Toward a Formal Evaluation of Refactorings

John Paul, Nadya Kuzmina,
Ruben Gamboa, and James Caldwell

Department of Computer Science
University of Wyoming
Laramie, Wyoming 82071-3315



Overview

Ll

Introduction
Methodology
Practical Considerations

Conclusion



Structural Design

Employee

-monthlySalary : Integer
-bonus : Integer
-commission : Integer
-type : Occupation

<enumerations
Occupation

+getType() : Occupation
+payAmount() : Integer

< describes

1 'ENGINEER

SALESMAN
MANAGER




Constraints

» Object Invariants

context

Employee inv:

this.monthlySalary > O

» Method Invariants

context
pre:
post:

context
pre:
post:

Employee::getType ()
this.type = ENGINEER
return = ENGINEER

Employee::getType ()
true
return = this.type

Occupation

Occupation



Specification

> context Employee::payAmount (): Integer
pre: type=ENGINEER
post: return=this.monthlySalary

> context Employee::payAmount (): Integer
pre: type=SALESMAN
post: return=this.monthlySalary + this.commission

> context Employee::payAmount (): Integer
pre: type=MANAGER
post: return=this.monthlySalary + this.bonus

> context Employee::payAmount (): Integer
pre: true
post: orig(this.type) = this.type



Domains, Relations and Models

Employee={EQ, E1}
Occupation={EN, SA, MA}
Integer={0, 1, 2,3}

type={(EO, EN), (E1, SA)}
monthlySalary={(EO, 1), (E1, 2)}
commission={(EO0, 1),(E1,1)}

payAmount={(EO,E0,1), (E1,E1,2)}



Employee={EOQ, E1}, Occupation={EN, SA, MA},
Integer={0, 1,2, 3}

type={(EO, EN), (E1, SA)},
monthlySalary={(EO, 1), (E1, 2)},
commission={(EO, 1),(E1,1)}
payAmount={(EO,E0,1), (E1,E1,2)}

> context Employeee::payAmount (): Integer
pre: type=ENGINEER
post: return=this.monthlySalary

» context Employeee::payAmount () : Integer
pre: type=SALESMAN
post: return=this.monthlySalary + this.commission

> context Employee::payAmount (): Integer
pre: type=MANAGER
post: return=this.monthlySalary + this.bonus

> context Employee::payAmount (): Integer
pre: true
post: orig(this.type) = this.type



Implementation

public class Employee {
private int type,monthlySalary, commission, bonus;;

static final int ENGINEER = 0;
static final int SALESMAN = 1;
static final int MANAGER = 2;

public Employee (int type,int monthlySalary, int commission, int bonus

(...}

public int payAmount () {
//pre
switch (type) {
case ENGINEER: return monthlySalary;

case SALESMAN: return monthlySalary + commission;
case MANAGER: return monthlySalary + bonus;

default: throw new RuntimeException ("Unknown Occupation");
}
//post
}

u]
o)
I
i
it




Gathering Facts

> context Employee::payAmount (): Integer
pre: type = SALESMAN
post: return = monthlySalary + commission



Does Changing the Design Help?

<enumeration
Occupation
ENGINEER 1
SALESMAN
MANAGER
Employee -
-monthlySalary : Integer v describes
-bonus : Integer
-commission : Integer EmployeeType
-type : EmployeeType > has type -employee : Employee *

+getMonthlySalary : Integer
+getBonus : Integer
+getCommission : Integer
-setType (type EmployeeType)
+getType() : Occupation
+payAmount() : Integer

1 < for 1~ +payAmount(): Integer
+getTypeCode(): Occupation

Engineer Manager Salesman \




Composition of Salesman with Employee

> context Salesman::getTypeCode(): Occupation
pre: true
post: return = SALESMAN

> context Salesman::payAmount (): Integer
pre: true
post: return=this.employee.getMonthlySalary () +
this.employee.getCommission ()

> context Employee::getMonthlySalary(): Integer
pre: true
post: return = this.monthlySalary

> context Employee::getCommission(): Integer
pre: true
post: return = this.commission



Composition of Employee with Salesman

» context Employee::getType(): Occupation
pre: true
post: return = this.type.getTypeCode ()

> context Employee::payAmount (): Integer
pre: true
post: return = this.type.payAmount ()

> context Employee inv:
this.commission = this.type.employee.commission

> context Employee inv:
this.monthlySalary=this.type.employee.monthlySalary



Inference

We are close to drawing the desired conclusion

> context Employee::payAmount (): Integer
pre: this.getType () = SALESMAN
post: return = monthlySalary + commission

But we also must know

> context Manager::getTypeCode (): Occupation
pre: true
post: return = MANAGER

> context Engineer::getTypeCode(): Occupation
pre: true
post: return = ENGINEER



Formalizing a design D

» D is modelled as a first-order theory (¥, R).

» 3 is a relational signature extracted from D.

» R is a set of X-sentences describing D's behavior.

» S expresses what it means for D to be correct
» A set of X-sentences

» Specification



Comparing D with D’

» Construct o : ¥ — Y/ by hand.
» Translate every ¢p € S

» D' is better verifiable than D w.r.t. ¢ € S if

R’ o(y), but R} 4



Our Prototype

-

Alloy Model of the
Target Program

E A
Representation

Java source | |ranslation
code

Human
operator

Auto

Recovered Translation
constraints

(Alloy signatures)

Essential Specification
(Alloy assertions)

Constraints on the
Behavior

(Alloy facts)

Allcy
Analyzer

valid
assertions

invalid
assertions




Practical Considerations

» Many facts are required to do a proof.
» There are many more irrelevant facts.
» Proofs require a careful selection and combination of facts.

» We want an automated process.



number of number of

assertion number of  checked checked
kind assertions  assertions  assertions
for D for D'
on fields 4 4 (100%) 4 (100%)
on payAmount 7 4 (57%) 7 (100%)
on getType 4 4 (100%) 4 (100%)
total 15 12 (80%) 15 (100%)

Comparative evaluation of designs D and D’ of the Employee
example by Daikon.



Questions?



