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Abstract

The general technique for dynamically detecting likely
invariants, implemented by Daikon, lacks specific object-
oriented support for polymorphism. Daikon examines only
the declared type of a variable which prohibits it from con-
sidering the runtime variables in the presence of polymor-
phism. The approach presented in this paper extends the
technique to consider the runtime type of a polymorphic
variable, which may have different declared and runtime
types. The runtime behavior of a polymorphic variable is
captured by polymorphic constraints which have the form
of an implication with the name of the runtime class in
the antecedent. We demonstrate the improved accuracy
of the dynamically detected specification on two examples:
the Money example from the JUnit testing framework tu-
torial, and a database query engine model example, which
we adopted from a commercial database application. Poly-
morphic constraints in both cases are shown to reveal the
specification of the runtime behavior of the systems.

1. Introduction

A constraint' is a restriction on one or more values of
(a part of) an object-oriented model or system [26]. Con-
straints are checked by assert statements at runtime to
guarantee that desired properties hold. Constraints on visual
formal models, such as class diagrams, provide for better
documentation, improved precision, and allow communica-
tion with fewer misunderstandings among team members.

Dynamic invariant detection automatically generates
likely constraints by examining program executions. Likely
constraints are properties that hold on the examined pro-
gram runs [23]. Dynamic invariant detection has been ap-
plied to a variety of practical problems, such as automating

'A constraint is called “invariant” in the Daikon literature. We are using
the term “constraint” to refer to properties of object-oriented, as opposed
to procedural, systems.

theorem proving tasks [19, 20], verifying safety properties
[21, 22], generating and prioritizing test cases [28], program
refactoring [16], and error detection [25, 24] among others.
In contrast to using constraints as input to other tools, we
focus on providing quality constraints to developers.

There is a variety of tools which we describe in section 2
that attempt to discover program models or specifications
using dynamic analysis. Our goal is to recover polymor-
phic constraints that provide insight into the runtime behav-
ior of an object-oriented system in terms of program vari-
ables. Such constraints will aid developers in understanding
object-oriented code better. Turnip, our prototype imple-
mentation for polymorphic constraint detection, is based on
Daikon (version 4.1.6), a dynamic invariant detection tool
developed with similar goals in mind.

In the current object-oriented paradigm Object Con-
straint Language (OCL) [26] is the standard set by the
Object Management Group for specifying constraints for
object-oriented systems. OCL allows the developer to spec-
ify both functional (e.g, x > 0) and object-oriented (e.g.,
self.oclType = Rectangle for a Rectangle) relationships.
Tools that automatically detect object-oriented constraints
and present them in OCL will improve the readability and
precision of the recovered specifications for object-oriented
systems.

Polymorphism is one of the challenges constraint detec-
tion tools need to address in object-oriented programs [17].
While true in procedural programming, the assumption that
the declared type of a variable defines its actual runtime
behavior does not hold for object-oriented systems where
inheritance and polymorphism come into play. In terms of
dynamic invariant detection, polymorphic behavior requires
examining the actual runtime type of a program variable to
grasp meaningful constraints.

The declared type of a polymorphic variable may not
fully characterize the variable’s behavior. For example, let
Circle and Rectangle be the subclasses of an abstract
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Figure 1. DisplayItem Example Class Dia-
gram

class DisplayItem? which has no declared fields, as
shown on figure 1. The resize (int amount) method
of a single DisplayItem variable will scale the radius
when applied to a Circle instance and the width and
height when applied to a Rectangle instance, but we
need to examine the fields of the different runtime instances
in the DisplayItem variable to state these properties
about the resize method.

Our approach demonstrates the feasibility of character-
izing polymorphic behavior by inferring polymorphic con-
straints for different runtime classes in Java. Our proto-
type implementation, Turnip, considers the fields of runtime
polymorphic variables in a way that yields runtime-refined
polymorphic constraints. Such constraints have the form of
an implication where the antecedent specifies a particular
runtime class and the consequent is a constraint on the fields
of the class. Consider the DisplayItem example. Sup-
pose the application is displaying a complex graphical com-
ponent which contains a DisplayItem figure as its
attribute. The user decides to adjust the size of the compo-
nent by amount, which causes the component to resize the
figure and redraw itself. Postconditions of the redraw
method of the component may be as follows:

( figure.class == Circle ) ==>

( figure.radius == figure.radius@pre * amount )
( figure.class == Rectangle ) ==>

( figure.width == figure.width@pre * amount )
( figure.class == Rectangle ) ==>

( figure.height == figure.height@pre * amount )

The rest of this paper is organized as follows. The next
section describes the background and related work on dy-
namic invariant detection. Section 3 provides details on
our approach and concludes with its limitations. Section 4
presents and compares constraints detected by Daikon and
Turnip® (our augmented version of Daikon) on two real-

2This example is inspired by [5].
3To preserve the naming scheme of Daikon developers.

world examples: the Money example from the JUnit test-
ing framework tutorial, and a database query engine model
example, which we adopted from a commercial database
application [3]. Finally, section 5 presents our conclusions.

2. Background

We start by providing some background on Daikon and
give a brief description of other research based on dynamic
program analysis.

2.1. Daikon

Daikon [1, 23], developed by Michael Ernst and his re-
search group, is a general and publicly available implemen-
tation for dynamic invariant detection. Constraints are cap-
tured as “operational abstractions” which are the types of
formulas programmers may place in assert statements,
suchasx >=0ory =z * z.

Daikon consists of two separate and mutually indepen-
dent parts. Daikon’s language-dependent front end instru-
ments the target program to trace variables at certain loca-
tions in the program. The front end collects variable val-
ues into a data trace file during the target program’s exe-
cution over a test suite. Daikon supports a variety of front
ends for both object-oriented and procedural languages, in-
cluding Chicory, a front end for Java. Daikon’s language-
independent back end examines the data trace file to infer
constraints on the variables. The distinction between these
two parts has blurred in the latest versions of Daikon, but it
is still best understood with this separation in mind.

The constraints inferred by Daikon are determined by
program points, a grammar of properties, and the variables
visible at the various program points. Program points are
locations in the target program where constraints should be
inferred. For example, method entry and exit locations cor-
respond to method preconditions and postconditions and are
natural candidates for program points. Daikon’s front ends
produce a data trace file that contains state variable values
at each program point.

A fixed grammar of properties is a list of templates that
describe possible relationships between variables. For ex-
ample, one template may look like &« >= 0 and another
« == 3 %y, where the metavariables «, 3 and ~y are typed.
Each such template is instantiated with all possible combi-
nations of the program variables of correct type visible at
a program point. Suppose that int x, int y, int z are Vvisi-
ble at program point P;. Then, the first template will be
instantiated as ¢ >= 0, y >= 0, and z >= 0, and the sec-

ond template will be similarly instantiated as * == y * 2,
Y=—x k2,2 =—Y*xT,Yy == 2%T, 2 == & *y, and
x == z*y. After templates have been instantiated, Daikon

checks to see if the variable values from each data trace



for program point P; satisfy each instantiated template at
P;. In the end Daikon reports the likely constraints as the
properties that are never invalidated by any data trace. We
will use the term property to denote a template from the
grammar of properties that has been instantiated over the
variables at a program point.

Daikon outputs two kinds of likely constraints: acciden-
tal properties and essential constraints. The latter are con-
straints in the traditional sense, whereas accidental proper-
ties are an artifact of the values observed during the exam-
ined executions and are not universally true for all program
runs.

Daikon attempts to minimize the number of reported
constraints. First, it uses statistical justification to distin-
guish chance relationships from likely constraints. Daikon
establishes the properties that hold on the given data trace,
and then for each property, it computes the probability that
the observed property could have happened by chance alone
on a random set of samples. Only properties whose prob-
ability is smaller than the user-defined confidence parame-
ter qualify as likely constraints and are reported. Second,
Daikon suppresses constraints that are easily derived from
one that is reported. Although incomplete, the description
of Daikon offered here is enough for our purposes. A full
description can be found in [23, 10].

Being a general purpose tool for a variety of languages,
Daikon does not provide specific object-oriented support for
polymorphism and inheritance. Daikon considers only the
declared type of a variable when instantiating properties. In
the following example, Daikon uses variables declared in
the target program to construct properties to be checked.
Given the declaration DisplayItem figure, Daikon
will not instantiate any properties on the fields of figure
because the DisplayItem class has no declared fields.
On the other hand, if we consider the actual runtime class
of figure, the figure.radius field of the Circle
class, and figure.width and figure.height fields
of the Rectangle class can be used to instantiate proper-
ties.

There are two mechanisms that attempt a solution to the
problem that many classes do not have fields that an invari-
ant detector can examine. The first mechanism allowed the
invariant detector to explore fixed runtime types. The other
mechanism provides more variable for the invariant detector
to examine.

Daikon used to provide a rudimentary solution to captur-
ing runtime behavior at the level of the Java front end. It is
known as the runtime-refined types mechanism in Daikon’s
older, deprecated front end for Java, dfej. Under the as-
sumption that a variable’s runtime value can be guaranteed
to be of one specific type, dfej allowed an annotation
specifying the refined type to be put before the correspond-
ing variable declaration as in:

/+refined_type: Rectanglex/ DisplaylItem figure;

dfej would then treat figure as a variable of class
Rectangle.

By the definition of polymorphism [4], the classes in one
hierarchy are interchangeable. The actual class of a variable
is determined by the runtime context and is not known be-
forehand. The annotation mechanism does not account for
polymorphic cases when it is impossible to limit the runtime
class of a variable to only one particular class.

Another attempt to provide more variables to the invari-
ant detector is present in the current version of Daikon as
a way to use a pure method, a read-only method which re-
turns a value, as a derived variable. The return type of a pure
method becomes the type of the associated derived variable.
From the point of view of the reported invariants, a derived
variable is equivalent to any “regular” variable which is in
scope at a program point. This mechanism attempts a so-
lution to the problem that many classes do not have fields
that an invariant detector can examine. In some very spe-
cific cases this approach may offer a solution for polymor-
phic variables. For example, suppose that DisplayItem
has a pure method double area (). Suppose also that
the program point A has a DisplayItem figure vari-
able, which is specified to always have the area of, say, 1.0.
In this case, the pure method mechanism allows Daikon
to detect the desirable constraint on the polymorphic vari-
able figure: figure.area () == 1.0. However, in
a general case, the fields of the runtime class often partic-
ipate in desirable constraints. For instance, in the example
with the area method, the desirable constraint may be the
one that provides the formula for the area, such as:

( figure.class == Rectangle ) ==>
( area() == figure.height * figure.width )

This example demostrates that pure methods and runtime
fields are a beneficial combination for dynamic invariant de-
tection.

2.2. Time and Space Complexities for Dy-
namic Constraint Detection

This section considers the approximate time and space
costs of dynamic constraint detection based on an incremen-
tal (single-pass) algorithm [23] which discards each sample
after processing it. The material in this section was first pre-
sented in [23]. We briefly describe the complexity analysis
of Daikon to provide a framework for examining Turnip’s
space and time costs.

The algorithm consists of three steps, which treat each
program point independently:

1. For each program point, create all possible candidate
constraints by instantiating all appropriate templates
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Figure 2. Variables used in the time and
space complexity analysis.

from the grammar of properties with the variables at
the program point.

2. For each sample at each program point, check all can-
didate constraints and discard the ones that are falsified
by the given sample.

3. Report the constraints that remain after processing all
samples and applying the post-processing filtering.

The algorithm uses space only to store candidate con-
straints. The maximum space usage which occurs during
the initial step is S = O(P « C) = O(P x G(V)). The
worst-case runtime scenario occurs in the initial phase when
the constraint detector has to check all candidate constraints
for each sample: T = O(P*CxL). Since most of the candi-
date constraints are falsified quickly, the common-case time
complexity is T' = O(P * C' + P« RC * L), where P x C
stands for falsified properties and P RC '« L denotes the re-
ported properties, which are checked for all samples. More
details on time and space complexity analysis for simple in-
cremental algorithm and Daikon can be found in [23, 9].

Daikon uses bottom-up incremental algorithm which im-
proves on the simple incremental algorithm by orders of
magnitude by introducing serveral optimizations [23]. The
simple incremental algorithm provides a good conceptual
picture for time and space complexity analysis. Therefore,
in section 3.3 we will assume that conceptually Daikon’s
space and time complexities are those of the simple incre-
mental algorithm to provide for a simpler comparative anal-
ysis of our tool Turnip.

2.3. Other Tools Based on Dynamic Analy-
sis

A lot of recent work has been done in the field of ex-
tracting models or specifications using dynamic techniques.
Henkel and Diwan developed a tool that discovers high-
level algebraic specifications from Java classes in the form

of axioms using dynamic analysis [14, 15]. Whaley, Martin
and Lam propose multiple finite state machine submodels
to model the interface of a class with the purpose of for-
mally specifying method call sequences. They use a com-
bination of static and dynamic techniques to automatically
extract such models [27]. Caffeine [12] is a tool for dy-
namic analysis of Java programs, which allows the devel-
oper to check a conjecture about the behavior of a Java pro-
gram. For instance, the developer might inquire about the
number of times a particular method was called during pro-
gram execution. The tool works by generating a data trace
during program execution and running a Prolog engine to
perform queries over the trace. Caffeine was developed by
Guéhéneuc, Douence and Jussien.

Csallner and Smaragdakis [6] explore the problem of
eliminating invariants that are inconsistent with the behav-
ioral subtyping principle for overriding methods in object-
oriented programs with the purpose of using the invariants
in automating reasoning tasks. In contrast, our approach
infers constraints on runtime types of a polymorphic vari-
able in an object-oriented system so that a human developer
gets a more accurate representation of the system’s runtime
behavior.

Other research concentrates on aiding in software error
detection. Hangal and Lam created DIDUCE - a tool which
dynamically formulates constraints for a program and can
inform the user when the formulated constraints are violated
at runtime [13]. An automatic debugging tool called Carrot
has been developed by Pytlik, Renieris, Krishnamurthi, and
Reiss [24]. Carrot is based on Daikon and works by hypoth-
esizing constraints that hold for a program by examining a
(large) number of correct runs of the target program. Car-
rot then examines the faulty run and finds the locations in
the program where the hypothesized constraints were bro-
ken. Liblit, Aiken, Zheng and Jordan have developed a low-
overhead general sampling infrastructure for gathering in-
formation from executions from multiple users [18]. They
have demonstrated how to use the data traces to discover
software bugs.

We are looking into constraints specified in terms of pro-
gram variables to help human developers understand the
program’s behavior and implementation. Daikon was de-
veloped with this goal in mind, and it represents the cur-
rent state of the art in dynamic invariant detection. Hence,
we chose Daikon as the most appropriate tool for inferring
polymorphic constraints.

3. Dynamic Detection of Polymorphic Behavior

In this section we present our approach to inferring poly-
morphic behavior from data traces and its limitations. We
call our version of Daikon augmented to consider runtime-
refined cases Turnip, in accordance with the naming scheme



devised by Daikon developers®.
3.1. Our Approach

Turnip examines the fields of runtime objects to iden-
tify runtime variable values to identify the constraints that
likely hold between them. In the presence of polymor-
phism, Turnip examines the actual runtime class of each
program variable to infer properties that likely hold for the
fields in the examined runtime class. We call such prop-
erties runtime-refined constraints. For example, consider
theDisplayItem figure variable. Examining the val-
ues of the figure.radius attribute when the runtime
class of figure is Circle yields relationships between
figure.radius and other visible variables at a particu-
lar program point.

The next section describes the modifications we made to
the Daikon system to examine the actual runtime classes of
polymorphic variables in order to discover runtime-refined
constraints.

3.2. Modifications to Daikon

We provide a detailed description of our modifications
for Chicory. Daikon® was augmented in a similar way.

Chicory is the front end for Daikon that instruments Java
classes when they are loaded by the JVM. Before the JVM
loads a class, Chicory creates a tree® of the visible variables
at each program point. Each node in the tree represents a
variable in the target program and is responsible for retriev-
ing the runtime value of this variable. Figure 4 presents
an example of a variable tree constructed by Chicory for
the entry point of the checkOut method in the Library
class shown in figure 3. Nodes in the tree abstract the data
types of the variables they contain.

After the tree is constructed, the JVM loads the class and
executes the target program. Each time the execution gets
to a program point, Chicory traverses the variable tree for
that program point and collects variable values from each
node. The variable values are stored into a data trace file for
further processing by Daikon.

We enabled Chicory to collect values for the fields of
the actual runtime classes of each polymorphic variable.
A polymorphic variable is a variable declared as a user-
defined interface or a user-defined class that has subclasses.
The value of such variable can be an object of the declared
parent class (if it is not abstract) or an object of one of the

“Daikon is an Asian radish.

SIn this section we are going to distinguish between Daikon’s front end
for Java, Chicory, and Daikon as a back end constraint inference engine.
The rest of the paper refers to both as Daikon.

A tree is a good data structure that reflects the recursive nature of
variable nestings. For instance, the fields of an object take other objects as
values which expose their own fields, and so on.

subclasses. In the DisplayItem example, a variable de-
clared as DisplayItem figure isa polymorphic vari-
able. The way we implement it in Chicory is to maintain
a collection of class hierarchies based on the classes that
have been loaded by the JVM. Every time a subclass is
being loaded, it is added to the appropriate hierarchy tree
by Chicory. This mechanism allows Chicory to identify
polymorphic variables as variables whose declared type is a
member of one of the hierarchies and is not a leaf.

Chicory uses variable abstraction to represent different
kinds of variables in a program. We introduced a new vari-
able abstraction, called a group variable, to represent poly-
morphic variables declared in the target program. The pro-
gram variable that underlies a particular group variable is
referenced as its base variable.

The group variable’s implementation is based on the
state design pattern [11]. This allows it to alter its behavior
at run-time as the runtime class of the base variable changes.
The state of a group variable represents the current runtime
class of its base variable and is changed every time the base
variable changes its runtime class. A group variable then
delegates all value collecting activity to the current state ob-
ject.

We also modified the data collecting mechanism in
Chicory. During runtime, Chicory records the values ob-
served for a particular program point into a trace file, which
consists of two parts: the declarations part and the actual
data part. The declarations part contains declarations for all
variables present at the specified program point. The data
part records variable values observed during execution for
each program point. For a polymorphic variable, the dec-
larations part lists all fields that this variable could possibly
have for different runtime classes. The data part records
only the runtime class of a polymorphic variable and the
values observed for the fields of the runtime class.

We also introduced a similar mechanism for reading
in values for polymorphic variables into Daikon’s back-
end. For a polymorphic variable, Daikon treats the vari-
ables which are fields of potential runtime classes other than
the actual runtime class, as undefined. This approach al-
lows us to reuse the statistical justification mechanism built
into Daikon using the number of non-missing samples ob-
served for polymorphic constraints. To account for the fact
that a variable can be of only one class at any given time,
we prohibit the construction of properties that result from
combining fields of different runtime classes of the same
base variable. Thus for DisplayItem figure, we pro-
hibit property construction on both figure.radius and
figure.width variables (such as figure.radius
> figure.width, for example).
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3.3. Comparative Analysis of Daikon and
Turnip

In this section we first analyze the space and time com-
plexities of Turnip compared to Daikon. Next we argue
that our modifications do not result in the loss of constraints
given the same number of samples per program point.

By considering different runtime cases for polymorphic
variables we increased the number of possible constraints,
C, that Turnip creates at a program point with polymorphic
variables. Following the naming conventions established
in figure 2, the number of potential constraints that Daikon
considers at program point P; is Cp = G(Vp), where Vp
is the total number of variables at P;. Suppose, in the worst
case that all variables Vp are polymorphic and each vari-
able belongs to a different inheritance hierarchy 1..k, where
k = Vp. Let ly..l; be the number of classes in the in-
heritance hierarchies 1..k respectively, such that n;..nj is
the maximum number of fields for classes in the respective

hierarchy. Let Vi be the number of variables that Turnip
considers at P1. Vip < nq xl1 + ...+ ng *xlp =ny *xl1 +
cetnyy xly, <n' %1% Vp, where n’ = max(ny, ..., ng)
and ' = max(ly, ..., l).

Our modifications result in a linear increase on the num-
ber of variables considered at a program point with poly-
morphic variables. In the worst-case, the number of poten-
tial constraints is cubic in the number of variables in scope
at a program point because constraints in Daikon involve at
most three variables. Thus, in the worst case for a program
point with polymorphic variables G(V7r) is cubically larger
than G(Vp) in the size of the largest inheritance hierarchy
and the maximum number of fields in the involved hierar-
chies. Total constraint detection time is linear in the number
of potential constraints at a program point. This is a crude
upper bound because in practice Turnip considers only the
types of a polymorphic variable that are observed at runtime
as opposed to the complete static inheritance hierarchy of
the variable. Also, as Daikon community suggests, most of
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the constraints are falsified quickly and only a small number
of constraints that are never falsified need to be checked for
all samples, so the constraint detection time is really linear
in the small number of never-falsified constraints [9].

Another possible concern may be that Turnip fails to in-
fer some constraints that Daikon alone does. A simple argu-
ment shows that this is not the case. Since Turnip observes
the superset of variables observed by Daikon, constraints
involving just the common variables will be observed with
the same frequency in Turnip as in Daikon. However, more
trials will be required to obtain the statistical significance of
polymorphic constraints. The details of this argument are
provided in the following paragraphs.

First, consider Daikon’s statistical justification mecha-
nism. The probability that a relationship has occurred by
chance is computed based on the number of samples ob-
served on which this relationship held. For example, for
a simple property “x is even”, which has a 50 percent
chance of having occurred by chance, the probability that
“x is even” occurred by chance alone will be computed as
1—($)", where n is the number of samples of variable “x”
encountered. If the probability above is less than the spec-
ified threshold, say 0.1, then “x is even” will be reported.
For more complicated properties, which do not very likely
occur by chance, such as “set X is an intersection of set Y
and set Z”, the probability that it occurred by chance may be
set to below the threshold after a fixed number of samples
observed. In other words, for more complicated properties
only a few samples need to be observed to establish statisti-
cal significanse.

Second, consider the samples that Turnip observes for
polymorphic variables. At a program point with a polymor-
phic variable Turnip will observe the same number of sam-
ples with the declared type of the polymorphic variable as
Daikon. Consider the hierarchy in figure 5. If the variable A
a is in scope at the program point P; and P; gets 10 sam-
ples, both Turnip and Daikon will observe the fields of A
a 10 times and report the same constraints on the fields of
a. However, the runtime type of a may be A;; 6 times and
Aj2 4 times out of the observed 10 samples. While Daikon
does not consider the runtime type of a, Turnip examines
the fields of the class A1y in 6 samples and the fields of the
class Ajs in 4 samples. The constraints on the fields of the
class A1 may not be statistically justified due to the small
number of samples observed. Turnip will have to observe

more samples with A5 as the runtime type of a to justify
the constraints on the fields of A5 statistically. However,
the number of samples Turnip observes for the declared type
of a polymorphic variable is always equal to the number of
samples observed by Daikon. Turnip reports all the con-
straints Daikon does for the declared type of a polymorphic
variable and, possibly, some polymorphic constraints on the
runtime cases for the polymorphic variable if the number of
samples observed for a runtime class justifies a constraint
statistically.

3.4. Limitations

At the moment Turnip conceptually assumes that all in-
herited fields are used for specialized purposes in the sub-
classes. However, some inherited fields may serve the same
purpose in all subclasses. In this case a postprocessing step
may be used to propagate the constraints that conceptually
belong to the superclass from its subclasses. For example,
suppose class A has a field a and subclasses B and C. If
Q(a) holds for the runtime class B as well as for the run-
time class C then generalize that Q(a) holds for the runtime
class A.

Extensive hierarchies are prohibitive in terms of used re-
sources since the number of potential constraints is cubic in
the size of a hierarchy, as discussed in 3.3. Therefore, our
approach considers only user-defined hierarchies of classes.
For example, we are not refining variables declared as, say
Object.

Turnip processes more variables per program point than
Daikon does, which results in decreased performance and
more accidental properties reported by Turnip.

This problem is related to the nature of dynamic con-
straint detection. It can be partially solved by disabling
some properties, and, perhaps, adjusting the statistical jus-
tification threshold. Such fine-tuning mechanisms are built
into Daikon.

More relevant invariants can be produced by combining
static program analysis techniques with dynamic detection.
Symbolic evaluation can be used to augment dynamic anal-
ysis with the knowledge of underlying source code. Ab-
stract interpretation might aid in pruning the search space
of potential properties for dynamic analysis.

4. Extended Examples

We present two real world examples to demonstrate run-
time constraints produced by Turnip. Both cases offer an
insight into the behavior of the system that Daikon alone
could not.



4.1. Example Set Up

Test suite selection is important when dynamically infer-
ring useful constraints [8, 9] because test cases determine
what values are taken by variables in the target program.
If a variable takes on too few values during the examined
program runs it results in a small number of essential con-
straints inferred due to low statistical justification and larger
number of accidental properties reported due to the lack of
counter-examples. For example, let int x be a variable at
a program point. If the only values for x Daikon observes
are 10 and 15, Daikon may output the constraint x one
of {10, 15}. This constraint is the result of the two val-
ues observed, while the true constraint for x may be x >
0. To avoid over-specialization without placing too large a
burden on the programmer to develop a comprehensive test
suite, we wrote the tests so that they exercise each program
point several times with randomly chosen values.

4.2. Money Example

This section reports actual relevant constraints detected
by Daikon and Turnip for several methods declared in the
IMoney interface of the Money example included with JU-
nit.

The JUnit [2] framework documentation contains the fol-
lowing example to help developers get started with writing
unit test cases. We will use this example to demonstrate the
improved precision in recovered specifications obtained by
introducing runtime-refined cases.

The example represents arithmetic with multiple curren-
cies. The system consists of an interface IMoney and
two classes, Money and MoneyBag, implementing the
IMoney interface, as presented in figure 6.

The Money class represents a quantity of money in a
particular currency. The amount is represented by a simple
int field amount. The currency is represented by a string
holding the ISO three letter abbreviation (e.g., “USD” and
“CHF”) The MoneyBag class stores different monies in the
Vector fMonies field. Such a representation is used to
defer exchange rate conversions, and to compute the total
value of all monies in a MoneyBag in a single currency on
the fly with the current exchange rates.

To accommodate the logic of the Money example we
introduced a derived variable, the sum of all elements in
a java.util.List collection, into both Daikon and
Turnip. The sum is created if and only if there is a Java
annotation present before a java.util.List variable
declaration in the source code as in:

@daikon.chicory.ListOfNumbers
Vector fMonies;

To accommodate the sum, non-number classes are re-
quired to return their numeric representation from the
toNumber () method.

The Money example came with a set of unit tests. In
the experiment Daikon and Turnip were presented with the
respective outputs from the same runs of each unit test. The
summary of constraints that characterize the behavior of the
Money and MoneyBag classes with results for Daikon and
Turnip is presented in figures 7 and 8.

Before we turn to the results in figures 7 and 8, let us con-
sider the IMoney add (IMoney m) method which adds
a money m to the current money (this object). It presents
an interesting case with two polymorphic variables: the in-
put parameter m and the return object. Since both can
have a runtime class of either Money or MoneyBag, there
are four runtime-refined cases which Turnip outputs:

IMoney Money.add (IMoney m) :::EXIT
// Constraint inferred by Daikon
return != null
// runtime-refined constraints inferred by Turnip
( m.class == MoneyBag & return.class == MoneyBag ) ==>
( m.fMonies([].sum -
return.fMonies([].sum + this.fAmount == 0
( m.class == MoneyBag & return.class == Money ) ==>
( m.fMonies[].sum - return.fAmount + this.fAmount == 0
( m.class == Money & return.class == MoneyBag ) ==>
( m.fAmount - return.fMonies[].sum + this.fAmount == 0 )
( m.class == Money & return.class == Money ) ==>
( m.fAmount - return.fAmount + this.fAmount == 0 )
IMoney MoneyBag.add (IMoney m) :::EXIT
// Constraint inferred by Daikon
return != null
// runtime-refined constraints inferred by Turnip
( m.class == MoneyBag & return.class == MoneyBag ) ==>
( m.fMonies[].sum -
return.fMonies[].sum + this.fMonies[].sum == 0 )
( m.class == MoneyBag & return.class == Money ) ==>
( m.fMonies[].sum -
return.fAmount + this.fMonies[].sum == 0
( m.class == Money & return.class == MoneyBag ) ==>
( m.fAmount -
return.fMonies[].sum + this.fMonies[].sum == 0 )
( m.class == Money & return.class == Money ) ==>
( m.fAmount - return.fAmount + this.fMonies[].sum == 0

A few comments about the notation in the above code
fragment and figures 7 and 8 are in order. A.b(X
x) :: : EXIT is an exit point for method b of class A, which
takes a parameter x of declared type X. An exit point is
followed by a list of postconditions. Symbol &’ denotes
logical AND, symbol ’==" stands for equality, and symbol
’==>" (as well as ’=") is logical implication.

All the runtime classes reported by Turnip for the cor-
responding variables have been encountered during the
Money example execution with the test cases provided.
Turnip uses dynamic analysis of variable values encoun-
tered during target program runs, making it impossible to
infer properties about the runtime classes that have not been
seen during the examined execution.

In the add method of the Money class, for example, the
case when the runtime class of m is a MoneyBag and the
returned object is a Money may seem confusing. How can
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Figure 6. Money Example Class Diagram

we add a MoneyBag to a Money and get a Money back?
Suppose we have a 12 CHF worth of Money to which we
add a MoneyBag which contains -12 CHF and 3 USD. The
result is a MoneyBag which contains 3 USD. However,
a MoneyBag with only one currency is simplified to an
equivalent Money object, which is returned from the add
operation in this case.

Written by Kent Beck and Erich Gamma, the implemen-
tation for the add method in Money and MoneyBag em-
ploys the double dispatch pattern, which means that the
method returns a new IMoney object, without modify-
ing the current one (this object). Turnip examined the
polymorphic behavior of both the input parameter m and
the return object, and the fields of this to produce
the runtime-refined constraints which reflect the fact that
the add method returns an IMoney that is the addition of
the money in the input parameter m to the current money.
Daikon, on the other hand, skips objects declared as inter-
faces using the assumption that interfaces do not have fields
and examines only the fields of the current object when in-
ferring constraints. With the double dispatch, the fields of
the current object do not change. Therefore, Daikon is not
able to infer any constraints for the add method except the
comparison of the returned object’ to null.

"The propertym != null only appears at the entry point to a method,
and is not reported at the exit point.

Figures 7 and 8 present constraints that characterize the
behavior of the following methods from the IMoney inter-
face in classes Money and MoneyBag respectively:

IMoney add(IMoney m) Addsa money m to this money.

IMoney addMoney (Money m) Adds asimple Money to this money.
IMoney addMoneyBag (MoneyBag s) AddsaMoneyBag to this money.
IMoney subtract (IMoney m) Subtracts a money m from this money.

IMoney multiply (int factor) Multiplies this money by the given
factor.

IMoney negate () Negates this money.

Turnip inferred its constraints by examining the runtime
classes of polymorphic variables. Daikon was not able to in-
fer most of the constraints because it only examined the de-
clared type of variables, ignoring the actual runtime classes
of polymorphic variables.

Even though in our experiments Daikon did not infer
the specified constraints for the multiply and negate
methods, dfej, the older front-end for Daikon described
in section 2, should have been able to detect them with an
appropriate annotation in the source code. It is possible to
insert dfe j’s annotation specifying the runtime class of the
returned objects for these two methods, because they always
return objects of the class in which they are declared(e.g.,



Method

Postcondition

Daikon

Turnip

IMoney add(IMoney m)

(m.class == MoneyBag & return.class == MoneyBag) =
m.fMonies[].sum - return.fMonies[].sum + this.fAmount ==

<

(m.class == MoneyBag & return.class == Money) =
(m.fMonies[].sum - return.fAmount + this.fAmount == 0)

(m.class == Money & return.class == MoneyBag) =
(m.fAmount - return.fMonies[].sum + this.fAmount == 0)

(m.class == Money & return.class == Money) =
(m.fAmount - return.fAmount + this.fAmount == 0)

IMoney addMoney(Money m)

(return.class == Money) =
(m.fCurrency == return.fCurrency)

(return.class == Money) =
(m.fAmount - return.fAmount + this.fAmount == 0)

(return.class == MoneyBag) =
(m.fAmount - return.fMonies[].sum + this.fAmount == 0)

NI N

IMoney addMoneyBag(MoneyBag s)

(return.class == MoneyBag) =
(s.fMonies[].sum - return.fMonies[].sum + this.fAmount == 0)

(return.class == Money) =
(s.fMonies[].sum - return.fAmount + this.fAmount == 0)

IMoney subtract(IMoney m)

(m.class == MoneyBag & return.class == Money) =
(m.fMonies[].sum + return.fAmount - this.fAmount == 0)

(m.class == Money & return.class == Money) =
(m.fAmount + return.fAmount - this.fAmount == 0)

IMoney multiply(int factor)

(return.class == Money) =
(return.fAmount == (this.fAmount * factor))

(return.class == Money) =

SRS I NG I G NG IR I O R N N AN S

IMoney negate() _

(return.fAmount == — this.fAmount)

Figure 7. Postconditions which reflect the behavior of IMoney interface methods implemented in the Money class.
return. fMonies[] . sum stands for the sum over the numerical representation of all members of array fMonies []. Check-
mark (y/) means that the corresponding constraint was detected, dash (—) means that the corresponding constraint was not detected.

Method Postcondition Daikon | Turnip
(m.class == MoneyBag & return.class == MoneyBag) =
(m.fMonies[].sum - return.fMonies[].sum + this.fMonies[].sum == 0)
(m.class == MoneyBag & return.class == Money) =
(m.fMonies[].sum - return.fAmount + this.fMonies[].sum == 0)
(m.class == Money & return.class == MoneyBag) =
(m.fAmount - return.fMonies[].sum + this.fMonies[].sum == 0)
(m.class == Money & return.class == Money) =
(m.fAmount - return.fAmount + this.fMonies[].sum == 0)
(return.class == MoneyBag) =
(m.fAmount - return.fMonies[].sum + this.fMonies[].sum == 0)
(return.class == Money) =
(m.fAmount - return.fAmount + this.fMonies[].sum == 0)
(return.class == MoneyBag) =
(s.fMonies[].sum - return.fMonies[].sum + this.fMonies[].sum == 0)
(return.class == Money) =
(s.fMonies[].sum - return.fAmount + this.fMonies[].sum == 0)
(m.class == MoneyBag & return.class == MoneyBag) =
(m.fMonies[].sum + return.fMonies[].sum - this.fMonies[].sum == 0)
(m.class == MoneyBag & return.class == Money) =
(m.fMonies[].sum + return.fAmount - this.fMonies[].sum == 0)
(m.class == Money & return.class == Money) =
(m.fAmount + return.fAmount - this.fMonies[].sum == 0)
(return.class == MoneyBag) =
(return.fMonies[].sum == (this.fMonies[].sum * factor))
(return.class == MoneyBag) =
(return.fMonies[].sum == — this.fMonies[].sum)

<

IMoney add(IMoney m)

IMoney addMoney(Money m)

IMoney addMoneyBag(MoneyBag s)

IMoney subtract(IMoney m)

IMoney multiply(int factor)

N O N O S S NG N NG NG B N I

IMoney negate()

Figure 8. Postconditions which reflect the behavior of IMoney interface methods implemented in the MoneyBag class.
return. fMonies [] . sum stands for the sum over the numerical representation of all members of array fMonies[].



negate () in the Money class always returns an object of
runtime class Money).

Daikon successfully inferred polymorphic constraints
for the addMoney method in the Money class. The suc-
cess in this particular case is explained by the dynamic
checks of method returns which are built into Daikon [7].
The implementation for the IMoney addMoney (Money
m) method in class Money returns a Money object if m
contains the same currency as the current money, and a
MoneyBag object in the other case. Daikon looks for dif-
ferent behavior in multiple return statements, in this case
the two return statements differ by the runtime class, en-
abling Daikon to infer polymorphic constraints. In gen-
eral, method return analysis in Daikon is not runtime class
specific and may not be able to produce polymorphic con-
straints in a more complicated case.

The Money example makes heavy use of polymorphism
which results in the increase of the running time used by
Turnip compared to Daikon to infer the constraints. Turnip
takes about twice as much time to infer constraints for the
Money example as Daikon (33.2 seconds for Turnip, 17.4
seconds for Daikon).

Let us note that although the runtime-refined cases pro-
duced by Turnip convey the specification for the IMoney
add (IMoney m) method, the sum derived variable does
not distinguish between different currencies. For ex-
ample, if we add a MoneyBag b, which contains 5
USD and 3 CHF, to a Money m, which represents 7
USD, the amount of USD in the returned MoneyBag r
is the sum of the amount of USD in b and m, which
is 12 USD. The amount of CHF in r is equal to the
amount of CHF in m and does not get added to anything.
The constraint specified via the sum derived variable for
this case is m.fMonies[].sum + this.fAmount
== return.fMonies[].sum, which does not reflect
that the addition occurred only with USD, but not with
CHF. Constraints involving the sum derived variable can
only specify relationships with the total sum of all cur-
rencies in a MoneyBag. A proper constraint relating the
amount of money in a particular currency X in the result-
ing MoneyBag return with the amount of money in
currency X in the input MoneyBag m and the amount of
money in currency X in the current Money (this) is as
follows (stated in OCL):

( m.class == MoneyBag & return.class == MoneyBag ) ==>
(return.fMonies[]->
select (fCurrency == this.fCurrency) .fAmount ==
this.fAmount +
m.fMonies[]->select (fCurrency==this.fCurrency) . fAmount)

Such constraints are too complex for Daikon’s current dy-
namic detection technique.

4.3. Database Query Engine Model

We also verified Turnip on a model that we extracted
from the query engine of a production quality database sys-
tem MIM [3]. MIM provides support for various finan-
cial queries, such as “SHOW Close of IBM WHEN Date
is 12/15/2005”.

Our tests exercised some queries from the original sys-
tem expressible in the language of our model. Our test
queries include such queries as “SHOW (Low of IBM +
High of IBM) * 0.5”, “SHOW Return of IBM” and “SHOW
Close of IBM + Return of IBM”.

The query engine creates an executable query based on
a parsed request. An executable query is a tree of nodes,
where each node is capable of returning its value for a par-
ticular date and time. In our model the time series is pre-
sented as an array of doubles and a date is represented as an
index into this array.

We extracted eight classes from the original query en-
gine. Our model supports addition (ExecAddOper),
multiplication (ExecMultOper) and negation
(ExecMinusOper) of entities, which can be of two
types: a constant (ExecConstant) and a relation column
(ExecRelationColumn). A relation column represents
a column, such as Close, of a relation, such as IBM. The
relationships among the classes are presented in figure 9.

The getValue (int idx) method in the abstract
class ExecNode is intended to return the value of
the current object at the specified date represented by
idx. The classes in the ExecNode hierarchy over-
ride the getValue (int idx) method to return the ap-
propriate value on the specified date. For example, the
ExecRelationColumn returns the value at idx of the
column of its relation, while the ExecAddOper returns
the sum of the value of its left node 1eft and its right node
right.

To reflect the logic of the getValue (int idx)
method we introduced a new variable into Daikon and
Turnip, which is the element at a particular position in an
array, e.g. vals [idx], where vals is an array, and idx
is an integer. The position is provided by a suitable integer
variable visible at the same program point as the array.

The constraints characterizing the behavior of the query
engine model inferred by Daikon and Turnip are summa-
rized in figure 10.

No polymorphic variables were used in the base query
classes, ExecConstant and ExecRelationColumn.
Both Daikon and Turnip had no trouble detecting that
the getValue method in class ExecConstant re-
turns the constant’s value and the same method in class
ExecRelationColumn returns the element at index
idx in its time series array.

Our test cases reflected only commonly used queries



Fxochocke

+ geatkalueTely srat) r double

ExecConstant

walue: double

+ getWaluelids int) : double

ExecRelstionColurn

+ getWaluelids :int): double

T
series

Exechinus Oper

ExecBinaryOper elam; ExecMode

left: ExecMode

fight: ExecHode + getWaluelidsz:int): double

1

Execfdd Oper

Exechult Oper

TimeSeries

+ getvaluelid: int) : double + getWalue(id« :int): double

wals: double]]

Figure 9. Database Query Engine Model Class Diagram

Class Postcondition Daikon | Turnip

ExecConstant return == this.value V4 v
ExecRelationColumn return == this.series.vals[idx] V4 Vi
(this.right.class == ExecRelationColumn & 3 N

ExecAddOper this.left.class == ExecRelationColumn) =

(return == (this.right.series.vals[idx] + this.left.series.vals[idx]))

(this.right.class == ExecRelationColumn &

ExecMultOper this.left.class == ExecConstant) =~ 4
(return == this.right.series.vals[idx] * this.left.value)

. (this.elem.class == ExecRelationColumn) =

ExecMinusOper (return + this.elem.series.vals[idx] == 0) B v

Figure 10. Postconditions for the getValue (int idx) method overriden by classes in the ExecNode hierarchy.

which did not cover all potential runtime classes for
the left and right nodes of the ExecAddOper
and ExecMultOper classes and the elem node of the
ExecMinusOper class. Therefore, Turnip only inferred
constraints for the runtime classes it encountered in the ex-
amined program runs. This is shown in figure 10.

Turnip inferred constraints characterizing the
behavior of the getValue (int idx) method
in the ExecAddOper, ExecMultOper and

ExecMinusOper classes for the runtime cases it
has examined. Daikon was not able to discover any of the
constraints for the ExecAddOper, ExecMultOper or
ExecMinusOper classes listed in figure 10 because it
examined only the declared types of their members which
in each case is ExecNode, an abstract class that does not

specify the behavior of its children.

5. Conclusions

We have demonstrated that examining polymorphic be-
havior results in better accuracy of dynamically inferred
specifications for object-oriented systems. Our proto-
type implementation for dynamic invariant detection with
runtime-refined cases, built upon Daikon, produced com-
pelling results for two real world systems. Both runtime-
refined specifications offer more precision and insight into
the behavior of the underlying system than the correspond-
ing specifications without polymorphic cases.

The limitations and drawbacks of the prototype imple-
mentation define our future work. The “noise” (reported



accidental or irrelevant properties) in Daikon’s output sug-
gests the use of static program analysis techniques to im-
prove the quality of the reported constraints. Using sym-
bolic evaluation to gain knowledge of the underlying source
code and abstract interpretation to narrow the search space
for dynamic analysis are promising lines of research. We
would also like to explore the feasibility of dynamically
detecting OCL-specified constraints [26] in object-oriented
systems.

The big picture of our future work involves automatically
discovering OCL constraints from code with the purpose of
presenting them on design models to specify valid behav-
ior. Designers or developers can then work with constraints
(add, modity, delete them) without the extra burden of hav-
ing to specify all of them by hand. OCL is a declarative lan-
guage [26], which allows the constraints from the model to
be easily evaluated, for instance, as an assert statement,
in the corresponding code to make sure that the specified re-
striction indeed holds. This is an ongoing effort that is part
of the Wyoming Programmers’ Workbench project.
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