoring categories, which are
useful, neutral, and obscure. The categories reflect the effect of a refac-
toring on the comprehensibility of the resulting design. The formalisms
in this paper provide the foundation for the development of a tool for
measuring comprehensibility of structural design.

1 Introduction

The software community has been concerned about the quality of software de-
sign even before the object-oriented paradigm came to life. A lot of different
methodologies and guidelines have been proposed on the subject of good design.
For example, Kernighan and Pike [6] suggest simplicity, clarity, and generality
as the guiding criteria for developing programs. On the other hand, design pat-
terns [4] and refactoring [3] provide “recipes” that developers can use to produce
good designs. However, once we have a design, is it possible to measure its qual-
ity in an objective way? Is it possible to compare designs for being “better” or
“worse” automatically? We address these questions in more detail in our other
paper [7], while this paper concentrates on the formalisms which allow us to
evaluate designs resulting from a refactoring.

Our main thesis, called the Comprehensibility Thesis, proposes comprehen-
sibility as a unifying application-oriented criterion for evaluating the quality of
structural design [7]. By structural design we mean the structure of a program’s
source code. We defined an (almost) objective measure for comprehensibility
based on automatically detected program constraints which is best suited for
designs that result from refactorings.

The suggested approach compares the initial specification according to which
the application was developed and the recovered specification generated by an au-
tomated constraint detector via program analysis of the application. The amount
of the initial specification which can be inferred from the recovered specification

* This material is based upon work supported by the National Science Foundation
under Grant No. NSF CNS-0613919.

serves as the measure of comprehensibility of the application’s design'. If there
are two designs implementing the same specification, then the design with higher
measure for comprehensibility is considered “better”.

This paper concentrates on the Refactoring Thesis which states how different
categories of refactorings affect the comprehensibility of the resulting design.
The main contribution of this paper is a precise and formal definition for three
refactoring categories: useful, neutral, and obscure. According to the Refactoring
Thesis, useful, neutral, or obscure refactorings either respectively increase, do not
change, or decrease the comprehensibility of the resulting design. The formalisms
developed in this paper provide a foundation for developing a semi-automatic
tool which may be used to evaluate refactorings [7].

We formalize constraint languages and develop labeled theories to define the
effect of a refactoring on the recovered specification in Sect. 5. Our formalisms
are based on graph transformations proposed by Mens et al. [9] for formalizing
refactorings.

The rest of this paper is organized as follows. The next section provides a
short introduction to the Comprehensibility Thesis. Section 3 presents a working
example which is used throughout the paper. The necessary background on graph
transformations is described in Sect. 4. Section 5 first introduces the formalisms
that the Refactoring Thesis builds upon and then states the Refactoring Thesis.
Tool support for the Refactoring Thesis is discussed in Sect. 6. Section 7 works
through a detailed example of an application of the Refactoring Thesis. An
overview of the related work is given in Sect. 8. Finally, Sect. 9 concludes and
briefly discusses our future work.

2 Our Motivation

In this section we explain that our motivation for formalizing refactorings is to
be able to define the comprehensibility of a design in an objective way and to
apply this measure to the task of comparing refactored designs.

We propose comprehensibility as a single criterion that characterizes good
structural design under the assumption that the program at hand is correct
with respect to its specification. A new developer should be able to understand
a comprehensible program. Comprehensibility, as it is commonly understood,
is a subjective notion and has been studied empirically in the psychology of
programming [11]. The Comprehensibility Thesis allows us to express compre-
hensibility in terms of an automatically recovered specification and to define a
more objective quantitative measure of comprehensibility.

Comprehensibility Thesis. A good design is comprehensible to an automated
tool, which means that an automated tool is able to recover nearly complete spec-
ifications from good designs.

Constraint detectors are tools that attempt to recover a program’s specifi-
cation in the form of constraints by analyzing a program or its behavior. How

1 We refer to structural design as simply design when not explicitly stated.

much a tool is able to learn about the underlying program in comparison to the
initial specification comprises the objective measure of comprehensibility. A Re-
covered specification consists of the facts that a constraint detector learns about
the underlying program, while the initial specification is the specification used to
develop the program in the first place. Informally, we claim that the more facts
a constraint detector is able to learn about the underlying program, the better
is its structural design. In essence, the objective notion of comprehensibility is
modeled by how much of the initial specification a constraint detector is able to
recover.

The closer the recovered specification is to the initial specification, the more
comprehensible the corresponding design is. To define the notion of closeness of
one specification to another formally we can use logical implication: the more of
the initial specification that is logically implied by the recovered specification,
the closer the recovered specification is to the initial one. Thus when two designs
exist for the same specification, this notion of comprehensibility can be used to
compare them to each other. One context in which multiple designs for the same
specification come into play is that of software refactoring.

According to Fowler [3], a refactoring is a process of changing a software
system that does not alter its external behavior yet improves its internal struc-
ture. Since a refactoring necessarily results in an altered design which conforms
to the same specification as the initial one, this allows us to directly compare
their respective comprehensibility measures. For the remainder of this paper we
will be studying comprehensibility as the comparative measure of two designs
belonging to the same sequence of refactorings.

3 A Motivating Example

The CartEntry example from the Replace Temp with Query refactoring [3] will
serve as an illustration for our approach throughout this paper. While keeping
the codebase manageable this example will allow us to illustrate the effects of
refactoring on comprehensibility in Sect. 7.

The initial design consists of a class CartEntry with method getPrice which
calculates the price for an entry in a shopping cart as shown in the left pane of
Fig. 1. The Replace Temp with Query refactoring extracts the computations for
the base price and the discount factor into separate methods. This design of the
class is presented in the right pane of Fig. 1.

4 Background: Formalizing Refactorings with Graph
Transformations

Mens et al. [9] describe a lightweight formal method for considering program
refactoring. The basis of this approach is the representation of object oriented
programs as labeled graphs and program refactorings as sequences of graph
rewrites. This section explains briefly how the graph formalism works. In Sect. 5
we will adopt this formalism to state our Refactoring Thesis.

public class CartEntry{
int quantity;

int itemPrice;

double getPrice(){

public class CartEntry{
int quantity;
int itemPrice;
int basePrice (){
return quntity * itemPrice;

int basePrice = quantity * itemPrice;
double discountFactor;
if (basePrice > 1000)

double discountFactor (){
if (basePrice() > 1000)
return 0.95;

discountFactor = 0.95;
else else
discountFactor = 0.98; } return 0.98;
Pri i F ;
} ;eturn basePrice * discountFactor; double getPrice(){
return basePrice () * discountFactor();
I

Initial Design D1 Refactored Design Do

Fig. 1. Initial design D; and refactored design D2 of the CartEntry class.

CartEntry C » — MR,\L’ ;

m

T

Fig. 2. Method and Field Definitions in the initial class CartEntry.

Definitions. Let X be a set of node labels and A a set of edge labels. A program
graph over X and A is a 3-tuple G = (Vg, Eg,nlabg), where Vi is the set of
nodes, nlabg : Vg — X is the node labeling function and Eq C Vg x A X Vg is
the set of edges.

In a program graph, language entities such as classes, variables, methods,
method parameters, etc., are represented by nodes whose label is a pair consisting
of a name and a node type.

For example, the CartEntry class may be represented by a node u with name
CartEntry and type C (i.e., class). This is denoted as name(u) = CartEntry
and u € C. Figure 2 presents the program graph for the initial design of the
CartEntry class, and Fig. 3 depicts the graph for the refactored design. The set
Y = {C,ME,MX,MD,V,VD, P,E} of all possible node types is described in
Fig. 4. Intuitively, each type in this collection corresponds to a particular type
of syntax fragment in the program. For instance, nodes u € C' represent classes,

CartEntry C L MD ;

[<]
©]

A

(&

’ basePrice ME ‘ ’discountFactor ME ‘ getPrice ME

[mx]

x x t

int C |< - [MX MX —— double C

Fig. 3. Method and Field Definitions in class CartEntry after Refactoring.

nodes v € ME represent method invocations?, and nodes w € MD represent
method definitions. Methods are represented by a combination of method invo-
cations (ME-nodes), method definitions (MD-nodes) and method exits (MX-
nodes). The reason that MD-nodes are separate from ME-nodes is to allow the
graph to capture those situations when the same method invocation may refer
to different method definitions due to late binding and dynamic method lookup.

In what follows we will simply treat X' as a partition of the nodes belonging
to a design D into disjoint node sets, some of which may be empty.

Relationships such as membership, inheritance, method lookup, variable ac-
cesses, method calls, etc., that hold between software entities are represented by
edges between the corresponding nodes. For example, the dynamic lookup for
the definition of method getPrice is represented by an edge of type [between
the getPrice ME-node and the corresponding MD-node in Fig. 2. If a method
takes n parameters, the corresponding MFE-node has n outgoing edges with la-
bels 1.p through n.p. The set A = {l,i,m,t,e,c,a,u,x} U {l.p,2.p,...} consists
of all possible edge-types, which are described in figure 4.

In what follows we are simply going to treat A as a collection of binary
predicates defined over the particular node sets X of a design D. For instance,
when u € C and v € MD, (u,v) € m means that class u defines method wv.
Also, for each j > 0, predicate j.p captures the relationship that each method
invocation u € MFE has to the type v € C of its jth parameter. So, there are
only finitely many nonempty relations of this kind.

2 We introduce one modification to the the theory of Mens et al. [9]. We replaced the
single method node type M with two nodes types: method entry ME and method
exit MX and link them with an z (i.e., exit) edge.

Node Type Desription Examples
C Class CartEntry
ME Method Entry entry to getPrice
MX Method eXit exit from getPrice
MD Method Definition
\%4 Variable quantity, itemPrice
VD Variable Definition int quantity;
P Parameter of method definition
E Expression in method definition
Edge Type Desription Ezxamples
l: ME — MD |dynamic method lookup
V — VD variable lookup int quantity;
i C— C inheritance
m: VD — C |variable membership variable quantity is in CartEntry
MD — C method membership method getPrice is in CartEntry
t: V- C variable type int quantity
MX — C method return type double getPrice
p: ME — C |parameter definition and type
e: MD — E |expression in method definition
E— E subexpression in method definition
c¢c: E— ME |(dynamic) method call basePrice()
a: E — {V—P}|variable or parameter access quantity
u: E — {V—P}|variable or parameter update
z: ME — MX |method exit

Fig. 4. Set ¥ = {C, ME, MX, MD,V,VD, P, E} of all possible node types and set A =
{l,i,m,t,e,c,a,u,x} U{l.p,2.p,...} of all possible edge types.

An entire system involving multiple classes can be represented as a single
program graph using this formalism. Although it currently does not account for
Java modifiers such as static, abstract, protected, final, etc., one can introduce
these modifiers into the graph formalism by attaching the appropriate attributes
to nodes of type C, MD and VD.

Refactorings are then formalized as graph transformation rules with the use
of graph rewriting systems [9]. For instance, the Replace Temp with Query refac-
toring would be formalized as a system of rewrite rules that will transform the
graph shown in Fig. 2 into the graph in Fig. 3.

5 Introducing the Refactoring Thesis

In this section we introduce the formalism which will be used to compare the
effects that different refactorings have on determining the comprehensibility of
a recovered specification. Based on their effects, we categorize refactorings into
three groups: useful, neutral and obscure. The Refactoring Thesis relates the
refactorings in each group to the changes in comprehensibility of the resulting
design. Whereas a neutral refactoring leaves comprehensibility unchanged, and
a useful refactoring actually improves the overall comprehensibility, an obscure
refactoring leads to a loss of comprehensibility.

A recovered specification is a set of program points and a mapping which
associates each program point to a set of constraints. Each constraint in one of
these sets is stated in terms of the program variables visible at the program point
where the constraint is originally specified. First we introduce a many-sorted
first-order language to formalize the constraint language at a program point in

Sect. 5.1. Then we develop labeled theories and state precisely the Refactoring
Thesis in Sect. 5.2.

5.1 Labeled Constraint Languages

The set of program points or labels for a design D consists of all its method entry,
method exit, and class nodes as identified in its program graph according to the
previous section. Constraints that are collected at these three types of points cor-
respond to object invariants, method preconditions and method postconditions,
respectively. Formally we define the labels to be the set A(D) = MEUMX UC.
In this section we introduce a many-sorted first-order language [5] at a label
u € A(D) called the constraint language for label wu.

This step is necessary since the type of a program variable determines the
kinds of constraints in which it can participate. For example, x > 0 may be a
constraint formed for an integer-valued variable x, while z # null may only be
formed when z is array-valued. Each class u € C'in a design D can be thought of
as a design-specific type. Together with the primitive types used in the program
(which are also depicted as C' nodes) the design-specific types define a set of
sorts.

This set of sorts S is defined by S = {sort(u)|u € C'} where sort maps each
class u € C to its unique sort.

Constraints are generally formed on the fields of a class u € C whenever
these fields are visible at a particular program point v € A(D). The fields of a
class u € C consist not only of the fields defined in w but potentially the fields
defined in any class from which w inherits as well. To formalize this fact we first
introduce the transitive closure i¢* of the inheritance relationship ¢ € A. The
function Z : C — 2¢ is defined for each class u € C to be the set consisting of
u and all its ancestors. That is, Z(u) = {u} U {v|(u,v) € i*}. Next we introduce
all the fields of a particular type v’ € C that are accessible within a class u € C
as a set of constant symbols of the corresponding sort sort(u') € S.

Folu) = U {wlweV A (FveVD)(F eC)
w’ €T (u) ({(v,uyem A (w,v) el A
(w,u'yet A sort(u’) = s)}

So, for instance, if u is the CartEntry node in Fig. 2, then F;,4(u) = { quantity,
itemPrice} and Fp, i(u) = {} *.

As a preliminary to capturing all the fields that are possibly accessible at a
method entry u € ME we specify the classes containing these fields. This is done
by first identifying all the potential method definitions for the invocation and
then including the containing classes and their ancestors. Similarly the compile-
time type of each parameter and its ancestors must also be included.

C(u) = {v'| (Fwe MD)(FveC)({u,w)€l N (w,v)em A v €Z(v)) V
(FvelC)(FneN)((u,v)enp A vV EZ(v))}

3 Concrete sorts are underlined.

It is now possible to specify the program variables that are visible at each type
of program point. These will be introduced as S-sorted constant symbols. For
u € C only the fields visible in the class are considered. For u € MFE we consider
not only the class fields that are visible in either defining classes or parameter
classes, but also the parameters themselves. For u € MX two tagged copies of
the variables available at the corresponding method entry are considered along
with a special return symbol # if the method’s return type is non-void. The copy
tagged pre represents the program state at method entry, while the copy tagged
post represents the same variables at method exit.

The following equations specify the set of program variables V(u) of sort
s € S that are possibly accessible at a program point u € A(D) in a design D.

Vs(u) = Fs(u), if ueC

Vi(u) = | JF(v) U {pa| GneN)(FveC)
veC(u) ((u,vyen.p A sort(v) =s)}, if ue ME

Vs(u) ={c| (v e ME)({v,u) € x A ¢ € Vs(v)x{pre, post}) V
(Fvel)({v,u) €t A sort(v) =s A ¢ = return(u))}, if ue MX

So, for instance, if u € MX in Fig. 2, then V;,,4(u) = {quantity, itemPrice}, while
Vioublew) = {getPrice}.

Having introduced sorted constants for the program variables visible at a
label w € A(D) it is now possible to define the constraint language L(u). In-
formally, a constraint language is a set of boolean formulas over the program
variables visible at a label.

The set of sorts S = S U {int, bool, . ..} used to define the language consists
of the sorts obtained from the design as well as a handful of primitive sorts.
As mentioned before, the type of a program variable determines the constraints
that it can participate in. Types are represented by sorts in our formalism and
constraints are represented by bool sorted ground terms.

The constant symbols used in constraint construction at a label u € A(D) will
include all the visible program variables of each sort as well as some predefined
constants. For s € S, the set of constant symbols CS;(u) of sort s consists of
Vs (u) as well as the symbol null if s corresponds to a reference type in D. The
sorts int and bool additionally have constants {...—1,0,1,...}, true, false, etc.,
defined for them.

Similarly, sets of S-sorted function symbols define the operations used in
constraint construction. For this purpose, a set of function symbols FSg ; is

defined for each non-empty signature 6 € S and sort s € S. So, for instance,
+ € FSMM1M and =€ Fsss,bool for any s € S. Also, {<,>} C Fsmtint,bool'

In addition to the constant and function symbols mentioned so far, new sym-
bols may also be introduced that correspond to some of the methods defined in
the design itself. The only restriction on the correctness of the resulting inter-

pretation is that the methods thus included are indeed side-effect free. Thus, the

4 For an n-place method f, this return symbol consists of the term f(p1,...,pn), or
simply f if n = 0.

constants® basePrice and discountFactor can be included in the constraint lan-
guage defined at method exit of getPrice in the refactored design of CartEntry
(Fig. 3).

Together the constant and function symbols generate a set of well-sorted
terms T for each s € S. The constraint language £(u) is then defined inductively
in the following way.

£(u) = tET poy 616 A 16— Y] ..

In other words, £(u) consists of all terms of sort bool as well as more complex
formulas built from these using the logical connectives.

5.2 Formalizing Recovered Specifications as Labeled Theories

The previous section formalized the constraint language at a program point.
Here we define labeled theories to formalize recovered specifications as a whole.
In this section we assume the existence of a domain theory that contains ax-
ioms describing arithmetic and other basic operations used to specify constraints.
In addition the domain theory should contain object invariants for classes in the
design as well as axioms describing the semantics of design specific symbols.

A labeled theory, T, (D), for label u € A(D) of a design D is a set of con-
straints at program point u closed under deduction with respect to the domain
theory. That is, T, (D) = {C'| C is a constraint in the language Lp(u)}*, where
the symbol “*” denotes deductive closure with respect to the domain theory. Al-
though the ultimate choice of domain theory is design specific, it may contain
decidable subtheories like Presburger arithmetic.

We introduce the notion of a theory extension to represent the transformation
of a recovered specification induced by a refactoring. A theory T'(Ds) extends a
theory T'(Dy) if and only if for each label u € A(D1)NA(D3), To,(D1) C T, (D2).
For example, let A(D;) = A(D3) = {v}, T,(D1) = {z > 0}*, and T,,(D3) =
{x == y?}*. Then T(D,) extends T'(D;) since the constraints in T}, (D;) follow
from the constraints in T, (Ds3).

Dy non-conservatively extends Dy if T(Ds) extends T(D1) and there exist
a label u € A(Dy) N A(D2) and a formula ¢ € T, (D3) — T,,(D1) such that
¢ is in the language of Dy (i.e., ¢ € Lp,(u)). A non-conservative extension
ensures that the theory of design D5 contains new facts about the initial variables
in D;. On the other hand Ds is a neutral extension of Dy if T'(Ds3) extends
T(D;) and for every label u € A(D1) N A(D3) and every formula ¢ € Lp, (u),
¢ € Ty(Dy1) = ¢ € T,(D2). Neutral extensions represent refactorings that do
not result in the loss of any facts over initial variables. The possible relationships
that may exist between an initial and a refactored design determine three kinds
of refactorings:

Definitions. Let design D;yq be the result of the refactoring R; applied to de-
sign D;. The refactoring R; is useful if D;11 is a mon-conservative extension

5 Zero place methods are introduced as suitably sorted constant symbols.

of D;. The refactoring R; is neutral if D;y1 is a neutral extension of D;. The
refactoring R; is obscure if D;11 is not an extension of D;.

Intuitively, a useful refactoring exposes some previously unknown facts about
variable relationships in the initial design and, therefore, increases the compre-
hensibility of the resulting design. Neutral refactorings preserve the constraints
known beforehand and require further analysis. An obscure refactoring results
in the loss of constraints known prior to the refactoring. Obscure refactorings
decrease the comprehensibility of the resulting design.

Refactoring Thesis. Useful refactorings improve the comprehensibility of de-
sign with respect to its specification. Neutral refactorings do not affect the com-
prehensibility of design with respect to its specification. Obscure refactorings re-
duce the comprehensibility of design with respect to its specification.

The Refactoring Thesis is an application of the Comprehensibility Thesis to
refactorings. It directly implies the clarity principle of Kernighan and Pike [6].
The simplicity criterion may be used to judge the effect of neutral refactorings
on the overall structure of the resulting design.

A refactoring may be useful, neutral or obscure independently of whether it
expands or contracts the structure of a design. If a structure-expanding refactor-
ing, such as Extract Method, Replace Method with Method Object, and Replace
Array with Object, elicits new facts in the resulting design, then it increases
the comprehensibility and will be classified as useful by our definition. Other
structure-expanding refactorings, such as extract a print method for example,
may preserve the relations known in the initial design, in which case they are neu-
tral. If a structure-contracting refactoring, such as Inline Method, for example,
preserves all the facts known in the initial design, it is also neutral. However,
a neutral structure-contracting refactoring simplifies the structure of a design
without reducing its comprehensibility. In this case we can use simplicity to
identify such a refactoring as desirable from a practical standpoint. If any of the
refactorings described above obscures a constraint, then the comprehensibility
of the design is diminished, and the refactoring is not recommended. We provide
a detailed example of the application of the Refactoring Thesis in Sect. 7. As a
final remark, the Refactoring Thesis does not consider the transformations in-
duced by a refactoring on the structure of the design, rather it is concerned only
with the effects a refactoring may have on knowledge about the original design
at preserved program points.

5.3 Sequences of Primitive Refactorings

Refactorings are commonly carried out as sequences of primitive refactorings
where primitive refactorings are the ones catalogued by Fowler et al. [3]. The
Refactoring Thesis refers to primitive refactorings, while this section addresses
the comprehensibility of sequences of primitive refactorings.

A composite refactoring is a sequence of primitive refactorings. Each primitive
refactoring in this sequence can be classified as useful, neutral or obscure. Neutral

refactorings may be used in preparation for a useful refactoring. Therefore, a
subsequence of neutral refactorings followed by a useful refactoring increases
the comprehensibility of the resulting design and is desirable from a practical
standpoint. It is possible for a subsequence of neutral refactorings to occur at
the end of a composite refactoring sequence. These neutral refactorings do not
increase the comprehensibility and should be well-justified by some other criteria,
such as simplicity for example. We consider any sequence containing obscure
refactorings to be obscure.

6 Tool Support for the Refactoring Thesis

The previous section is purely theoretical and abstracted from any particular
constraint detector tool which may be used to infer recovered specifications.
From a practical standpoint we need to consider an adequate automatic tool
which can be used to produce recovered specifications.

From the perspective of a constraint detector tool the Refactoring Thesis
means the following. Informally the thesis says that if a refactoring results in
a design that enables the constraint detector to infer new facts about the vari-
ables in the initial design, then this refactoring increases the comprehensibility
of the code. New facts refine the recovered specification, making it more precise
and closer to the initial specification for the system, which increases the com-
prehensibility measure. Neutral refactorings do not affect the comprehensibility
with respect to the constraint detector, and therefore require further analysis.
An obscure refactoring prevents the tool from inferring relationships that it was
able to discover in the initial design and therefore decreases comprehensibility.

Since we model human comprehension with that of a constraint detector
tool our future work is concerned with the development of such a tool. We used
Daikon [1, 12] as a constraint detector in our preliminary experiments [7]. Daikon
is based on dynamic analysis which infers likely constraints from variable values
observed during program executions. A likely constraint is a constraint that has
not been falsified on any of the observed program runs. A fixed grammar of
properties determines the considered relationships between program variables.

Some of the problems we encountered are the limitations of dynamic con-
straint detection, such as “noisy” recovered specifications and overly generalized
constraints that were reported. We also discovered that some of the constraints
were missing because Daikon does not support the propagation of constraints
from a method to the callers of this method.

“Noisy” recovered specifications refer to the output which is cluttered with
the relationships which held during the examined program runs but are not
interesting to a human developer. Such “noise” is due to the algorithm which
considers all relationships defined in the grammar of properties to be true at the
beginning. Overly generalized constraints, such as 2 > 0 instead of z = y? + 2,
result from the fact that the grammar of properties is missing more precise
properties used in the program. A possible fix is to add the precise property
templates into the grammar of properties. However, it is very tedious to do so

for every new desirable property. Also, such a fix will result in “noisier” output
since the newly added property may be reported in other places in the program
where a human developer may not be interested in it.

The propagation of constraints from a method to its callers can be vi-
tal to defining a precise constraint on the caller. For example, if a method
double f(int x, int t) is implemented as 0.5 * power(x, t) + t we need
to propagate the constraint power(x,t) = x', which holds on the return of
the power method, in order to infer that the constraint on the return of f is
f(x,t) =052t +¢t.

We believe that the drawbacks of dynamic analysis for constraint detection
can be fixed by combining static and dynamic analyses. The tool we are devel-
oping will attempt to infer constraints in the Object Constraint Language [15]
using such a hybrid approach. The static analysis will extract the relationships
between variables from source code while the dynamic component will examine
the values of program variables during execution to infer constraints in places
where the static analysis does not perform well, such as method exits where the
implementation uses loops. Static analysis will reduce the amount of “noisy”
constraints and overly generalized constraints reported by using the relation-
ships defined in the source code. The tool will also be capable of propagating
constraints from a method to its callers.

In practice, a human developer should be able to evaluate a refactoring by
comparing the recovered specifications for the initial and resulting designs and
classifying the refactoring. If the refactoring is useful, the developer can be as-
sured to keep it, if it is obscure, a roll back to the initial design would be
preferable. If it is neutral, the developer may be guided by some other criteria,
such as simplicity or extensibility, which is not taken into account by the com-
prehensibility of the recovered specification. In our future work we are going to
investigate the possibilities of (semi)automatically comparing constraint-based
specifications using an inference engine.

The limitations of our approach in practice are largely due to the sensitivity
of particular constraint detectors and are described in more detail in our other

paper [7].

7 A Complete Example

In this section we compare the comprehensibility of the original design D; of
the CartEntry to that of the design Ds that results after applying the Replace
Temp with Query refactoring to D;. The sourcecode for both designs is given in
Fig. 1.

The original specification of the getPrice method’s postcondition is captured
by the following expression.

if quantity * itemPrice > 1000
then getPrice = quantity * itemPrice x 0.95
else getPrice = quantity * itemPrice * 0.98

A symbolic execution of D may reveal this directly, but a dynamic constraint de-
tector that conjectures postconditions by inspecting execution traces most likely
will not. Symbolic execution is an expensive operation for humans and machines
alike, and although much may be learned in the endeavor, its drawback is that it
does not differentiate finely enough between well and poorly designed programs.
In fact, when it is undertaken by humans it is often a last resort in attempting
to understand a poorly documented or designed program [8]. Therefore, what
may be learned about a program by a dynamic constraint detector may actually
be a better indicator of the quality of its design.

Thus we will limit ourselves to what a dynamic detector can predict about
the getPrice postcondition in both designs. In the case of D; this is precious
little; in fact all we are likely to know at method exit is that the return value is
greater than or equal to zero. Using the formal apparatus of Sect. 5.2 this may
be written as follows.

Tp, (getPrice_exit) = {getPrice > 0}*

As before, the “*’ operator represents the deductive closure of the enclosed con-
straint(s) in the presence of some suitably defined domain theory. Even with
closure, however, the facts in this labeled theory are far from capturing the
original specification.

Turning our attention to Dy, we list the labeled theories for the three method
exits of that design.

Tp, (getPrice_exit) = {getPrice = basePrice * discountFactor}*
Tp, (basePrice_exit) = {basePrice = quantity * itemPrice}*
Tp, (discountFactor_exit) = {discountFactor = 0.95 V discountFactor = 0.98}"

Since it contains the new symbols basePrice and discountFactor, the main con-
straint of T, (getPrice_exit) is not entirely in the language of the original design.
Deductive closure of this formula is, however, taken in the presence of the follow-
ing two formulas, which relate the preconditions® of basePrice and discountFactor
to their respective postconditions.

true = basePrice = quantity x itemPrice
true—=— discountFactor = 0.95 V discountFactor = 0.98

Therefore Tp, (getPrice_exit) actually contains the following formula, which s in
the language of the original design.

(getPrice = quantity*itemPricex0.95) V (getPrice = quantity* itemPricex(.98)

Since this is a new fact, the application of the Replace Temp with Query refactor-
ing to D is classified useful. Since the refactoring also is useful in the commonly
understood way, the present example appears to bolster the Refactoring Thesis.

5 Since the methods in D; and D don’t take any parameters, their preconditions are
simply true.

8 Related Work

Other researchers have considered various approaches to formalizing object-
oriented programs, design patterns and refactorings.

A number of techniques have concentrated on identifying common “building
blocks” of object-oriented systems or patterns which were formalized in different
ways. Mikkonen [10] formalized temporal behavior of design patterns in terms of
high-level abstractions of communication based on Temporal Logic of Actions.
Eden [2] developed a higher-order formal language for describing and reasoning
about object-oriented systems called LePUS (Language for Patterns Uniform
Specification). Smith and Stotts [14] define Elemental Design Patterns (EDPs),
the “building blocks” for design patterns which are then formalized with the rho
calculus, a version of the sigma calculus augmented with the ability to encode
relationships. Primitive refactorings defined by Fowler [3] serve as the “building
blocks” for refactorings in the graph rewriting formalism of Mens et al. [9]. We
chose the last formalism as the basis for our work because the graph formalism
provides a good foundation for the constraint languages.

A variety of tools has been developed to support different levels of refactor-
ing. For example, Rajesh and Janakiram [13] propose a tool, called JIAD (Java
based Intent-Aspects Detector) for refactoring using design patterns. JIAD auto-
matically infers the code that needs to be refactored and the appropriate design
patterns that need to be applied. The goals of our work are different from those
of performing refactorings. We are using refactorings as a fruitful ground for
evaluating the quality of structural design of a program. One of the lines of our
future research is to integrate our constraint detector tool with an automated
refactoring tool to evaluate the quality of designs produced by the refactoring
tool.

9 Conclusions and Future Work

We presented a formal approach to measuring the comprehensibility of refac-
tored design which relies on automatically recovered specifications. We formally
defined three categories which correspond to the effect of a refactoring on the
comprehensibility of the resulting design. The three categories are useful, neu-
tral, and obscure, where the refactorings in each category respectively increase,
do not change, and decrease the comprehensibility of the refactored design. The
formal abstractions described in this paper provide the basis for the develop-
ment of a tool capable of recovering adequate specifications for object-oriented
programs.

In practice our approach relies on a constraint detector tool which can be used
to automatically infer recovered specifications. The limitations of dynamic con-
straint detection determined our choice of hybrid program analysis. Our tool will
use a combination of static source code analysis and runtime behavioral analysis
to infer constraints in OCL [15]. Our future work also includes investigating the
possibilities of automatically measuring the quality of the recovered specification
by comparing it to the initial specification in the form of constraints.

References

(1]
2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Daikon invariant detector. http://pag.csail.mit.edu/daikon.

A. H. Eden. Formal specification of object oriented design. In Int’l Conf. on
Multidisciplinary Design in Engineering CSME-MDE 2001, 2001.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

Jean H. Gallier. Logic for Computer Science, chapter 10. Harper & Row, Pub-
lishers, Inc., 1986.

B. W. Kernighan and R. Pike. The Practice of Programming. Addison-Wesley,
1999.

N. Kuzmina, R. Gamboa, J. Caldwell, and J. Paul. Comprehensibil-
ity as a measure for structural design. Submitted to FASE’07: Fun-
damental Approaches to Software Engineering (under review), available at
http://www. cs.uwyo.edu/~nadya, 2007.

S. Letovsky. Cognitive models in program comprehension. In Elliot Soloway and
Sitharama Iyengar, editors, Empirical Studies of Programmers, pages 58-79. First
Workshop on Empirical Studies of Programmers, 1986.

T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formalizing refactorings
with graph transformations. Journal of Software Maintenance and FEvolution:
Research and Practice, 17(4):247-276, July/August 2005.

T. Mikkonen. Formalizing design patterns. In ICSE ’98: Proceedings of the 20th
international conference on Software engineering, pages 115-124, Washington,
DC, USA, 1998. IEEE Computer Society.

A. Murray and T. C. Lethbridge. On generating cognitive patterns of software
comprehension. In CASCON ’05: Proceedings of the 2005 conference of the Centre
for Advanced Studies on Collaborative research, pages 200-211. IBM Press, 2005.
J. H. Perkins and M. D. Ernst. Efficient incremental algorithms for dynamic de-
tection of likely invariants. In Proceedings of the ACM SIGSOFT 12th Symposium
on the Foundations of Software Engineering (FSE 2004), pages 23-32, Newport
Beach, CA, USA, November 2—4, 2004.

J. Rajesh and D. Janakiram. JIAD: a tool to infer design patterns in refactoring.
In PPDP ’04: Proceedings of the 6th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 227-237, 2004.

J. McC. Smith and D. Stotts. Elemental design patterns: A formal semantics for
composition of oo software architecture. 27th Annual NASA Goddard Software
Engineering Workshop (SEW-27°02), page 183, 2002.

J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1998.

