
Toward a Formal Evaluation of Refactorings

John Paul, Nadya Kuzmina,
Ruben Gamboa, and James Caldwell

Department of Computer Science
University of Wyoming

Laramie, Wyoming 82071-3315

Overview

1. Introduction

2. Methodology

3. Practical Considerations

4. Conclusion

Structural Design

Employee
-monthlySalary : Integer
-bonus : Integer
-commission : Integer
-type : Occupation
+getType() : Occupation
+payAmount() : Integer

≪enumeration≫
Occupation

ENGINEER
SALESMAN
MANAGER

*
⊳ describes

1

Constraints

I Object Invariants

context Employee inv:
this.monthlySalary > 0

I Method Invariants

context Employee::getType() : Occupation
pre: this.type = ENGINEER

post: return = ENGINEER

context Employee::getType() : Occupation
pre: true

post: return = this.type

Specification

I context Employee::payAmount(): Integer
pre: type=ENGINEER

post: return=this.monthlySalary

I context Employee::payAmount(): Integer
pre: type=SALESMAN

post: return=this.monthlySalary + this.commission

I context Employee::payAmount(): Integer
pre: type=MANAGER

post: return=this.monthlySalary + this.bonus

I context Employee::payAmount(): Integer
pre: true

post: orig(this.type) = this.type

I

Domains, Relations and Models

Employee={E0, E1}
Occupation={EN, SA, MA}
Integer={0, 1, 2, 3}

type={(E0, EN), (E1, SA)}
monthlySalary={(E0, 1), (E1, 2)}
commission={(E0, 1),(E1,1)}

payAmount={(E0,E0,1), (E1,E1,2)}

Employee={E0, E1}, Occupation={EN, SA, MA},
Integer={0, 1, 2, 3}
type={(E0, EN), (E1, SA)},
monthlySalary={(E0, 1), (E1, 2)},
commission={(E0, 1),(E1,1)}
payAmount={(E0,E0,1), (E1,E1,2)}

I context Employeee::payAmount(): Integer
pre: type=ENGINEER

post: return=this.monthlySalary

I context Employeee::payAmount(): Integer
pre: type=SALESMAN

post: return=this.monthlySalary + this.commission

I context Employee::payAmount(): Integer
pre: type=MANAGER

post: return=this.monthlySalary + this.bonus

I context Employee::payAmount(): Integer
pre: true

post: orig(this.type) = this.type

Implementation

public class Employee {
private int type,monthlySalary, commission, bonus;;

static final int ENGINEER = 0;
static final int SALESMAN = 1;
static final int MANAGER = 2;

public Employee (int type,int monthlySalary,int commission,int bonus)
{....}

public int payAmount() {
//pre

switch (type) {
case ENGINEER: return monthlySalary;

case SALESMAN: return monthlySalary + commission;

case MANAGER: return monthlySalary + bonus;

default: throw new RuntimeException("Unknown Occupation");
}
//post

}
}

Gathering Facts

I context Employee::payAmount(): Integer
pre: type = SALESMAN

post: return = monthlySalary + commission

Does Changing the Design Help?

Employee
-monthlySalary : Integer
-bonus : Integer
-commission : Integer
-type : EmployeeType
+getMonthlySalary : Integer
+getBonus : Integer
+getCommission : Integer
-setType (type EmployeeType)
+getType() : Occupation
+payAmount() : Integer

EmployeeType
-employee : Employee
+payAmount(): Integer
+getTypeCode(): Occupation

≪enumeration≫
Occupation

ENGINEER
SALESMAN
MANAGER

Engineer Manager Salesman

1
⊲ has type

⊳ for 1

1

*

▽ describes

Composition of Salesman with Employee

I context Salesman::getTypeCode(): Occupation
pre: true

post: return = SALESMAN

I context Salesman::payAmount(): Integer
pre: true

post: return=this.employee.getMonthlySalary() +
this.employee.getCommission()

I context Employee::getMonthlySalary(): Integer
pre: true

post: return = this.monthlySalary

I context Employee::getCommission(): Integer
pre: true

post: return = this.commission

Composition of Employee with Salesman

I context Employee::getType(): Occupation
pre: true

post: return = this.type.getTypeCode()

I context Employee::payAmount(): Integer
pre: true

post: return = this.type.payAmount()

I context Employee inv:
this.commission = this.type.employee.commission

I context Employee inv:
this.monthlySalary=this.type.employee.monthlySalary

Inference

We are close to drawing the desired conclusion

I context Employee::payAmount(): Integer
pre: this.getType() = SALESMAN

post: return = monthlySalary + commission

But we also must know

I context Manager::getTypeCode(): Occupation
pre: true

post: return = MANAGER

I context Engineer::getTypeCode(): Occupation
pre: true

post: return = ENGINEER

Formalizing a design D

I D is modelled as a first-order theory 〈Σ,R〉.
I Σ is a relational signature extracted from D.

I R is a set of Σ-sentences describing D’s behavior.

I S expresses what it means for D to be correct
I A set of Σ-sentences

I Specification

Comparing D with D ′

I Construct σ : Σ → Σ′ by hand.
I Translate every ψ ∈ S

I D ′ is better verifiable than D w.r.t. ψ ∈ S if

R′ |= σ(ψ), but R 6|= ψ

Our Prototype

Practical Considerations

I Many facts are required to do a proof.

I There are many more irrelevant facts.

I Proofs require a careful selection and combination of facts.

I We want an automated process.

number of number of
assertion number of checked checked
kind assertions assertions assertions

for D for D ′

on fields 4 4 (100%) 4 (100%)
on payAmount 7 4 (57%) 7 (100%)
on getType 4 4 (100%) 4 (100%)
total 15 12 (80%) 15 (100%)

Comparative evaluation of designs D and D ′ of the Employee
example by Daikon.

Questions?

