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1 Introduction

Refactoring is a software development strategy that characteristically alters the syntac-
tic structure of a program without changing its external behavior [2]. In this talk we
present a methodology for extracting formal models from programs in order to evaluate
how incremental refactorings affect the verifiability of their structural specifications.
We envision that this same technique may be applicable to other types of properties
such as those that concern the design and maintenance of safety-critical systems.

2 Formal Methodology

An object-oriented design D consists of a set of classes expressed in Java or another
class-based object-oriented language. For the purposes of reasoning about D and for-
mally comparing it to its refactorings we model D as a first-order theory of the form
〈Σ,R〉 where Σ is a relational signature extracted from D’s structural features, and
R is a finite set of Σ-sentences expressing facts or axioms that partially capture D’s
class-level behavior [5]. R may result from the direct study of D or its documentation.
We will consider the case when R is the output of a particular program analysis.

An additional set of Σ-sentences, S, provides an abstract specification of what it
means for D to be correct. The extent to which the set of facts R, that we hold about
D, implies S, is indicative of how verifiable the design is by us. Any refactoring, D′, of
D will have the same correctness criteria as D. To compare the verifiability of the two
designs we assume that there is a signature morphism σ :Σ → Σ′ between the original
and the refactored designs1, but σ only needs to be defined on the subset of Σ used to
express S. Letting R and R′ be the two sets of facts that we hold with respect to each
design, we say that D′ is better verifiable than D under the following conditions.

1. For every ψ ∈ S, if R implies ψ, then R′ implies the translated formula σ(ψ).
2. For some ψ ∈ S, R′ implies σ(ψ), but R does not imply ψ.

The first requirement merely states that D′ is a behavior-preserving refactoring of D
with respect to the verifiable behavior of D. While the second requirement states that
we are able to verify D′ more thoroughly than we are D.
? This material is based upon work supported by the National Science Foundation under Grant

No. NSF CNS-0613919.
1 More precisely the notion of a derivor[3] can be used.



p u b l i c c l a s s Employee {
s t a t i c f i n a l i n t ENGINEER = 0;
s t a t i c f i n a l i n t SALESMAN = 1;
s t a t i c f i n a l i n t MANAGER = 2;

p r i v a t e i n t type ;
p r i v a t e i n t monthlySalary ;
p r i v a t e i n t commission ;
p r i v a t e i n t bonus ;

. . .

p u b l i c i n t payAmount ( ) {
sw i t ch ( type ) {
case ENGINEER:

return monthlySalary ;
case SALESMAN:

return monthlySalary + commission ;
case MANAGER:

return monthlySalary + bonus ;
}

}
}

Initial Design D Refactored Design D′

Fig. 1. Initial design D and refactored design D′ of the Employee class.

Alloy [4] is a relational language based on first-order logic that allows us to express
theories about designs. When combined with the Alloy Analyzer it offers a practical
way to implement our methodology and to check 1) and 2) in practice. Once 〈Σ,R〉
is presented as an Alloy theory, the Alloy Analyzer enumerates its models up to a user
specified depth and reports any counterexample that it finds for a particular ψ ∈ S,
each of which is encoded as an Alloy assertion. The same is done for 〈Σ′,R′〉 and each
σ(ψ). While not a proof, the absence of a counterexample serves as evidence that an
assertion may be valid within a theory and hence verifiable about a particular design.

3 Implementation

Next, we describe how we used Alloy and two different automatic constraint detectors
to apply this methodology to the Employee example of the ‘replace conditional with
state’ refactoring from Fowler’s book [2]. Figure 1 presents the initial design D as a
single class, Employee, providing a payAmount method which uses a switch-
statement to compute the monthly earnings of an employee based on his or her occupa-
tion (type). In the refactored design D′, however, Employee delegates the earnings
computation to a polymorphic state object, type, which is no longer just a simple int,
and the computation is now distributed over three different kinds of EmployeeType
objects. The right side of Figure 1 depicts this design.

The extraction of Σ and Σ′ is based on the class structures of D and D′ and is
virtually automatic. Each class or datatype is presented as its own disjoint set of atoms,
while attributes and methods are presented as relations on these sets. The signature
morphism σ : Σ → Σ′ must be constructed by hand. In our example, σ is the identity
mapping for all sorts and relations except for type. The assertions standing for the



specification S must also be constructed by hand. For instance, one assertion about the
payAmount method is that an Engineer’s monthly earnings are equal to his or her
salary.

Finally, R and R′ consist of the machine translated invariants output by one of the
two program analysis tools, Daikon [1] or ContExt. One fact that Daikon recovered
from the design D′ states that the payAmount method for the Engineer class re-
turns the monthlySalary of its Employee attribute. After the two respective Alloy
theories, 〈Σ,R〉 and 〈Σ′,R′〉 have been created for designsD andD′ by either Daikon
or ContExt, we use the Alloy Analyzer to check whether the set of assertions that hold
in the refactored theory is a proper superset of the assertions that hold in the unrefac-
tored theory. If so, then we conclude that there is evidence to suggest that D′ may be
better verifiable than D in light of the facts obtainable by either tool.

In this example the Alloy analyzer considered all possible models consisting of two
Employee entities, two EmployeeType entities and each int from -16 to 15. Our
study suggests that the verifiability of the refactored design improves with respect to
the facts obtained by Daikon, while the verifiability of either design is sufficiently good
in light of the facts obtained by ConText.

4 Conclusions

Insofar as some structural properties of programs are safety-critical, the methodology
presented here already applies to them. For instance, a specification for a controller may
contain a safety-critical class invariant that states which configurations are reachable.
Our methodology allows a way to monitor the verifiability of such properties as refac-
torings are applied throughout the software lifecycle. More investigation is needed to
evaluate our approach on a real world example.
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