
Extending Dynamic Constraint
Detection with Polymorphic Analysis

Nadya Kuzmina and Ruben Gamboa

May 22, 2007
Department of Computer Science

University of Wyoming

Goal

Recover polymorphic constraints that provide insight into the
runtime behavior of an object-oriented system.
Turnip, our prototype implementation for polymorphic
constraint detection, is based on Daikon.

Polymorphism in Object-Oriented Languages

Object-oriented languages make extensive use of polymorphism.

Polymorphism means that the actual runtime type of a program variable
may be different from its declared type.

Polymorphic Behavior: DisplayItem Example

Polymorphic Behavior: DisplayItem Example (Cont’d)

// graphical component

DisplayItem figure ;
// resizing factor

i n t amount ;

// user adjusted the size

// of the component by amount

void redraw () {
. . .
f igure . resize (amount) ;
. . .

}

Polymorphic Behavior: DisplayItem Example (Cont’d)

// graphical component

DisplayItem figure ;
// resizing factor

i n t amount ;

// user adjusted the size

// of the component by amount

void redraw () {
. . .
f igure . resize (amount) ;
. . .

}

redraw():::EXIT
(figure.class == Circle) ==>
(figure.radius == figure.radius@pre * amount)
(figure.class == Rectangle) ==>
(figure.width == figure.width@pre * amount)
(figure.class == Rectangle) ==>
(figure.height == figure.height@pre * amount)

The Challenges of Polymorphism

The declared type of a polymorphic variable may not fully
characterize the variable’s behavior.
Polymorphic behavior requires examining the actual runtime
type of a program variable to grasp meaningful constraints on
it.

Daikon

Daikon is a general and publicly available implementation for
dynamic invariant detection, which was developed by Michael
Ernst at the University of Washington and is maintained by
Michael Ernst and his research group at MIT. [Ernst et al.]

Daikon and Polymorphism

Daikon considers only the declared type of a variable when
instantiating properties.
dfej used to provide a solution to capturing the runtime
behavior:

Assume that a variable’s runtime value can be guaranteed to
be of one specific type.
Specify the refined type via an annotation:
/*refined type: Rectangle*/ DisplayItem figure;

Meet Turnip

Turnip extends Daikon to examine the fields of runtime
objects to infer the constraints that likely hold between the
variables.
Turnip examines the actual runtime class of each
polymorphic program variable to infer the properties that
likely hold for the fields of the examined runtime class, which
we call runtime-refined constraints.
Example:
(figure.class == Circle) ==>

(figure.radius == figure.radius@pre * amount)

Turnip discovers the same constraints on common variables
as Daikon because Turnip analyzes a superset of Daikon’s
variables.

Implementation: Chicory Variable Tree

DisplayItem figure ;
i n t amount ;
void redraw () { . . .

f igure . resize (amount) ;
. . . }

Implementation: Turnip Variable Tree

DisplayItem figure ;
i n t amount ;
void redraw () { . . .

f igure . resize (amount) ;
. . . }

Results: Introducing the Money Example

The Money class represents a quantity of money in a particular currency. The MoneyBag class

represents a collection of monies in different currencies. [Beck and Gamma, 1998]

Constraints by both Daikon and Turnip

Turnip discovers the same constraints on common variables as
Daikon:

IMoney MoneyBag.addMoney(Money m):::EXIT
m.fAmount == orig(m.fAmount)
m.fCurrency == orig(m.fCurrency)
m.fAmount != 0
this.fMonies[].sum == orig(this.fMonies[].sum)
return != null

Constraints by Turnip but Not Daikon

Turnip (but not Daikon) discovered the following runtime-refined
constraints as postconditions:

IMoney MoneyBag.addMoney(Money m):::EXIT
(return.class == MoneyBag) ==>

(m.fAmount - return.fMonies[].sum + this.fMonies[].sum == 0)
(return.class == Money) ==>

(m.fAmount - return.fAmount + this.fMonies[].sum == 0)

Polymorphic Constraints for MoneyBag

Polymorphic Constraints for Money

Daikon’s Success with Money.addMoney Method

Daikon successfully inferred polymorphic constraints for the
addMoney method in the Money class.

IMoney Money.addMoney(Money m):::EXIT

(return.class == Money) ==>

(m.fCurrency == return.fCurrency)

(return.class == Money) ==>

(m.fAmount - return.fAmount + this.fAmount == 0)

(return.class == MoneyBag) ==>

(m.fAmount - return.fMonies[].sum + this.fAmount == 0)

Daikon’s Success with Money.addMoney Method (Cont’d)

Daikon successfully inferred polymorphic constraints for the
addMoney method in the Money class.

IMoney Money.addMoney(Money m):::EXIT

(return.class == Money) ==>

(m.fCurrency == return.fCurrency)

(return.class == Money) ==>

(m.fAmount - return.fAmount + this.fAmount == 0)

(return.class == MoneyBag) ==>

(m.fAmount - return.fMonies[].sum + this.fAmount == 0)

public class Money implements IMoney {
. . .
public IMoney addMoney(Money m) {

i f (m. currency () . equals (currency ()))
return new Money(amount ()+m. amount () , currency ()) ;

return MoneyBag. create (this , m) ;
}
. . .

}

Limitations

Turnip considers only user-defined hierarchies of classes.
More variables per program point result in slower
performance and more irrelevant properties than Daikon.
Turnip assumes that all inherited fields are used for
specialized purposes in the subclasses.

Conclusions and Future Work

Our results suggest that examining polymorphic behavior
results in better accuracy of dynamically inferred
specifications for object-oriented systems.
Our future work will explore the use of static program
analysis to improve the quality of the reported constraints.

Thank you!

Questions?

Daikon and Turnip: Comparative Analysis

?

