
Automatic Differentiation in ACL2

Peter Reid1 and Ruben Gamboa2

1 University of Oklahoma, Norman, OK, USA,
peter.d.reid@gmail.com

http://www.cs.ou.edu
2 University of Wyoming, Laramie, WY, USA

ruben@uwyo.edu

http://www.cs.uwyo.edu/~ruben

Abstract. In this paper, we describe recent improvements to the the-
ory of differentiation that is formalized in ACL2(r). First, we show how
the normal rules for the differentiation of composite functions can be
introduced in ACL2(r). More important, we show how the application
of these rules can be largely automated, so that ACL2(r) can automat-
ically define the derivative of a function that is built from functions
whose derivatives are already known. Second, we show a formalization
in ACL2(r) of the derivatives of familiar functions from calculus, such as
the exponential, logarithmic, power, and trigonometric functions. These
results serve as the starting point for the automatic differentiation tool
described above. Third, we describe how users can add new functions
and their derivatives, to improve the capabilities of the automatic differ-
entiator. In particular, we show how to introduce the derivative of the
hyperbolic trigonometric functions. Finally, we give some brief highlights
concerning the implementation details of the automatic differentiator.

Key words: ACL2, nonstandard analysis, automatic differentiation

1 Introduction

ACL2(r) is a variant of the theorem prover ACL2 that offers support for reason-
ing about the irrational real and complex numbers via nonstandard analysis [8].
Since its logic is strictly first order and the theorem prover has only limited
support for quantifiers, ACL2 would not appear to be a good candidate for rea-
soning about real analysis. However, by introducing key concepts from nonstan-
dard analysis, such as “classical,” “standard part,” and the transfer principle,
ACL2(r) extends ACL2 just enough to take advantage of its strong support for
induction, which serves a key role in arguments using nonstandard analysis.

As a result, many results from real analysis have been formalized in ACL2,
including the fundamental theorem of calculus [10] and several results having to
do with differentiability [6, 7]. However, much of this work is foundational in na-
ture, while the intended use of ACL2(r) is to support reasoning about real-world
software whose correctness relies on facts from basic engineering mathematics.

2 Peter Reid and Ruben Gamboa

In this paper, we describe recent results that greatly expand the usefulness
of ACL2(r) when reasoning about functions and their derivatives. In Sect. 3, we
present a new ACL2(r) “event” that lets the user introduce a function that is
the derivative of an old function. For example, the derivative of

√
1 + x2 can be

introduced with the definition

(defderivative sqrt-1+x**2-derivative

(acl2-sqrt (+ 1 (* x x))))

The event derivative symbolically differentiates the given expression and de-
fines the corresponding function. It also proves the theorems that assert that
the new function is indeed the derivative of the old one. The implementation
of defderivative relies on metatheorems formalizing the familiar algebraic dif-
ferentiation rules, such as (f + g)′(x) = f ′(x) + g′(x). This is similar to the
approach used in [7], but with one key difference. The proof obligations required
by the metatheorems in [7] are too unwieldy to be automated successfully. In
Sect. 4, we present a different formalization that is much easier to automate
when the derivative is known, as is the case when it is discovered using the alge-
braic differentiation rules. Of course, algebraic differentiation rules are of little
use without a priori knowledge of some derivatives, i.e., a database of known
derivatives. In Sect. 5, we show how the derivatives of many useful functions
from calculus are formalized in ACL2(r). In particular, the exponential function
had been defined in ACL2(r) since it was first developed, but its derivative was
never determined. We report in this paper our recent formalization of this result
in ACL2(r). Moreover, we use this result to find the derivatives of other func-
tions, including the trigonometric functions. Finally, in Sect. 6, we show how a
user can extend the database of known derivatives by proving a derivative fact,
perhaps from first principles. In particular, we show how the user can introduce
the hyperbolic trigonometric functions and their derivatives.

2 Related Work

Finding the derivative of functions is a task that has many applications, such as
optimization and sensitivity analysis. Consequently, many researchers have tack-
led the problem of automatically finding the derivative of a function expressed
as a computer program. In fact, automatic differentiation (AD) is an established
research area [1, 4, 9, 5].

The approach used in AD is to compute the derivative of a program by exam-
ining the program statically. That is, the program’s source code is transformed
so that it can compute not only the original function, but also its derivative.
This can be done either by using overloaded operators (in languages that sup-
port them), or by using preprocessing techniques to produce a new function.
Naturally, this means that most solutions are program-specific, e.g., ADIC for C
programs [3] and ADIFOR for FORTRAN programs [2], which use similar ideas
but with different implementations.

Automatic Differentiation in ACL2 3

Our interest is in finding the derivatives of functions expressed as programs
in Common LISP. To that extent, our work is related to that in [11]. However,
our primary interest is in automatically finding the proof that the derivative is
correct, not just in finding the derivative. The techniques described in [11] go
far beyond the work described in this paper as far as automatic differentiation,
e.g., handing general derivatives of multivariate functions f : Rn → Rm. But
the emphasis there is in programming, not proving formal correctness using an
automated theorem prover.

In spirit, our work has more in common with [12]. There, the concept of
proof-carrying codes is applied to the AD transformations. The result is that
the AD tool can produce a certificate that can be verified by a formal tool, thus
establishing that the transformed function correctly computes the derivative of
the input function. Our approach is quite different from that in [12] in that
we are working with functional programs written in Common LISP, instead of
abstract programs in a Hoare-style WHILE language.

3 Introducing the Defderivative Event

We begin our presentation by showing how defderivative looks to the end user.
Consider the expression

√
1 + x2, and suppose that the user wants to introduce

its derivative in ACL2(r). This is trivial to do with defderivative:

(defderivative sqrt-1+x**2-derivative

(acl2-sqrt (+ 1 (* x x))))

Defderivative introduces the function sqrt-1+x**2-derivative, with a def-
inition that is, of course, equivalent to x/

√
1 + x2. This definition is computed

automatically using symbolic differentiation. Defderivative also introduces
the theorem sqrt-1+x**2-derivative-proof-obligation that shows that this
function is, in fact, the derivative of

√
1 + x2. This theorem is equivalent to the

following ACL2(r) statement:

(defthm sqrt-1+x**2-derivative-proof-obligation

(implies (and (acl2-numberp x)

(realp (+ 1 (* x x)))

(< 0 (+ 1 (* x x)))

(acl2-numberp y)

(realp (+ 1 (* y y)))

(< 0 (+ 1 (* y y)))

(standardp x)

(i-close x y)

(not (equal x y)))

(i-close (/ (- (acl2-sqrt (+ 1 (* x x)))

(acl2-sqrt (+ 1 (* y y))))

(- x y))

(* (/ 1/2 (acl2-sqrt (+ 1 (* x x))))

(+ 0 (+ (* x 1) (* x 1)))))))

4 Peter Reid and Ruben Gamboa

The hypotheses in the theorem are formed by combining the hypotheses re-
quired by each of the various composition rules applied during symbolic dif-
ferentiation. It is evident that this combination is “blind,” as many of the hy-
potheses are trivially true. The expression that defines the derivative is also
raw. I.e., it is formed by blindly following of the composition rules. This is why
we used the phrase “equivalent to” above, when referring to the definition of
sqrt-1+x**2-derivative. We have experimented with using ACL2’s rewriter
to simplify the body of the derivative, but we have found that the simplified
(according to ACL2) form rarely corresponds to the user’s expectation. For ex-
ample, ACL2(r) simplifies the term above to the following

(+ (* 1/2 x (/ (acl2-sqrt (+ 1 (* x x)))))

(* 1/2 x (/ (acl2-sqrt (+ 1 (* x x))))))

So we have found it better in practice to leave the formula discovered by auto-
matic differentiation as is, and let the user provide a simpler definition, if she
wishes. Typically, ACL2(r) can prove that these definitions are equivalent, so
the function defined by the user is also shown to be the derivative of the origi-
nal function. In this way, the user can choose the definition used, but avoid the
tedious steps required to prove that it is the actual derivative. It is important to
note that it is usually much easier to prove that these two functions are equal
than to show that they are the derivative of the original function! For example,
ACL2(r) can prove the following with completely automatically:

(equal (* (/ 1/2 (acl2-sqrt (+ 1 (* x x))))

(+ 0 (+ (* x 1) (* x 1))))

(/ x (acl2-sqrt (+ 1 (* x x)))))

In turn, that makes it trivial to simplify the derivative of
√

1 + x2, so that it
matches the user’s expectations:

(defthm sqrt-1+x**2-derivative-clean

(implies (and (realp x)

(realp y)

(standardp x)

(i-close x y)

(not (equal x y)))

(i-close (/ (- (acl2-sqrt (+ 1 (* x x)))

(acl2-sqrt (+ 1 (* y y))))

(- x y))

(/ x (acl2-sqrt (+ 1 (* x x))))))

:hints (("Goal" :use (:instance

sqrt-1+x**2-derivative-proof-obligation))))

Notice that we have simplified not only the formula for the derivative, but also
the hypotheses.

Automatic Differentiation in ACL2 5

4 The Implementation of Defderivative

4.1 Finding the Derivative

Defderivative can differentiate a function that is defined according to the fol-
lowing forms, where the derivative is taken with respect to the variable x:

– The identity function, i.e., x.
– A constant. This can take be a literal number, a variable other than x, or a

function of zero arguments.
– Addition, i.e., f(x) + g(x).
– Multiplication, i.e., f(x)× g(x).
– Composition, i.e., f(g(x)).
– Functional inverse, i.e., f−1(x).

In these forms, f and g are either functions whose derivatives have been previ-
ously defined, or formulas that defderivative can derive recursively.

The list of forms does not include subtraction or division. This is because
ACL2 defines these operations by using the corresponding inverses. So f − g is
really handled as f+(−g), and we treat (−g) as the composition of the functions
unary minus and g. Once the derivatives of unary minus and unary division (i.e.,
the multiplicative inverse) are known, defderivative handles subtraction and
division through the functional composition rule.

As defderivative computes the derivative of functions defined using any of
the given forms, is also proves the theorems that establish that the new expres-
sion is the derivative of the given function. We refer to these theorems as the
derivative theorems. The most important of these theorems relates the function’s
differential between two i-close points to its derivative, which captures the non-
standard notion of derivative. Letting F be the function, F-PRIME its derivative
as found using symbolic differentiation, and DOMAIN-P the domain over which F

is defined and is differentiable, this theorem takes the following form:

(implies (and (DOMAIN-P x)

(DOMAIN-P y)

(standardp x)

(i-close x y)

(not (equal x y)))

(i-close (/ (- (F x) (F y))

(- x y))

(F-PRIME x)))

The remaining six derivative theorems play supporting roles.
Readers familiar with ACL2(r) may notice that the formal statement of dif-

ferentiability given above differs from the one used in prior formalizations. There
are two important differences:

– In earlier work, we separated the notions of derivative and differentiability.
So the definition of differentiability was stated entirely in terms of F and not

6 Peter Reid and Ruben Gamboa

F-PRIME. The notions are equivalent, of course, but in the context of this
work, the formal statement above is much more convenient, since we already
have F-PRIME.

– The predicate DOMAIN-P describes the domain over which F is differentiable.
In earlier work, we used intervals to define this domain. This has the advan-
tage that we can quantify over intervals in a first-order logic, like ACL2’s.
However, treating this domain as a function makes it easier to automate the
process of defining the appropriate domain over which the algebraic differ-
entiation rules are applicable, e.g., such as f(x) 6= 0.

For functions defined according to the forms described above, a calculus text
would prescribe applying differentiation rules such as the sum rule, the product
rule, and the chain rule. Each of these rules expresses the derivative of the whole
(f and g composed) in terms of the derivative of its parts (f and g individu-
ally). I.e, these correspond to theorems involving general functions—higher order
logic. A first-order logic, ACL2(r) does not deal in higher-order logic directly,
but theorems such as these can be proved using ACL2(r)’s encapsulate feature.
An encapsulate invocation lists function signatures followed by assumptions that
describe how those functions behave. These assumptions are referred to as con-
straints. Proofs about the encapsulated functions can be constructed using the
encapsulated assumptions. Finally, concrete functions can be substituted into
those encapsulated function signatures in whatever proofs were constructed, as
long as the encapsulated assumptions can be shown to hold given the same as-
sumptions, which become proof obligations from the perspective of the concrete
function.

The algebraic differentiation rules are encapsulated as follows. The encapsu-
lated functions are

– f , its derivative, and its domain;
– g, its derivative, and its domain; and
– the composed function (e.g., f + g), its derivative, and its domain.

The constraints in the encapsulate are as follows:

– f satisfies the derivative theorems.
– g satisfies the derivative theorems.
– The composed function is related to f and g in some way. For example, the

sum rule is encapsulated using the constraint

(equal (f+g x)

(+ (f x) (g x))

– The derivative of the composed function is related to f , g, and their deriva-
tives in some way. For example, in the sum rule, the constraint has the form

(equal (f+g-prime x)

(+ (f-prime x) (g-prime x)))

Automatic Differentiation in ACL2 7

– The composed function is “type-safe.” I.e., when the composed function (e.g.,
f+g) is evaluated on a number in its domain, its value depends on the value
of the functions f and g applied to numbers on their respective domains.

Using these assumptions, the composition books proceed to prove the deriva-
tive theorems about the composed function. When the derivative of a specific
composition needs to be proved, these theorems can be instantiated with the
specific functions f and g.

This work is similar to the composition rules presented in [7]. In fact, origi-
nally we tried to use the compositions theorems from [7], but we discovered that
these were not amenable to automation. One problem was that the existing the-
orems allowed differentiation over a single interval. But that made it impossible
to reason automatically about the derivative of tangent, for example. Another
problem was in ease of application. The composition theorems in [7] never state
the derivative except as the standard part of a small differential. This introduces
complexity, since that small differential needs to be shown to behave as a deriva-
tive should. The new composition theorems take an expression for the derivative
explicitly, which greatly simplifies their proofs. This comes at virtually no cost
to defderivative, since it already computes expressions for the derivative.

4.2 Proof Structure

Composition rules are useful, but putting them together to verify the derivative
of a complicated function can be prohibitively tedious. Each function applica-
tion in the expression being differentiated requires several dozen lines of carefully
written theorems to instantiate the appropriate compositions, adding up to hun-
dreds of lines of proof for a typical expression. The root cause of this fact is that
ACL2 has little support for higher-order functions and requires that virtually
every step of a higher-order proof be explicitly pointed out to it. Fortunately,
macros provide a way out. Defderivative composes the theorem code that the
user otherwise would have had to and submits it to ACL2, making differenti-
ation take a few lines rather than a few hundred. At the heart of the system
is a function, named differentiate-fn, which we have added to the theorem
prover. Its signature is (roughly) as follows: Inputs:

1. Function expression. For example, this could be (acl2-sqrt (+ 1 (* x

x))).
2. Derivative name. This is the name of derivative function, and is also serves

as a prefix for the derivative theorems.

Outputs:

1. A proof of the derivative theorems.
2. The function’s derivative.
3. The function’s domain.

Recall that there are several forms that a differentiable expression can take.
There is a branch for each case in differentiate-fn. The first two cases, where

8 Peter Reid and Ruben Gamboa

the expression to differentiate is x or a fixed number, are relatively trivial to im-
plement. Differentiate-fn simply returns a canned proof of the appropriate
theorems, renamed according to the prefix requested, along with a canned deriva-
tive (1 or 0, respectively) and domain. The other cases are more interesting. The
proofs they return take the following form.

1. Prove (recursively) the derivative theorems about f .
2. Prove (recursively) the derivative theorems about g.
3. Disable all theorems, except the derivative theorems of f and g. This allows

us to limit ACL2’s proof search, so that we can automate the rest of the
proof.

4. Instantiate the appropriate algebraic differentiation theorems to prove the
derivative theorems of the composite function.

5. These derivative theorems are the only ones introduced by differentiate-fn.

In short, these proofs recursively verify the derivative of the two functions
being composed and then combine those proofs by instantiating some of the
composition proofs discussed in section 4.

The derivative of a function is automatically recognized if the function has
been registered with defderivative. For a function to be registered, defderivative
must be informed of that function’s derivative and its domain and provided with
the seven proofs showing its correctness. Using defderivative to differentiate
a function automatically registers it. In the following sections, we will describe
how the original set of functions are registered, and how the user can register
new functions.

We conclude this section with a simple example that shows defderivative

in action. Imagine that acl2-sqrt has been registered and defderivative is
then asked to differentiate (acl2-sqrt (+ x 3)). First, defderivative will
use the proofs, provided on registration, concerning acl2-sqrt, its derivative,
and its domain to fill in the first recursive section of the proof structure; this is
simply a matter of renaming those proofs. Second, defderivative will recur-
sively differentiate (+ x 3). This will use the differentiation rules for sum, with
f(x) = x and g(x) = 3, and these functions will be differentiated recursively.
Of course, their derivatives are trivial to compute, so defderivative combines
them to find the derivative of (+ x 3). Finally defderivative will use the
theorems about the derivative of f ◦ g(x), using f =

√
x and g = x+ 3.

5 The Path to Elementary Functions

In this section, we will describe how we have seeded defderivative with the
derivatives of several functions from elementary calculus. This list includes xn,
ex, the natural logarithm,

√
x, sine, cosine, arcsine, arccosine, and arctangent.

Other functions, such as tangent, can be derived automatically with defderivative,
since they are defined using elementary operations over the built-in functions,
e.g., tan(x) = sin(x)/ cos(x). The proof effort required to establish the deriva-
tives of these functions was significant. Fig. 1 shows how the proofs are based
on one another.

Automatic Differentiation in ACL2 9

In tackling these proofs, we used three different approaches. The first was
proving the derivative from first principles, i.e., algebraic manipulation of the
differential into an expression that approaches the derivative as the difference
becomes small. The second approach was using earlier, simpler proofs to boot-
strap later ones. For example, because ACL2(r) defines sine and cosine in terms
of exponentials, one can use defderivative to differentiate sine’s definition and
then show that the derivative is cosine. Proofs with these approach tended to be
trivial. The third approach was to use defderivative to differentiate functions
that are defined as the inverse of a differentiable function, e.g., ln(x).

acl2-asin acl2-acosacl2-atan

unary-/acl2-exp

acl2-sine acl2-cosineacl2-ln

acl2-sqrt acl2-tangent

unary--

Fig. 1. Dependency graph of the functions built into defderivative. Symbols leading
into a function represent how its derivative theorems were proved.

As the figure suggests, the most difficult proof was the derivative of ex. In
some settings, this is a trivial result. For example, some calculus books show
that the derivative of ax is proportional to ax, then define e as the unique
real number such that the proportion is equal to 1. Others start by defining ex

using its Taylor expansion, then observe that this infinite polynomial is its own
derivative. But neither of this options were open to us. The function ex is defined
in ACL2(r) indirectly, using partial Taylor sums and the nonstandard transfer
principle. Moreover, ax is defined in terms of ex. So we had to follow a more
direct approach.

To find the proof, we examined the value of the differential, e
x+∆x−ex
∆x . Using

the law of exponents, this reduces to ex e
∆x−1
∆x . When x is standard, so is ex, so

it is sufficient to show that e∆x−1
∆x ≈ 1, i.e., is close to 1.

10 Peter Reid and Ruben Gamboa

Proving that lemma was the biggest challenge. First, we defined f(x) =∑N
k=0

xk

(k+2)! . Then we showed that this series converged. That is, we shoed that

the partial sums are limited whenever x is limited, by comparing the partial sums
with the Taylor expansion of ex, which we had already shown converges. Since
f converges, we can use the transfer principle to define the function g(x) =
∗f(x), the unique standard function that f converges to pointwise. It follows

from the transfer principle and the definitions of g and ex that e∆x−1
∆x = 1 +

∆x · g(∆x). Finally, we show that whenever ∆x ≤ 1, ||g(∆x)|| ≤ ||g(1)|| and
therefore limited. So when ∆x is infinitesimal, so is ∆x · g(∆x), and it follows

that e∆x−1
∆x = 1 +∆x · g(∆x) ≈ 1.

6 Adding New Derivative Facts: Hyperbolic
Trigonometric Functions

In this section, we show how a user can differentiate expressions involving a func-
tion that is not among those already registered with defderivative. To register
a new function with defderivative, there are essentially two steps. First, the
derivative theorems must be proved about that function. Second, defderivative
must be informed of the new function, its derivative, its domain, and the asso-
ciated proofs through a call to def-elem-derivative. This section provides an
example of going through that process.

This example, in which we make defderivative able to differentiate hyper-
bolic sine and cosine, uses a bootstrapping approach. The hyperbolic functions
are defined in terms of exponential functions, which defderivative already
knows how to differentiate. The strategy will be to use defderivative’s exist-
ing capability to differentiate hyperbolic sine’s definition and then to associate
hyperbolic sine itself with the resulting derivative.

Hyperbolic sine and cosine and their derivatives are defined as follows:

sinh(x) =
ex − e−x

2

d

dx
sinh(x) = cosh(x)

cosh(x) =
ex + e−x

2

d

dx
cosh(x) = sinh(x)

These definitions are trivial to enter in ACL2(r).

(defun acl2-sinh (x)

(/ (- (acl2-exp x) (acl2-exp (- x)))

2))

(defun acl2-cosh (x)

(/ (+ (acl2-exp x) (acl2-exp (- x)))

2))

Next, we use defderivative to find the derivative of the body of acl2-sinh.
Normally, we would differentiate acl2-sinh directly (instead of differentiating

Automatic Differentiation in ACL2 11

its body), but we do not do so here, since defderivative would automatically
register acl2-sinh!

(defderivative acl2-sinh-lemma

(/ (- (acl2-exp x) (acl2-exp (- x)))

2))

As expected, this results in an unsimplified domain and derivative. However,
we can simplify it and introduce the derivate of acl2-sinh with the following
theorem:

(defthm acl2-sinh-derivative

(implies (and (acl2-numberp x)

(acl2-numberp y)

(standardp x)

(i-close x y)

(not (equal x y)))

(i-close (/ (- (acl2-sinh x)

(acl2-sinh y))

(- X Y))

(acl2-cosh x)))

:hints (("Goal" :use (:instance acl2-sinh-lemma))))

That is the most difficult of the proof obligations that the user must prove before
she can register the derivative of hyperbolic sine. The other obligations concern
the remaining derivative theorems, and those are far simpler, such as showing
that values in the domain of hyperbolic sine do not requires call outside the
domain of ex. Once these obligations are established, the user can register the
derivative with the following event:

(def-elem-derivative

acl2-sinh # function to differentiate

elem-acl2-sinh # prefix of theorems’ name

(acl2-numberp x) # domain

(acl2-cosh x)) # derivative

7 Conclusions

In this paper, we described the macro defderivative and its implementation.
This macro symbolically differentiates ACL2(r) expressions involving functions
whose derivatives have been established previously, e.g., built-in functions, func-
tions derived using defderivative, and functions registered by the user. The
macro also computes the appropriate domain for the function and proves the
required derivative theorems.

In the process of implementing defderivative, we identified some impedi-
ments to automation in our previous treatment of algebraic differentiation rules,

12 Peter Reid and Ruben Gamboa

and we addressed those shortcomings as part of this project. The resulting frame-
work is much easier to use, hence more widely applicable. For example, the pre-
vious work was foundational, allowing one to prove (often tediously) when one
function was the derivative of another. There were very few practical results.
While the derivative of xn was formalized in ACL2(r), that of ex was not, nor
were those of the trigonometric functions. We proved the derivative of ex using
techniques similar to the ones used previously with ACL2(r), but the remaining
derivatives were derived automatically.

The macro defderivative can be readily extended to compute partial deriva-
tives. However, the treatment of differentiation in ACL2(r) is derived from non-
standard analysis, and this imposes technical restrictions on the treatment of
free variables. The result is that we must anticipate the number of variables that
will be required. Thus far, we have implemented partial derivatives for functions
of two variables, such as expt, which can represent either ax or xn, depending on
which variable is fixed. To generalize this to functions of three or more variables,
it will be more convenient to use a classical notion of derivative, i.e., one based
on limits instead of standard part. We are currently working on a proof of the
equivalence of these notions in ACL2(r). However, the proof is quite challenging,
because it involves quantifiers and infinite sets, neither of which is supported
well by ACL2(r).

References

1. Community portal for automatic differentiation. http://www.autodiff.org.

2. Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-
land. ADIFOR: Generating derivative codes from fortran programs. Scientific
Programming, (1), 1991.

3. Christian Bischof, Lucas Roh, and Andrew Mauer-oats. ADIC: An extensible
automatic differentiation tool for ANSI-C. 27:1427–1456, 1997.

4. Christian H. Bischof, Paul D. Hovland, and Boyana Norris. On the implementation
of automatic differentiation tools. Higher Order Symbol. Comput., 21:311–331,
September 2008.

5. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Auto-
matic Differentiation of Algorithms: From Simulation to Optimization. Computer
and Information Science. Springer, 2001. Selected papers from the AD2000 con-
ference, Nice, France, June 2000.

6. R. Gamboa. Continuity and differentiability in ACL2. In M. Kaufmann, P. Mano-
lios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies,
chapter 18. Kluwer Academic Press, 2000.

7. R. Gamboa and J. Cowles. The chain rule and friends in ACL2(r). In Proceed-
ings of the Eighth International Workshop of the ACL2 Theorem Prover and its
Applications (ACL2-2009), 2009.

8. R. Gamboa and M. Kaufmann. Nonstandard analysis in ACL2. Journal of Auto-
mated Reasoning, 27(4):323–351, November 2001.

9. A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Other Titles in Applied Mathematics. SIAM, 2008.

