
Extending Dynamic Constraint Detection with Polymorphic Analysis

Nadya Kuzmina and Ruben Gamboa∗

University of Wyoming
P.O. Box 3315

Laramie, WY 82071-3315
{nadya, ruben}@cs.uwyo.edu

Abstract

The general technique for dynamically detecting likely
invariants, as implemented by Daikon, lacks specific object-
oriented support for polymorphism. Daikon examines only
the declared type of a variable which prohibits it from ex-
amination of the runtime variables in the presence of poly-
morphism. The approach presented in this paper extends
the technique to consider the runtime type of a polymor-
phic variable, which may have different declared and run-
time types. The runtime behavior of a polymorphic vari-
able is captured by polymorphic constraints which have the
form of an implication with the name of the runtime class in
the antecedent. We demonstrate the improved accuracy of
the dynamically detected specification on the Money exam-
ple from the JUnit testing framework tutorial. Polymorphic
constraints are shown to reveal the specification of the run-
time behavior of the example.

1. Introduction

Our goal is to recover polymorphic constraints1 that pro-
vide insight into the runtime behavior of an object-oriented
system. Such constraints will aid developers in understand-
ing object-oriented code better. Turnip, our prototype im-
plementation for polymorphic constraint detection, is based
on Daikon (version 4.1.6), a dynamic invariant detection
tool developed with similar goals in mind.

Polymorphism is one of the challenges constraint detec-
tion tools need to address in object-oriented programs [11].
While true in procedural programming, the assumption that
the declared type of a variable defines its actual runtime be-
havior does not hold for object-oriented systems where in-

∗This material is based upon work supported by the National Science
Foundation under Grant No. NSF CNS-0613919.

1A constraint is called “invariant” in the Daikon literature. We are using
the term “constraint” to refer to properties of object-oriented, as opposed
to procedural, systems.

Figure 1. DisplayItem Example Class Dia-
gram

heritance and polymorphism come into play. Polymorphic
behavior requires examining the actual runtime type of a
program variable to grasp meaningful constraints on it.

The declared type of a polymorphic variable may not
fully characterize the variable’s behavior. For example, let
Circle and Rectangle be the subclasses of an abstract
class DisplayItem2 which has no declared fields, as
shown on figure 1. The resize(int amount) method
of a single DisplayItem variable will scale the radius
when applied to a Circle instance and the width and
height when applied to a Rectangle instance, but we
need to examine the fields of the different runtime instances
in the DisplayItem variable to state these properties
about the resize method.

Our approach demonstrates the feasibility of character-
izing polymorphic behavior by inferring polymorphic con-
straints for different runtime classes in Java. Our proto-
type implementation, Turnip, considers the fields of runtime
polymorphic variables in a way that yields runtime-refined
polymorphic constraints. Such constraints have the form of
an implication where the antecedent specifies a particular
runtime class and the consequent is a constraint on the fields

2This example is inspired by [5].

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

of the class. Consider the DisplayItem example. Sup-
pose the application is displaying a complex graphical com-
ponent which contains a DisplayItem figure as its
attribute. The user decides to adjust the size of the compo-
nent by amount, which causes the component to resize the
figure and redraw itself. Postconditions of the redraw
method of the component may be as follows:

(figure.class == Circle) ==>
(figure.radius == figure.radius@pre * amount)

(figure.class == Rectangle) ==>
(figure.width == figure.width@pre * amount)

The rest of this paper is organized as follows. The next
section describes the background on dynamic invariant de-
tection and attempted solutions related to our work. Sec-
tion 3 provides details on our approach and concludes with
its limitations. Section 4 presents and compares constraints
detected by Daikon and Turnip3 (our augmented version
of Daikon) on the Money example from the JUnit testing
framework tutorial. Finally, section 5 presents our conclu-
sions.

2. Background

Daikon [1], developed by Michael Ernst and his research
group, is a general and publicly available implementation
for dynamic invariant detection which captures constraints
as operational abstractions. A full description of Daikon
can be found in [9, 13].

Being a general purpose tool for a variety of languages,
Daikon does not provide specific object-oriented support
for polymorphism and inheritance. Daikon considers only
the declared type of a variable when instantiating proper-
ties. In the DisplayItem example, Daikon uses vari-
ables declared in the target program to construct proper-
ties to be checked. Given the declaration DisplayItem
figure, Daikon will not instantiate any properties on the
fields of figure because the DisplayItem class has
no declared fields. On the other hand, if we consider the
actual runtime class of figure, the figure.radius
field of the Circle class, and figure.width and
figure.height fields of the Rectangle class can be
used to instantiate properties.

Daikon used to provide a rudimentary solution to captur-
ing runtime behavior at the level of the Java front end. It is
known as the runtime-refined types mechanism in Daikon’s
older, deprecated front end for Java, dfej. Under the as-
sumption that a variable’s runtime value can be guaranteed
to be of one specific type, dfej allowed an annotation
specifying the refined type to be put before the correspond-
ing variable declaration as in /*refined type: Rectangle*/
DisplayItem figure; dfej would then treat figure as a

3To preserve the naming scheme of Daikon developers.

variable of class Rectangle. By the definition of poly-
morphism [4], the classes in one hierarchy are interchange-
able. The actual class of a variable is determined by the
runtime context and is not known beforehand. The anno-
tation mechanism does not account for polymorphic cases
when it is impossible to limit the runtime class of a variable
to only one particular class.

Another attempt to solve the problem that many classes
do not have fields that an invariant detector can examine is
presented by Daikon’s provision of pure methods. A pure
method is a read-only method which returns a value. How-
ever, this approach does not provide access to the fields of
the runtime class which often participate in desirable con-
straints. Therefore, the combination of pure methods with
runtime fields is most beneficial. More details are presented
in [12].

Csallner and Smaragdakis [6] explore the problem of
eliminating invariants that are inconsistent with the behav-
ioral subtyping principle for overriding methods in object-
oriented programs with the purpose of using the invariants
in automating reasoning tasks. In contrast, our approach
infers constraints on runtime types of a polymorphic vari-
able in an object-oriented system so that a human developer
gets a more accurate representation of the system’s runtime
behavior.

3. Dynamic Detection of Polymorphic Behavior

In this section we present our approach to inferring poly-
morphic behavior from data traces and its limitations.

3.1. Our Approach

Turnip examines the fields of runtime objects to iden-
tify runtime variable values in order to infer the constraints
that likely hold between them. In the presence of polymor-
phism, Turnip examines the actual runtime class of each
program variable to infer properties that likely hold for the
fields in the examined runtime class. We call such prop-
erties runtime-refined constraints. For example, consider
the DisplayItem figure variable. Examining the val-
ues of the figure.radius attribute when the runtime
class of figure is Circle yields relationships between
figure.radius and other visible variables at a particu-
lar program point.

Chicory is the front end for Daikon that instruments Java
classes when they are loaded by the JVM. Before the JVM
loads a class, Chicory creates a tree4 of the visible variables
at each program point. Each node in the tree represents a

4A tree is a good data structure that reflects the recursive nature of
variable nestings. For instance, the fields of an object take other objects as
values which expose their own fields, and so on.

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

variable in the target program and is responsible for retriev-
ing the runtime value of this variable.

After the tree is constructed, the JVM loads the class and
executes the target program. Each time the execution gets
to a program point, Chicory traverses the variable tree for
that program point and collects variable values from each
node. The variable values are stored into a data trace file for
further processing by Daikon.

We enabled Chicory to collect values for the fields of the
actual runtime classes of each polymorphic variable. The
system identifies a polymorphic variable as a variable de-
clared as a user-defined interface or a user-defined class
that has subclasses. The value of such a variable can be
an object of the declared parent class (if it is not abstract) or
an object of one of the subclasses. In the DisplayItem
example, Turnip correctly identifies a variable declared as
DisplayItem figure as a polymorphic variable. The
way we implement it in Chicory is to maintain a collec-
tion of class hierarchies based on the classes that have been
loaded by the JVM. Every time a subclass is being loaded, it
is added to the appropriate hierarchy tree by Chicory. This
mechanism allows Chicory to identify polymorphic vari-
ables as variables whose declared type is a member of one
of the hierarchies and is not a leaf.

Chicory uses variable abstraction to represent different
kinds of variables in a program. We introduced a new vari-
able abstraction, called a group variable, to represent poly-
morphic variables declared in the target program. The pro-
gram variable that underlies a particular group variable is
referred to as its base variable.

The group variable’s implementation is based on the
state design pattern [10], allowing it to alter its behavior
at run-time when the runtime class of the base variable
changes. The state of a group variable represents the cur-
rent runtime class of its base variable and is changed every
time the base variable changes its runtime class. A group
variable then delegates all value collecting activity to the
current state object.

We also modified the data collecting mechanism in
Chicory. During runtime, Chicory records the values ob-
served for a particular program point into a trace file, which
consists of two parts: the declarations part and the actual
data part. The declarations part contains declarations for all
variables present at the specified program point. The data
part records variable values observed during execution for
each program point. For a polymorphic variable, the dec-
larations part lists all fields that this variable could possibly
have for different runtime classes. The data part records
only the runtime class of a polymorphic variable and the
values observed for the fields of the runtime class.

We introduced a similar mechanism for reading in
values for polymorphic variables into Daikon’s backend.
This mechanism allows us to reuse the statistical jus-

tification mechanism built into Daikon for polymorphic
constraints. To account for the fact that a variable can
be of only one class at any given time, we prohibit
the construction of properties that result from combin-
ing fields of different runtime classes of the same base
variable. Thus for DisplayItem figure, we pro-
hibit property construction on both figure.radius and
figure.width variables (such as figure.radius
> figure.width, for example).

3.2. Comparative Analysis of Daikon and
Turnip

In this section we first analyze the space and time com-
plexities of Turnip compared to Daikon [13]. Next we argue
that our modifications do not result in the loss of constraints
given the same number of samples per program point. More
detailed analysis are provided in [12].

Let us consider a polymorphic variable A a. Let n be the
number of classes in the inheritance hierarchy of class A,
and let m be the maximum number of fields for classes in
the A-hierarchy. The number of variables that Turnip con-
siders for A a is upper bounded by n∗m. Therefore, there is
only a linear increase on the number of variables considered
by Turnip compared to the number of variables considered
by Daikon. Daikon’s analysis [13] suggests that the number
of potential constraints is cubic in the number of variables
in scope at a program point because constraints in Daikon
involve at most three variables. Thus in the worst case the
space complexity of Turnip is cubic in the size of the largest
inheritance hierarchy in a program. This is a crude upper
bound because in practice Turnip considers only the types
of a polymorphic variable that are observed at runtime as
opposed to the complete static inheritance hierarchy of the
variable. Also, as the Daikon community [8] suggests, most
of the constraints are falsified quickly and only a small num-
ber of constraints that are never falsified need to be checked
for all samples, so the constraint detection time is really lin-
ear in the small number of never-falsified constraints.

Another concern may be that Turnip fails to infer some
constraints that Daikon alone does. A simple argument
shows that this is not the case. Since Turnip observes the
superset of variables observed by Daikon, constraints in-
volving just the common variables will be observed with
the same frequency in Turnip as in Daikon. However, more
trials will be required to obtain the statistical significance of
polymorphic constraints.

3.3. Limitations

At the moment Turnip conceptually assumes that all in-
herited fields are used for specialized purposes in the sub-
classes. However, some inherited fields may serve the same

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

purpose in all subclasses. In this case a postprocessing step
may be used to propagate the constraints that conceptually
belong to the superclass from its subclasses. For example,
suppose class A has a field a and subclasses B and C. If
Q(a) holds for the runtime class B as well as for the run-
time class C then generalize that Q(a) holds for the runtime
class A.

Extensive hierarchies are prohibitive in terms of used re-
sources since the number of potential constraints is cubic in
the size of a hierarchy, as discussed in 3.2. Therefore, our
approach considers only user-defined hierarchies of classes.
For example, we are not refining variables declared as, say
Object.

Turnip processes more variables per program point than
Daikon does, which results in decreased performance and
more accidental properties reported by Turnip. This prob-
lem is related to the nature of dynamic constraint detec-
tion. It can be partially solved by disabling some properties,
and, perhaps, adjusting the statistical justification threshold.
Such fine-tuning mechanisms are built into Daikon.

4. Extended Examples

In this section we describe the Money and the Database
Query Engine Model examples which offer an insight into
the behavior of the systems that Daikon alone could not.

The JUnit [2] framework documentation contains the fol-
lowing example to help developers get started with writing
unit test cases. We will use this example to demonstrate
the improved precision in recovered specifications obtained
by introducing runtime-refined cases. The example repre-
sents arithmetic with multiple currencies. The system con-
sists of an interface IMoney and two classes, Money and
MoneyBag, implementing the IMoney interface, as pre-
sented in figure 2.

The Money class represents a quantity of money in a
particular currency. The amount is represented by a simple
int field amount. The currency is represented by a string
holding the ISO three letter abbreviation (e.g., “USD” and
“CHF”). The MoneyBag class stores different monies in
the Vector fMonies field.

To accommodate the logic of the Money example we
introduced a derived variable, the sum of all elements in
a java.util.List collection, into both Daikon and
Turnip. The sum is created if and only if there is a Java
annotation present before a java.util.List variable
declaration in the source code as in:

@daikon.chicory.ListOfNumbers
Vector fMonies;

To accommodate the sum, non-number classes are re-
quired to return their numeric representation from the
toNumber() method.

The Money example came with a set of unit tests. In
the experiment Daikon and Turnip were presented with the
respective outputs from the same runs of each unit test. The
summary of constraints that characterize the behavior of the
Money and MoneyBag classes with results for Daikon and
Turnip is presented in figures 3 and 4.

Before we turn to the results in figures 3 and 4, let us
consider the IMoney add(IMoney m) method in the
MoneyBag class which adds a money m to the current
money (this object). It presents an interesting case with
two polymorphic variables: the input parameter m and the
return object. Since both can have a runtime class of ei-
ther Money or MoneyBag, there are four runtime-refined
cases which Turnip outputs:

IMoney MoneyBag.add(IMoney m):::EXIT
// Constraint inferred by Daikon
return != null
// runtime-refined constraints inferred by Turnip
(m.class == MoneyBag & return.class == MoneyBag) ==>
(m.fMonies[].sum -

return.fMonies[].sum + this.fMonies[].sum == 0)
(m.class == MoneyBag & return.class == Money) ==>
(m.fMonies[].sum -

return.fAmount + this.fMonies[].sum == 0)
(m.class == Money & return.class == MoneyBag) ==>
(m.fAmount -

return.fMonies[].sum + this.fMonies[].sum == 0)
(m.class == Money & return.class == Money) ==>
(m.fAmount - return.fAmount + this.fMonies[].sum == 0)

All the runtime classes reported by Turnip for the
IMoney variables were encountered during the Money ex-
ample execution with the test cases provided. Turnip uses
dynamic analysis of variable values encountered during tar-
get program runs, making it impossible to infer properties
about the runtime classes that have not been seen during the
examined execution.

Written by Kent Beck and Erich Gamma, the implemen-
tation for the add method in Money and MoneyBag em-
ploys the double dispatch pattern, which means that the
method returns a new IMoney object, without modify-
ing the current one (this object). Turnip examined the
polymorphic behavior of both the input parameter m and
the return object, and the fields of this to produce
the runtime-refined constraints which reflect the fact that
the add method returns an IMoney that is the addition of
the money in the input parameter m to the current money.
Daikon, on the other hand, skips objects declared as inter-
faces using the assumption that interfaces do not have fields
and examines only the fields of the current object when in-
ferring constraints. With the double dispatch, the fields of
the current object do not change. Therefore, Daikon is not
able to infer any constraints for the add method except the
comparison of the returned object5 to null.

Figures 3 and 4 present constraints that characterize the
polymorphic behavior of the following methods from the

5The property m != null only appears at the entry point to a method,
and is not reported at the exit point.

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

Figure 2. Money Example Class Diagram

Method Postcondition Daikon Turnip

IMoney add(IMoney m)

(m.class == MoneyBag & return.class == MoneyBag)⇒ –
√

m.fMonies[].sum - return.fMonies[].sum + this.fAmount == 0
(m.class == MoneyBag & return.class == Money)⇒ –

√
(m.fMonies[].sum - return.fAmount + this.fAmount == 0)

(m.class == Money & return.class == MoneyBag)⇒ –
√

(m.fAmount - return.fMonies[].sum + this.fAmount == 0)
(m.class == Money & return.class == Money)⇒ –

√
(m.fAmount - return.fAmount + this.fAmount == 0)

IMoney addMoney(Money m)

(return.class == Money)⇒ √ √
(m.fCurrency == return.fCurrency)

(return.class == Money)⇒ √ √
(m.fAmount - return.fAmount + this.fAmount == 0)

(return.class == MoneyBag)⇒ √ √
(m.fAmount - return.fMonies[].sum + this.fAmount == 0)

IMoney addMoneyBag(MoneyBag s)

(return.class == MoneyBag)⇒ –
√

(s.fMonies[].sum - return.fMonies[].sum + this.fAmount == 0)
(return.class == Money)⇒ –

√
(s.fMonies[].sum - return.fAmount + this.fAmount == 0)

IMoney subtract(IMoney m) (m.class == MoneyBag & return.class == Money)⇒ –
√

(m.fMonies[].sum + return.fAmount - this.fAmount == 0)
(m.class == Money & return.class == Money)⇒ –

√
(m.fAmount + return.fAmount - this.fAmount == 0)

IMoney multiply(int factor) (return.class == Money)⇒ –
√

(return.fAmount == (this.fAmount * factor))

IMoney negate() (return.class == Money)⇒ –
√

(return.fAmount == – this.fAmount)

Figure 3. Postconditions which reflect the behavior of IMoney interface methods implemented in the Money class.
return.fMonies[].sum stands for the sum over the numerical representation of all members of array fMonies[]. Check-
mark (

√
) means that the corresponding constraint was detected, dash (–) means that the corresponding constraint was not detected.

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

Method Postcondition Daikon Turnip

IMoney add(IMoney m)

(m.class == MoneyBag & return.class == MoneyBag)⇒ –
√

(m.fMonies[].sum - return.fMonies[].sum + this.fMonies[].sum == 0)
(m.class == MoneyBag & return.class == Money)⇒ –

√
(m.fMonies[].sum - return.fAmount + this.fMonies[].sum == 0)

(m.class == Money & return.class == MoneyBag)⇒ –
√

(m.fAmount - return.fMonies[].sum + this.fMonies[].sum == 0)
(m.class == Money & return.class == Money)⇒ –

√
(m.fAmount - return.fAmount + this.fMonies[].sum == 0)

IMoney addMoney(Money m)

(return.class == MoneyBag)⇒ –
√

(m.fAmount - return.fMonies[].sum + this.fMonies[].sum == 0)
(return.class == Money)⇒ –

√
(m.fAmount - return.fAmount + this.fMonies[].sum == 0)

IMoney addMoneyBag(MoneyBag s)

(return.class == MoneyBag)⇒ –
√

(s.fMonies[].sum - return.fMonies[].sum + this.fMonies[].sum == 0)
(return.class == Money)⇒ –

√
(s.fMonies[].sum - return.fAmount + this.fMonies[].sum == 0)

IMoney subtract(IMoney m)

(m.class == MoneyBag & return.class == MoneyBag)⇒ –
√

(m.fMonies[].sum + return.fMonies[].sum - this.fMonies[].sum == 0)
(m.class == MoneyBag & return.class == Money)⇒ –

√
(m.fMonies[].sum + return.fAmount - this.fMonies[].sum == 0)

(m.class == Money & return.class == Money)⇒ –
√

(m.fAmount + return.fAmount - this.fMonies[].sum == 0)

IMoney multiply(int factor) (return.class == MoneyBag)⇒ –
√

(return.fMonies[].sum == (this.fMonies[].sum * factor))

IMoney negate() (return.class == MoneyBag)⇒ –
√

(return.fMonies[].sum == – this.fMonies[].sum)

Figure 4. Postconditions which reflect the behavior of IMoney interface methods implemented in the MoneyBag class.
return.fMonies[].sum stands for the sum over the numerical representation of all members of array fMonies[].

IMoney interface in classes Money and MoneyBag re-
spectively:
IMoney add(IMoney m) Adds a money m to this money.
IMoney addMoney(Money m) Adds a simple Money to this money.
IMoney addMoneyBag(MoneyBag s) Adds a MoneyBag to this money.
IMoney subtract(IMoney m) Subtracts a money m from this money.
IMoney multiply(int factor) Multiplies this money by factor.
IMoney negate() Negates this money.

Turnip inferred its constraints by examining the runtime
classes of polymorphic variables. Daikon was not able to in-
fer most of the constraints because it only examined the de-
clared type of variables, ignoring the actual runtime classes
of polymorphic variables.

Even though Daikon did not infer the specified con-
straints in our experiments for the multiply and negate
methods, dfej, the older front-end for Daikon described
in section 2, should have been able to detect them with an
appropriate annotation in the source code. It is possible to
insert dfej’s annotation specifying the runtime class of the
returned objects for these two methods, because they always
return objects of the class in which they are declared (e.g.,
negate() in the Money class always returns an object of
runtime class Money).

Daikon successfully inferred polymorphic constraints
for the addMoney method in the Money class. The suc-
cess in this particular case is explained by the dynamic
checks of method returns which are built into Daikon [7].
The implementation for the IMoney addMoney(Money

m) method in class Money returns a Money object if m
contains the same currency as the current money, and a
MoneyBag object in the other case. Daikon looks for dif-
ferent behavior in multiple return statements, in this case
the two return statements differ by the runtime class, en-
abling Daikon to infer polymorphic constraints. In gen-
eral, method return analysis in Daikon is not runtime class
specific and may not be able to produce polymorphic con-
straints in a more complicated case.

The Money example makes heavy use of polymorphism
which results in the increase of the running time used by
Turnip compared to Daikon to infer the constraints. Turnip
takes about twice as much time to infer constraints for the
Money example as Daikon (33.2 seconds for Turnip, 17.4
seconds for Daikon).

Let us note that although the runtime-refined cases pro-
duced by Turnip convey the specification for the IMoney
add(IMoney m) method, the sum derived variable does
not distinguish between different currencies. For ex-
ample, if we add a MoneyBag b, which contains 5
USD and 3 CHF, to a Money m, which represents 7
USD, the amount of USD in the returned MoneyBag r
is the sum of the amount of USD in b and m, which
is 12 USD. The amount of CHF in r is equal to the
amount of CHF in m and does not get added to anything.
The constraint specified via the sum derived variable for

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

this case is m.fMonies[].sum + this.fAmount
== return.fMonies[].sum, which does not reflect
that the addition occurred only with USD, but not with
CHF. Constraints involving the sum derived variable can
only specify relationships with the total sum of all cur-
rencies in a MoneyBag. A proper constraint relating the
amount of money in a particular currency X in the result-
ing MoneyBag return with the amount of money in
currency X in the input MoneyBag m and the amount of
money in currency X in the current Money (this) is as
follows (stated in OCL):
(m.class == MoneyBag & return.class == MoneyBag) ==>

(return.fMonies[]->select(fCurrency == this.fCurrency).fAmount ==

this.fAmount + m.fMonies[]->select(fCurrency==this.fCurrency).fAmount)

Such constraints are too complex for Daikon’s current dy-
namic detection technique.

We also verified Turnip on a model that we extracted
from the query engine of a production quality database sys-
tem MIM [3]. MIM provides support for various financial
queries. Our test queries included such queries as “SHOW
(Low of IBM + High of IBM) * 0.5” and “SHOW Close of
IBM + Return of IBM”.

The query engine creates an executable query based on
a parsed request represented as a tree of nodes. Each
node is capable of returning its value for a particular date.
We modeled nodes which support addition, multiplication
and negation of base entities which can be of two types:
a constant and a relation column. Each tree node inher-
its from the abstract class ExecNode which declares the
getValue(int idx) method whose purpose is to re-
turn the value of the current object at the specified date rep-
resented by idx. The classes in the ExecNode hierarchy
override the getValue(int idx) method to return the
appropriate value on the specified date.

Both Daikon and Turnip detected the characteristic con-
straints for the base entities because there is no need for
polymorphism in the case of the base entities. Polymorphic
variables were used for the tree nodes representing the op-
erations of addition, multiplication and negation. Turnip,
but not Daikon, succeeded in specifying the behavior of
the getValue(int idx) method for each of the opera-
tions. A full description of this example is available in [12].

5. Conclusions

Our experiments suggest that examining polymorphic
behavior results in better accuracy of dynamically inferred
specifications for object-oriented systems. Our proto-
type implementation for dynamic invariant detection with
runtime-refined cases, built upon Daikon, produced com-
pelling results for two non-trivial systems. Both runtime-
refined specifications offer more precision and insight into
the behavior of the underlying system than the correspond-

ing specifications without polymorphic cases.
The limitations and drawbacks of the prototype imple-

mentation define our future work. The “noise” (reported
accidental or irrelevant properties) in Daikon’s output sug-
gests the use of static program analysis techniques to im-
prove the quality of the reported constraints. Using sym-
bolic evaluation to gain knowledge of the underlying source
code and abstract interpretation to narrow the search space
for dynamic analysis are promising lines of research. We
are currently working on a version of a tool that may be
able to dynamically detect OCL-specified constraints [14]
in object-oriented systems.

References

[1] Daikon invariant detector. http://pag.csail.mit.
edu/daikon.

[2] Junit. http://www.junit.org.
[3] Xmim database server. http://www.lim.com.
[4] E. Baude. Software Design: From Programming to Archi-

tecture. Wiley, 2004.
[5] G. Booch. Object-oriented analysis and design with appli-

cations. Benjamin-Cummings, second edition, 1994.
[6] C. Csallner and Y. Smaragdakis. Dynamically discovering

likely interface invariants. In Proc. 28th International Con-
ference on Software Engineering, Emerging Results Track,
pages 861–864, May 2006.

[7] N. Dodoo, A. Donovan, L. Lin, and M. Ernst. Selecting
predicates for implications in program analysis, 2002.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Transactions on Software En-
gineering, 27(2):1–25, Feb. 2001.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Science of
Computer Programming, 2006.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[11] N. Kuzmina and R. Gamboa. Dynamic constraint detec-
tion for polymorphic behavior. In Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA
2006), Poster Track, Portland, OR, USA, October 22–26,
2006.

[12] N. Kuzmina and R. Gamboa. Extending dynamic constraint
detection with polymorphic analysis. Technical report, Uni-
versity of Wyoming Department of Computer Science tech-
nical report UWCS-07-01 (Laramie, WY), January 2007.

[13] J. H. Perkins and M. D. Ernst. Efficient incremental algo-
rithms for dynamic detection of likely invariants. In Pro-
ceedings of the ACM SIGSOFT 12th Symposium on the
Foundations of Software Engineering (FSE 2004), pages
23–32, Newport Beach, CA, USA, November 2–4, 2004.

[14] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

Fifth International Workshop on Dynamic Analysis (WODA'07)
0-7695-2963-1/07 $20.00 © 2007

