
A Cantor Trio: Denumerability, the Reals, and
the Real Algebraic Numbers

Ruben Gamboa and John Cowles

University of Wyoming, Laramie, WY, USA
{ruben,cowles}@uwyo.edu

http://www.cs.uwyo.edu/~ruben

Abstract. We present a formalization in ACL2(r) of three proofs orig-
inally done by Cantor. The first two are different proofs of the non-
denumerability of the reals. The first, which was described by Cantor
in 1874, relies on the completeness of the real numbers, in the form
that any infinite chain of closed, bounded intervals has a non-empty
intersection. The second proof uses Cantor’s celebrated diagonalization
argument, which did not appear until 1891. The third proof is of the
existence of real transcendental (i.e., non-algebraic) numbers. It also ap-
peared in Cantor’s 1874 paper, as a corollary to the non-denumerability
of the reals. What Cantor ingeniously showed is that the algebraic num-
bers are denumerable, so every open interval must contain at least one
transcendental number.

Key words: ACL2, nonstandard analysis, non-denumerability of the
reals, denumerability of algebraic numbers

1 Introduction

In an important paper first published in 1874[1, 2] and later popularized by
Dunham among others [3], Cantor presented a new proof of the existence of
transcendental numbers, those numbers that are not the root of any polyno-
mial with rational coefficients. Cantor’s proof was quite unlike Liouville’s earlier
demonstration of a transcendental number. While Liouville actually constructed
a transcendental number (indeed, a whole family of them), Cantor used a count-
ing argument to show that the set of real numbers must include many transcen-
dental numbers.

Cantor’s counting argument proceeds as follows. First, he showed that no
sequence {x1, x2, . . . } of real numbers can completely enumerate all the num-
bers in an open interval (a, b). That is, there must be some x ∈ (a, b) such that
x 6∈ {x1, x2, . . . }. Second, he constructed an enumeration of the algebraic num-
bers, that is, all the roots of all polynomials with rational coefficients. Since the
algebraic numbers could be placed in a sequence, it followed that every non-
empty open interval must contain at least one number that is not among the
algebraic numbers, i.e., a transcendental number.

2 Ruben Gamboa and John Cowles

Although Cantor’s 1874 paper emphasized the application to transcendental
numbers, the more revolutionary result was the non-denumerability of the real
numbers! In 1891, Cantor proved, by diagonalization, that non-denumerable sets
exist. This diagonalization proof is easily adapted to showing that the reals are
non-denumerable, which is the proof commonly presented today [4, 2].

We present a formalization of Cantor’s two proofs of the non-denumerability
of the reals in ACL2(r). In addition, we present a formalization of Cantor’s
application of this theorem to the existence of transcendental numbers. The
formalizations rely on some uncommon techniques of ALC2(r). So we begin the
presentation in Sect. 2 by briefly describing ACL2(r) and the main techniques
on which the proofs rely. We follow in Sect. 3 with the formalization of Cantor’s
two proofs of the non-denumerability of the reals. Then in Sect. 4 we present
Cantor’s enumeration of the algebraic numbers, which immediately establishes
the existence of an infinite number of transcendental numbers. Finally, we present
some concluding remarks in Sect. 5.

2 Background: ACL2(r)

In this section, we briefly describe ACL2(r), a variant of ACL2 with support for
the real numbers, including an overview of nonstandard analysis, the founda-
tional theory of ACL2(r). Our description is limited to those elements of ACL2
and ACL2(r) that are needed for the main results described later in this paper.
Readers familiar with ACL2 or ACL2(r) may wish to skip this section.

In the tradition of the Boyer-Moore family of theorem provers, ACL2 is a
first-order theorem prover with a syntax similar to Common Lisp’s [5]. The pri-
mary inference rules are term rewriting with equality (and with respect to other
equivalence relations) and induction up to ε0. ACL2 supports the explicit intro-
duction of new function symbols via explicit definitions as well as implicitly via
constraints, using the events1 defun and encapsulate, respectively. In addition,
ACL2 permits the introduction of “choice” functions via Skolem axioms using
the defchoose event. For example, let φ(x, y) be a formula whose only free vari-
ables are x and y. Then the Skolem axiom introducing the function f from the
formula φ(x, y) with respect to y is

(∀x, y)(φ(x, y)⇒ φ(x, f(x)))

What this axiom states is that the new function f can “choose” an appropriate
y for a given x as long as such a y exists. For example, if φ(x, y) states that
y2 = x, then the choice function will select one of ±

√
x for a non-negative real

x. What it does for other values of x is unspecified.
Choice functions in ACL2 are also used to define expressions that capture

the essence of existential and universal quantifiers in the event defun-sk. For
example, the following event captures the concept that an object has a square
root:
1 An ACL2 “event” is the unit of interaction between the user and the theorem prover,

e.g., a command.

A Cantor Trio 3

(defun-sk exists-square-root (x)

(exists (y)

(and (realp y)

(equal (* y y) x))))

These “quantification” functions can then be used in theorems, such as the
following, which states that non-negative reals have square roots:

(defthm nonneg-reals-have-square-roots

(implies (and (realp x) (<= 0 x))

(exists-square-root x)))

Choice functions in ACL2 are also used to justify the definition of “partial”
functions with the event defpun [6]. The basic idea behind defpun is that under
certain circumstances a recursive expression can be used to define a function
symbol, even when there is no guarantee that the function terminates for all
inputs. For example, consider the following function, which returns the next
highest prime number.

(defpun next-prime (n)

(if (primep (1+ n))

(1+ n)

(next-prime (1+ n))))

A naive attempt to define next-prime by replacing defpun with defun will fail,
because ACL2 is unable to find a measure that decreases in the recursive call.
However, using defpun, the definition is admitted. The function next-prime

defined in this way is not truly partial, because it has a value for every input.
Rather, it is underspecified, because its value is only known for certain input
values. E.g., it would be possible to prove that (next-prime 80) is equal to
83, but it would not be possible to prove what (next-prime 1/2) is equal to,
even though it must surely be equal to something, since ACL2 is a logic of total
functions.

ACL2(r) modifies the base ACL2 theorem prover by introducing notions from
nonstandard analysis, as axiomatized by Nelson [7, 8]. In Nelson’s formulation
of nonstandard analysis, the real numbers can be further characterized as stan-
dard, small, limited, or large. The standard reals include all the real numbers
that can be uniquely characterized, such as 0, 1, π,

√
2, etc. Small reals, also

called infinitesimals, are those that are smaller in magnitude than any non-zero
standard real. Zero is the only standard number that is also small, but there are
other small numbers. Necessarily, there are also large numbers, namely those
that are larger in magnitude than all standard reals. Real numbers x that are
not large are called limited, and they can always be written as x = ∗x+ ε, where
∗x is standard and ε is small. The number ∗x is called the standard part of x.
Finally, two numbers are said to be close if their difference is small. It is impor-
tant to note that all the usual algebraic properties of the real numbers are still
true in nonstandard analysis. E.g., x · 1/x = 1 for all non-zero x, whether x is
small, large, limited, standard, etc. Also, the properties close, small, and so on

4 Ruben Gamboa and John Cowles

have nice algebraic properties. E.g., the sum of two small numbers is small, the
product of a small and a limited number is small, and the standard part of the
sum of two numbers is the sum of their standard parts.

Formulas and functions in nonstandard analysis are said to be classical if
they do not mention any of the “new” functions of nonstandard analysis, i.e.,
standard, large, etc. Thus, all functions of traditional analysis, such as square
root and sine, are classical. One of the most important principles of nonstandard
analysis is the transfer principle, which states that any first-order classical for-
mula that is true of all standard values must also be true of all values. That is,
in order to prove that a classical formula P (x) is true of all x, it is sufficient to
prove that standard(x)⇒ P (x). This principle is captured in the ACL2(r) event
defthm-std. This same principle also justifies an indirect definitional principle,
where only the values of f(x) for standard values of x are specified. Under cer-
tain conditions, this is sufficient to define f as the only classical function that
maps x to f(x) for all standard values of x.

We conclude this section by mentioning that many of the traditional notions
of analysis can be stated more naturally in nonstandard analysis. For example,
we say that a sequence of real numbers {a1, a2, . . . } converges to a value A if
and only if aN is close to A for all large values of N . This is remarkably simpler
than the traditional “epsilon” definition of convergence.

3 Non-Denumerability of the Reals

In this section, we present two proofs of the non-denumerability of the reals. We
start with Cantor’s 1874 proof, based on the completeness of the real number
line [1]. Then we formalize the more familiar proof based on his 1891 paper [4].
In both cases, we present first a mathematical description of the proof that
we actually formalized in ACL2(r), and then we present highlights from the
formalization.

Note that this is not the first formalization of the non-denumerability of the
reals! As of this writing, there are five others in Freek Wiedijk’s list, Formalizing
100 Theorems [9]—and this list is not comprehensive. However, our interest here
is not just to prove that the reals are non-denumerable, but to formalize Cantor’s
actual arguments in ACL2(r).

3.1 The First Proof: Using the Completeness of the Reals

3.1.1 The Informal Argument Consider a sequence {sn} of real numbers
and a real interval (a, b). Cantor showed that there must be at least one x ∈ (a, b)
such that x 6∈ {sn}. The following argument is a slight variant of Cantor’s
argument, which we formalized in ACL2(r).

First, construct an infinite chain of nested, closed, and bounded intervals
as follows. Let [a0, b0] = [a, b]. The interval [a1, b1] ([a0, b0] is then defined as
[si1 , sj1], where i1 and j1 are chosen to be the smallest indexes such that i1 < j1
and si1 < sj1 are both in (a0, b0)—as long as such indexes can be found. Repeat

A Cantor Trio 5

this process, so that in and jn as the smallest indexes such that jn−1 < in < jn
and sin < sjn are both in (an−1, bn−1)2. By construction, if appropriate indexes
can be found at every step, the intervals [an, bn] form an infinite chain of nested,
closed, and bounded intervals.

However, the construction can fail at a step if no in and jn can be found such
that jn−1 < in < jn and sin and sjn are both in (an−1, bn−1). But if this is the
case, we have found a point in [an−1, bn−1] ⊂ (a, b) that cannot be one of the
{sn}, as desired. This is because either (i) for all in > jn−1, sin /∈ (an−1, bn−1)
or (ii) if in is the first index such that in > jn−1 and sin ∈ (an−1, bn−1), then
for all jn > in if sjn ∈ (an−1, bn−1), then sjn ≤ sin . In case (ii) holds, then for
all jn > in, sjn /∈ (sin , bn−1).

Conversely, suppose the construction does succeed in building an infinite
chain of nested intervals. Then there is some point x such that x ∈ [an, bn]
for all n. The claim is that x is not any of the sn. This follows by considering
the possible values of the indexes in and jn. First, it’s clear that i1 ≥ 1 and
jn ≥ 2, since these are the first two indexes that can be considered; in general,
in ≥ 2n − 1 and jn ≥ 2n. Second, we observe that for i such that j1 < i < i2,
si 6∈ (a1, b1), since i2 is chosen to be the first i in that interval. Moreover, for i
such that i1 < i < j1, we also know that si 6∈ (a1, b1), since j1 is the first index
such that j1 > i1 and sj1 ∈ [a0, b0]. Combining and generalizing these facts, it
follows that for i in the range in ≤ i < in+1, si 6∈ (an, bn). This statement can be
used to show, by induction, that for all i in the range 1 ≤ i < in+1, si 6∈ (an, bn).

Finally, the two observations above can be combined to observe that if 1 ≤
i < 2n+1, si 6∈ (an, bn), since in+1 ≥ 2(n+1)−1. In particular, sn 6∈ (an, bn) for
any n. Since (an, bn)) [an+1, bn+1], it follows that sn 6= x, since x was chosen
previously such that x ∈ [an, bn] for all n.

3.1.2 The Completeness of the Reals Cantor’s proof makes use of the
fact that the real numbers are complete, in the form that a sequence of nested,
closed, bounded intervals has a non-empty intersection. It is necessary, therefore,
to formalize this result in ACL2(r). To do so, we introduce the constrained
function nested-interval, which represents a sequence of closed intervals, i.e.,
a mapping from each positive integer n to a pair of real numbers an and bn such
that an ≤ bn. In addition, the intervals are constrained to form a nested chain
by requiring that am ≤ an ≤ bn ≤ bm whenever m ≤ n.

We limit ourselves to standard sequences of nested closed and bounded inter-
vals, since the transfer principle of nonstandard analysis permits us to generalize
this result to all sequences later. Since the sequence {[an, bn]} is standard, it fol-
lows that both a1 and b1 are standard. Moreover, since the intervals are nested,
we find that a1 ≤ an ≤ bn ≤ b1 for all n. In particular, |an| ≤ max(|a1|, |b1|),
and this implies that an must be limited for all values of n.

2 Cantor’s original proof does not require that in < jn. Rather, Cantor finds the next
two sequence points in the interval, then chooses in and jn so that sin < sjn . That
is the only difference between his proof and the one formalized in ACL2(r).

6 Ruben Gamboa and John Cowles

Now, let N be an arbitrary large positive integer—the ACL2(r) constant
i-large-integer serves this purpose. Since aN is limited, we can define A ≡
∗aN . Notice that A is necessarily standard, since it is the standard part of a
limited number. Moreover, for all standard n, n < N (since all standard integers
are less than all large integers), and since the intervals are nested, it follows that
an ≤ aN . Taking standard parts of both sides, we can conclude that an ≤ ∗aN =
A, and using the transfer principle we conclude that an ≤ A for all n (standard
or not).

Similarly, notice that an ≤ bn for all n, so that ∗an ≤ ∗bn. Taking standard
parts of both sides, it follows that A ≤ bn for all standard values of n, and hence
for all values n by the transfer principle. What this means is that we have found
a real number A such that an ≤ A ≤ bn for all n; i.e., A ∈ [an, bn] for all n,
and hence the intersection of the intervals [an, bn] is not empty. This result is
summarized in the following ACL2(r) theorem:

(defthm standard-part-car-interval-in-intersection

(and (realp (standard-part-car-interval-large))

(implies (posp n)

(and (<= (car (nested-interval n))

(standard-part-car-interval-large))

(<= (standard-part-car-interval-large)

(cdr (nested-interval n))))))

:hints ...)

This argument depends crucially on the use of the transfer principle to show
that an ≤ A = ∗aN ≤ bn for all n. However, the transfer principle only applies
to classical statements, which this statement is not, since it uses the function
standard part. The reason we can do this is that we can define two versions of
A, one using defun and the other defun-std.

(defun standard-part-car-interval-large ()

(standard-part (car (nested-interval (i-large-integer)))))

(defun-std standard-part-car-interval-large-classical ()

(standard-part-car-interval-large))

As explained in the introduction, the version that uses defun-std is classical,
but its definition is only equal to the expression in the body when the arguments
to the function are standard—a condition that is vacuously true in this case, so
ACL2(r) can prove that these two definitions are equivalent.

As it turns out, this is the only step in this first proof that uses the non-
standard analysis features of ACL2(r). The remainder of the proof could just as
easily be carried out in ACL2 (with the exception that it refers to real numbers,
not just the rationals).

3.1.3 Constructing the Chain of Nested, Closed, and Bounded In-
tervals We now consider some of the highlights of the formalization of the

A Cantor Trio 7

construction of the chain of intervals. The sequence {sn} itself is formalized by
defining a constrained function seq whose only constraint is that it maps the
positive integers to real numbers.

The construction repeatedly looks for the smallest index i such that i ≥ n
and si ∈ [a, b], for some choice of a, b, and n. This is implemented by the function
next-index-in-range:

(defpun next-index-in-range (n A B)

(if (in-range (seq n) A B)

n

(next-index-in-range (1+ n) A B)))

Of course, there is no guarantee that such an i can be found, so the function
next-index-in-range is not guaranteed to always terminate as written. Thus,
it can only be admitted into ACL2(r) by the use of defpun instead of defun.
However, this also means that to reason about next-index-in-range, we have
to consider the possibility that it fails for a given n, A, and B.

To do so requires the use of existential quantifiers, which we can do with
defun-sk. The following function, for example, is used to determine which values
of n, A, and B lead to success:

(defun-sk exists-next-index-in-range (n A B)

(exists m

(and (posp m)

(<= n m)

(in-range (seq m) A B))))

It is then possible to define the function cantor-sequence-indexes which re-
turns the nth interval in the construction, or nil if no such interval can be
found.

Now, suppose that cantor-sequence-indexes ever returns nil; i.e., that
the construction of nested intervals stops after a finite number of iterations.
This means that next-index-in-range must have been false for some choice of
n, A, and B. In this case, we find a point x 6∈ {sn} as follows. First, we observe
that given the choice of n, none of the si with i > n can be in [A,B]. This means
that at most a finite number of points (i.e., n) in the sequence can be in [A,B].
But then it is easy to find a point x ∈ (A,B) that is not one of these n points.
The simple, recursive function counter-example does just that.

So now suppose that cantor-sequence-indexes never returns nil; i.e., that
the construction of nested intervals continues ad infinitum. It can be easily shown
that the resulting sequence of intervals satisfies all the constraints of an infinite
chain of nested, closed, bounded intervals, as defined in Sect.3.1.2. Thus, the
theorems of that section apply to cantor-sequence-indexes, and we can con-
clude using the principle of functional instantiation that there is some point that
is in each of the intervals.

At this point, the remainder of the proof can be carried out. The only difficult
portion is the proof that for i in the range 1 ≤ i < in+1, si 6∈ [an, bn]. This was

8 Ruben Gamboa and John Cowles

done using natural induction on n, with the key lemmas being that the theorem
holds for i in the range in ≤ i < in+1, and that the intervals are nested, so that
if si 6∈ [an−1, bn−1], then it trivially follows that si 6∈ [an, bn].

The final statement of the theorem makes use of the (limited) support for
quantifiers in ACL2(r). Because this support does not extend directly to nested
quantifications, it is necessary to introduce several functions to express the re-
sult. First, the function exists-in-sequence captures the notion that x is one of
the {sn}. Similarly, the function exists-in-interval-but-not-in-sequence

states that x is in the interval [a, b] but is not one of the {sn}. This uses
exists-in-sequence to capture that nested quantification. With that, the final
statement of the theorem is that exists-in-interval-but-not-in-sequence

holds (over an arbitrary interval).

(defun-sk exists-in-sequence (x)

(exists i

(and (posp i)

(equal (seq i) x))))

(defun-sk exists-in-interval-but-not-in-sequence (A B)

(exists x

(and (realp x)

(< A x)

(< x B)

(not (exists-in-sequence x)))))

(defthm reals-are-not-countable

(exists-in-interval-but-not-in-sequence (a) (b))

:hints ...)

3.2 The Second Proof: Using Diagonalization

3.2.1 The Informal Argument Cantor’s second proof of the non-denumera-
bility of the real numbers is based on diagonilization. The familiar idea is as
follows. As before, let {sn} be a sequence of real numbers, but this time further
assume that sn ∈ [0, 1].

Now, any number x such that x ∈ [0, 1] can be written as a sequence of
digits, e.g., x = 0.d1d2d3 . . . , where each digit di is an integer from 0 to 9. This
expansion of x into digits follows from the fact that x can be written in the form
x =

∑∞
i=1

di

10i .
Obviously, if two numbers have the same expansions they are equal to each

other. However, it is possible for two different expansions to result in the the same
number, e.g., 0.1999 . . . = 0.2000 This strictly technical difficulty prevents us
from casually swapping between the number and its representation as a sequence
of digits, but this difficulty can be addressed in a number of different ways. We
chose to address it by considering how different two expansions have to be in
order for them to represent two different numbers.

A Cantor Trio 9

Suppose x =
∑∞

i=1
di

10i and y =
∑∞

i=1
ei
10i , where each of the di and ei are

digits, and suppose that k is such that dk 6= ek. Obviously, we can divide the
expansion of x as follows, and similarly for y:

x =

∞∑
i=1

di
10i

=

(
k−1∑
i=1

di
10i

)
+

dk
10k

+

(∞∑
i=k+1

di
10i

)
= Lx +

dk
10k

+Rx,

where Lx and Rx (and similarly Ly and Ry) are introduced as shorthands for
the respective sums. We can now find bounds for the two sums on the right.
For instance, since di ≤ 9 for all i, it follows that Rx =

∑∞
i=k+1

di

10i ≤ 1/10k.
This also gives us a (rough, but sufficient) estimate of the maximum difference
between Rx and Ry, i.e., |Rx −Ry| ≤ 2/10k. Similarly, we can consider possible
differences between Lx and Ly. This time, we find a minimum difference, i.e.,
|Lx − Ly| ≥ 10/10k, unless Lx = Ly. This follows, because if Lx and Ly are
different, then the minimum difference is when only the least significant digits
differ and then only by 1, which yields a minimum difference of 1/10k−1.

So when dk 6= ek, we have

|x− y| ≤ |Lx − Ly|+ |dk − ek|+ |Rx −Ry|.

We have an upper bound for |Rx − Ry|, so if |dk − ek| is large enough, the
difference between Rx and Ry will be insufficient to make x and y equal to each
other. That’s enough to show that if Lx = Ly, then x 6= y. So suppose Lx 6= Ly.
Again, we have a lower bound for the difference, so as long as |dk − ek| is small
enough, the difference will be insufficient to make x and y equal. Thus, as long
as dk is sufficiently different from ek (i.e., 3 ≤ |dk − ek| ≤ 7), we can show that
x 6= y.

ACL2(r) does not support infinite computations, such as x =
∑∞

i=1
di

10i . In-
stead, we use the standard part of a partial sum up to a large integer. So, if N
is an arbitrary, fixed, large integer, we can say x = ∗∑N

i=1
di

10i . As before, we
can split this sum into three parts, so that x = ∗(Lx + dk + Rx), where Lx is
as before and Rx is similar, but with upper limit N instead of ∞. We can limit
ourselves to standard x and k, since the transfer principle will carry over the
results to all x and k. When x is standard, so are Lx and dk (as these are finite
sums), so x = Lx +dk + ∗Rx. Earlier, the upper and lower bounds on Lx and Rx

were enough to show that if dk is sufficiently different from ek, then x 6= y. But
the argument is more subtle in the nonstandard case: It is not enough to show
that the sums Lx + dk +Rx and Ly + ek +Ry differ, because two numbers may
be different even though their standard parts are the same. So what we need to
show is that these two sums have different standard parts, or equivalently that
they are not close to each other. We can do so by observing that if dk is suffi-
ciently different from ek, then |(Lx +dk +Rx)− (Ly +ek +Ry)| ≥ 2/10k. Since k
is standard, 2/10k is not small. This means that Lx + dk +Rx and Ly + ek +Ry

must have different standard parts, so x 6= y.
We have established that every number x ∈ [0, 1] can be converted into a

sequence of digits, and that whenever two sequences of digits are “sufficiently

10 Ruben Gamboa and John Cowles

different” at a given position, the numbers that correspond to those sequences
are different. That is all we need to carry out Cantor’s diagonalization argument.

Start with the sequence {sn} and convert each sn into a sequence of digits,
sn = 0.dn,1dn,2dn,3 Then construct a new sequence {tn} by choosing tn to be
sufficiently different from dn,n—for example, let tn = 7 if dn,n < 5, and tn = 2
otherwise. Then the sequence {tn} is sufficiently different than the sequence (in
k) {dn,k} in the nth digit, so if t is the number corresponding to {tn}, we have
that t 6= sn for all n.

3.2.2 Remarks on the ACL2(r) Formalization The formalization of this
argument in ACL2(r) is mostly straightforward. The function digit-seq is con-
strained to map positive integers to digits, and digit-seq-sum converts a por-
tion of this sequence into a number in [0, 1]. Then we can define the limit of this
sum as follows:

(defun-std digit-seq-sum-limit ()

(standard-part (digit-seq-sum 1 (i-large-integer))))

To prove that different (enough) sequences correspond to different numbers, we
introduce a second constrained function digit-seq-2 with its own partial sum
and limit functions. Then we can carry out the argument as before and show
that these limits must be different.

(defthm different-enough-digits-implies-different-numbers-of-limit

(implies (and (posp i)

(<= (abs (- (digit-seq i) (digit-seq-2 i))) 7)

(>= (abs (- (digit-seq i) (digit-seq-2 i))) 3))

(not (equal (digit-seq-sum-limit)

(digit-seq-2-sum-limit))))

:hints ...)

To complete the proof, it is only necessary to convert each sn in the sequence
into a sequence of digits, and this can be done with the function nth-digit,
which is defined as |x · 10n| mod 10. As before, we define the summation func-
tions nth-digit-seq-sum and nth-digit-seq-sum-limit, which take partial
sums and their limit, respectively. The important lemma is that the limit of
these partial sums is the same as the original number that was taken apart by
nth-digit. This lemma can be proved by finding an upper bound on the dif-
ference between the original number and the partial sum up to an arbitrary
index k. Now that we can convert a number to a sequence of digits and vice
versa, the rest of the proof goes through easily, yielding a second version of the
non-denumerability of the reals:

(defthm diag-seq-sum-limit-not-in-sequence

(and (realp (diag-seq-sum-limit))

(<= 0 (diag-seq-sum-limit))

(<= (diag-seq-sum-limit) 1)

A Cantor Trio 11

(implies (posp i)

(not (equal (diag-seq-sum-limit) (seq i)))))

:hints ...)

The statement of diag-seq-sum-limit-not-in-sequence is typical of the-
orems in ACL2(r), as it avoids the use of quantifiers. E.g., instead of saying that
some x ∈ [0, 1] is not among the {sn}, the theorem explicitly names a specific x
that is not among the {sn}. The way diag-seq-sum-limit-not-in-sequence

is stated is very much in the tradition of ACL2, as exposed in [5] and [10]. Of
course, it is trivial to restate this result using quantifiers, in which case, the
final statement of the theorem is almost identical to that in Sect. 3.1. The only
difference is that the theorem in this section is specialized for the interval [0, 1],
whereas in Sect. 3.1 an arbitrary open interval was permitted.

We close this section by mentioning some differences in the ACL2(r) formal-
izations of Cantor’s two proofs. When we started this project, we were not certain
that the second proof could be carried out in ACL2(r), since the argument about
the equivalence of sequences and numbers appeared to be significantly different
than the usual arguments that have been formalized in ACL2(r). In contrast, we
expected the first proof to be much easier to formalize in ACL2(r), since it was
based on the notion of completeness, which is directly embedded in ACL2(r)
with the function standard-part. However, the reverse turned out to be the
case.

The first proof limited the use of the nonstandard features of ACL2(r) to
the proof that the real numbers are complete. In contrast, the second proof used
these features extensively, as they are needed to reason about the equivalence
of numbers and infinite sums, as well as the fact that different sums correspond
to different numbers. However, the arguments in Cantor’s diagonalization proof
translated more directly to ACL2(r), very much in the Boyer-Moore tradition.
We believe the main reason is that the first proof relied on universally quantified
hypotheses—which required the explicit use of quantifiers in ACL2(r)—as well
as partially defined functions. Nevertheless, we are pleased to report that the
admittedly limited support for quantifiers and partial functions in ACL2(r) was
sufficient to formalize both proofs.

4 Existence of Trasncendental Numbers

We conclude this paper with a formalization of Cantor’s proof of the exis-
tence of transcendental numbers. This turns out to be a corollary of the non-
denumerability of the reals, since Cantor proceeds by showing how the algebraic
numbers can be enumerated. Some aspects of the proof could be simplified sig-
nificantly by using more modern arguments. For instance, the fact that the set
of polynomials with integer coefficients is denumerable follows directly from the
denumerability of words from a finite (even denumerable) alphabet. However,
we avoid these modern notions, since our goal is to follow Cantor’s argument
closely.

12 Ruben Gamboa and John Cowles

4.1 The Informal Argument

A number x is algebraic if there is some nontrivial polynomial P with rational
coefficients such that P (x) = 0; otherwise, x is called transcendental. It is suffi-
cient to consider polynomials Q with integer coefficients, because if there exists
some nontrivial polynomial P with rational coefficients such that P (x) = 0,
then there must also exists a nontrivial polynomial Q with integer coefficients
such that Q(x) = 0—just let Q(x) = q · P (x), where q is the product of the
denominators of the coefficients of P .

So we wish to show that there is some real number x such that P (x) 6= 0 for
all polynomials P with integer coefficients. We do so with a counting argument
as follows. First, define the height3 of the polynomial P =

∑n
i=0 aix

i of degree n
to be h(P) = n−1 +

∑n
i=0 |ai|. Clearly, xh is of degree h, so there is at least one

polynomial for each positive height h. More important, there are only a finite
number of polynomials for each height h. This follows, because any polynomial
of degree greater than h will have height greater than h. Moreover, a polynomial
with a coefficient greater than h or less than −h will have height greater than
h. So at most (2h+ 1)h+1 polynomials can be of height h.

This means that we can enumerate all the polynomials of height h, and
this leads to an enumeration of all polynomials with integer coefficients. Simply
enumerate the (finite) polynomials of height 1, then the (finite) polynomials of
height 2, and so on.

The next step is to use this plan to enumerate the algebraic numbers instead
of the polynomials. Simply enumerate the roots of the (finite) polynomials of
height 1, then the roots of the (finite) polynomials of height 2, and so on.

Finally, we observe that no sequence of real numbers can completely cover
the interval (0, 1) (or any other non-trivial interval), as shown in Sect. 3. That
means there is an x ∈ (0, 1) such that x is not algebraic. I.e., we have shown
that there exists at least one transcendental number (and indeed many more).

4.2 Formalizing Polynomials

The first step in the ACL2(r) proof is a formalization of polynomials. We repre-
sent polynomials using lists, so that the polynomial 3x3 + 2x− 6 is represented
as (-6 2 0 3). This allows us to define the function eval-polynomial that
evaluates a polynomial at a point. The root of a polynomial is then defined as
a number x such that eval-polynomial returns 0. We can now define what we
mean by an algebraic number; i.e, one that is the root of some polynomial with
rational coefficients. The definition uses the support for quantifiers in ACL2(r):

(defun-sk algebraic-numberp (x)

(exists poly

(and (rational-polynomial-p poly)

(non-trivial-polynomial-p poly)

(polynomial-root-p poly x))))

3 There are different notions of “polynomial height”; the one used here is due to
Cantor.

A Cantor Trio 13

We will need the fact that a polynomial of degree n has at most n roots.
We prove this by dividing a polynomial P by x − a whenever P (a) = 0. An
important lemma is that the resulting quotient is of degree one less than P ,
as long as P is of degree at least 1 (what we call a “non-trivial” polynomial).
Another important lemma is that if P (b) = 0 and a 6= b, then Q(b) = 0 where
Q is the quotient polynomial, i.e., Q(x) = P (x)/(x − a). Once these facts are
known, we can show by induction that if P is of degree n, then it has at most n
roots.

We now have the tools to find a list containing all the roots of a given
polynomial. Although it would be possible to compute many of the (algebraic)
roots, it is sufficient to use ACL2(r)’s choice functions to successively add a new
root to an existing list of roots.

(defchoose choose-new-root (x) (poly roots)

(and (polynomial-root-p poly x)

(not (member x roots))))

It is then a simple matter to define the function find-roots-of-poly which
chooses all the roots of a given polynomial. It is trivial to show that find-roots-
of-poly is of length at most equal to the degree of the polynomial, and that if x
is a root of the polymonial, then it must be in the result of find-roots-of-poly.

4.3 Enumerating the Algebraic Numbers

We now turn our attention to the enumeration of the algebraic numbers. The
first step is to enumerate all the polynomials of height h, and the function
generate-polys-with-height is defined to do so. The definition is typical of
combinatorial functions. I.e., a polynomial p is of degree at most n and height
h if either

– p = ax for some constant a and h = |a|, or
– p is of degree at most n− 1 and height h, or
– p = axn +p′ where a 6= 0 and p′ is of degree at most n−1 and height h−|a|.

Since the degree n and leading coefficient a have bounds as explained above,
this definition can be implemented recursively. However, the function generate-

polys-with-height is difficult to introduce into ACL2(r), as many cases need
to be considered and it is not obvious why the function terminates—which must
be proven before the definition can be accepted. The exact form of the definition
is not important, so we omit it here4. Instead, we mention the key theorem,
namely that the function is guaranteed to generate all the polynomials of the
given height.

(defthm generate-polys-with-height-valid

(implies (and (integer-polynomial-p poly)

(non-trivial-polynomial-p poly))

4 Interested readers can refer to the supporting materials.

14 Ruben Gamboa and John Cowles

(member poly (generate-polys-with-height

(polynomial-height poly))))

:hints ...)

We can enumerate all the algebraic numbers: We have an enumeration of the
polynomials with integer coefficients, so we simply need to find the roots of each
polynomial, using find-roots-of-poly.

(defun enumerate-roots-of-polys (polys)

(if (consp polys)

(append (pad-list (length (car polys))

(find-roots-of-poly (car polys)))

(enumerate-roots-of-polys (cdr polys)))

nil))

The function pad-list is there for a technical reason. It simply adds zeros to
the list of roots, in order to ensure that the list of roots for a polynomial of
degree n has n + 1 elements, even though the polynomial has fewer (or no)
real roots. What this means is that the enumeration returns more than just the
list of roots, but this is unimportant. What matters is that all the roots of the
polynomials are accounted for. The padding simply makes it easier to associate
the ith element of the list of roots with the jth polynomial.

The two functions enumerate-roots-of-polys and generate-polys-with-

height can be used to define enumerate-roots-of-polys-of-height, which
enumerates the roots of polynomials of the given height. In turn, this can be
generalized into enumerate-roots-of-polys-up-to-height, which returns all
the roots of polynomials of height 1, then those of height 2, and so on, up to a
chosen limit:

(defun enumerate-roots-of-polys-up-to-height (height)

(if (zp height)

nil

(append (enumerate-roots-of-polys-up-to-height (1- height))

(enumerate-roots-of-polys-of-height height))))

The definition of enumerate-roots-of-polys-up-to-height was carefully cho-
sen so that the algebraic numbers come in a predictable order. I.e., calling this
function with a higher limit returns additional roots at the end of the list, not in
the front. We say that the enumeration of enumerate-roots-of-polys-up-to-
height is monotonic.

Intuitively, if we call enumerate-roots-of-polys-up-to-height repeatedly,
we will generate all the roots of all polynomials with integer coefficients; i.e., we
can enumerate the algebraic numbers. But we have to make this explicit. I.e., we
have to define a mapping from the positive integers into the algebraic numbers,
and we have to be able to produce the index n such that the mapping yields a
particular algebraic number. The mapping can be defined as follows:

A Cantor Trio 15

(defun algebraic-number-sequence (idx)

(if (posp idx)

(nth (1- idx) (enumerate-roots-of-polys-up-to-height idx))

0))

Note that the definition uses enumerate-roots-of-polys-up-to-height to
enumerate all the polynomials up to height idx. This works, because of the prop-
erties of enumerate-roots-of-polys-up-to-height mentioned above. First,
we know that the roots of polynomials of height h is non-empty, since there is
at least one polynomial of height h (namely xh) and we are padding the list of
roots in the definition of enumerate-roots-of-polys. This means that there
are at least idx roots of polynomials with height at most idx, so the call to
nth in the definition returns a valid element. Second, since the enumeration of
enumerate-roots-of-polys-of-height is monotonic, it does not matter that
the call to enumerate-roots-of-polys-of-height uses a height limit (idx)
that is almost certainly larger than necessary, since there are bound to be many
more than one root at each height!

What remains is to show that if root is a root of some polynomial with inte-
ger coefficients, say poly, then there is an index n such that root is the nth ele-
ment in the sequence algebraic-number-sequence. We already know that root
is in enumerate-roots-of-polys-of-height h, where h is the height of poly,
and we can find the index k of root in this list using a simple recursive function.
Now, let M be the length of enumerate-roots-of-polys-up-to-height h− 1.
Then M+k is the index of root in enumerate-roots-of-polys-up-to-height

h′ for any h′ ≥ h. To complete the argument, it is only necessary to observe that
M + k ≥ h, and again this follows because there is at least one root at each
height. What this means is that M + k is a suitable choice of n, as the following
theorem demonstrates, where get-index-in-last-list returns M + k − 1:

(defthm algebraic-number-sequence-valid

(implies (and (integer-polynomial-p poly)

(non-trivial-polynomial-p poly)

(polynomial-root-p poly root))

(equal (algebraic-number-sequence

(1+ (get-index-in-last-list root poly)))

root))

:hints ...)

Now we can prove the existence of transcendental numbers. Using the pre-
vious theorem, we can show that the sequence algebraic-number-sequence

contains all the algebraic numbers. Moreover, algebraic-number-sequence sat-
isfies the constraints of the function seq defined in Sect. 3.1. That means we can
apply the main result of that section to conclude that every open interval (for
concreteness, the interval (0, 1)) must contain at least one number that is not
in the sequence. By definition, this number must be transcendental. The final
statement of the theorem is as follows:

16 Ruben Gamboa and John Cowles

(defun-sk exists-transcendental-number ()

(exists x

(and (realp x)

(not (algebraic-numberp x)))))

(defthm existence-of-transcendental-numbers

(exists-transcendental-number)

:hints ...)

5 Conclusions

This paper describes a formalization of Cantor’s proofs of the non-denumerability
of the continuum, a result listed in Freek Wiedijk’s Formalizing 100 Theorems [9].
Following Cantor’s 1874 paper, this paper also formalizes his proof of the exis-
tence of transcendental numbers. The formalization depends on features of ACL2
that are rarely used in ACL2(r), such as choice functions, explicit quantifiers,
and partial (or rather underspecified) functions.

Given the two proofs, it would appear that the formalization based on Can-
tor’s familiar diagonalization argument would be the more difficult to formalize
in ACL2(r). However, our experience demonstrates that the diagonalization ar-
gument can be formalized more directly in the ACL2 (or Boyer-Moore) tradition.
It turns out that the original proof is more difficult to formalize in ACL2(r), as
it requires explicit use of quantifiers and choice functions.

References

1. Cantor, G.: On a property of the set of real algebraic numbers. In: From Kant to
Hilbert. Volume 2. Oxford University Press (1874) 839–843

2. Ewald, W., ed.: From Kant to Hilbert. Volume 2. Oxford University Press (2005)
3. Dunham, W.: The Calculus Gallery. Princeton (2005)
4. Cantor, G.: On an elementary question in the theory of manifolds. In: From Kant

to Hilbert. Volume 2. Oxford University Press (1891) 920–922
5. Kaufmann, M., Moore, J S.: An industrial strength theorem prover for a logic

based on Common Lisp. IEEE Transactions on Software Engineering 23(4) (1997)
203–213

6. Manolios, P., Moore, J S.: Partial functions in ACL2. Journal of Automated
Reasoning (JAR) 31 (2003) 107–127

7. Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bulletin
of the American Mathematical Society 83 (1977) 1165–1198

8. Gamboa, R., Kaufmann, M.: Nonstandard analysis in ACL2. Journal of Automated
Reasoning 27(4) (2001) 323–351

9. Wiedijk, F.: Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/

index.html (2012)
10. Boyer, R.S., Moore, J S.: A Computational Logic. Academic Press, Orlando (1979)

