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Abstract. The powerlists data structure, created by Misra in the early 90s, is well suited to
express recursive, data-parallel algorithms. Misra has shown how powerlists can be used to give
simple descriptions to very complex algorithms, such as the Fast Fourier Transform (FFT). Such
simplicity in presentation facilitates reasoning about the resulting algorithms, and in fact Misra
has presented a stunningly simple proof of the correctness of the FFT. In this paper, we show how
this proof can be mechanically verified using the ACL2 theorem prover. This supports Misra’s
belief that powerlists provide a suitable framework in which to define and reason about parallel
algorithms, particularly using mechanical tools. It also illustrates the use of ACL2 in the formal
verification of a distributed algorithm.
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1. Introduction

In [16], Misra gives a concise and simple proof of the correctness of the Fast Fourier
Transform (FFT). The key to this simplicity is the data structure of powerlists,
which allows the FFT to be defined using a recursive function, without resorting
to index arithmetic, e.g., index reversal.

In this paper, we will show how the theorem prover ACL2 can be used to me-
chanically verify this result. We begin by presenting a brief summary of powerlists,
which should give the reader unfamiliar with powerlist theory enough intuition to
read the remainder of the paper. Following this review, we will present Misra’s
proof of the correctness of the FFT. Besides paying homage to this wonderful re-
sult, our goal here will be to try to understand the proof so that we can formulate a
plan for its mechanical verification. We will then present the mechanical proof. Our
focus will be on the process of translating the hand proof into an ACL2 proof. In
particular, we will show how the mechanical proof can be structured hierarchically,
making it easier for the theorem prover to find the proof in the first place, as well
as resulting in a simpler presentation of the proof to humans. We hope this will
benefit those readers using ACL2 in their own research, as well as readers using
other mechanical theorem provers.

* Work was performed while author was a student at the University of Texas at Austin.
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2. A Review of Powerlists

A powerlist is a linear data structure, a list of elements. What differentiates pow-
erlists from ordinary lists is that powerlists are constructed using parallel operators.
Recall that a list is constructed by inserting an element e to the list L, as in e.L.
The drawback is that recursive functions over lists become inherently serial, since
the function must process the first element e and then the remainder of the list L.

In contrast, powerlists are constructed from other powerlists. Given the powerlists
L1 and L2, we can construct a new powerlist L in one of two ways. We can take
first the elements from L1 and then the elements from L2. This is called the “tie”
of L1 and L2 and is written L1 | L2. Alternatively, we can take an element from L1,
followed by an element from L2, and so on. This is called the “zip” of L1 and L2,
and we write it as L1 1 L2. In order for these operations to have unique inverses,
we insist that L1 and L2 be of the same length. Thus, the length of a powerlist is
always a power of two, if we take the expedient of disallowing empty powerlists.

Powerlist algebra provides the necessary axioms about powerlists. In particular,
it shows how the operators | and 1 interact. It is summarized below:

∀p{length(p) > 1⇒ ∃u, v, r, s{p = u | v ∧ p = r 1 s}}
〈a〉 | 〈b〉 = 〈a〉 1 〈b〉
〈a〉 = 〈b〉 ≡ a = b

p | q = u | v ≡ p = u ∧ q = v
p 1 q = u 1 v ≡ p = u ∧ q = v

(p | q) 1 (u | v) = (p 1 u) | (q 1 v)

Powerlist algebra can be used to define recursive functions on powerlists. For
example, the length function can be defined as follows:

length(〈x〉) = 1
length(p | q) = length(p) + length(q)

Notice how this definition, similar to the corresponding definition on regular lists,
is more amenable to parallel computation. Since the powerlist constructors operate
on lists of the same length, the corresponding destructors split a list into equal
halves — a key component in writing divide and conquer algorithms. For more
information on powerlists, the reader is referred to [16].

3. The Fast Fourier Transform

The Fourier transform of a real or complex vector P = (p1, p2, p3, . . . , pn) is defined
as FT (P ) = (P (wn), P (w2

n), P (w3
n), . . . , P (wnn)), where wn is the nth principal root

of 1, and P is the polynomial constructed from P by P (x) =
∑n
i=1 pi · xi−1.

Naively, the Fourier Transform of P can be computed by evaluating P (x) at
each of the n powers of wn. This naive implementation will serve as our formal
specification.
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Following [16], we begin with the function ep which evaluates a polynomial P at
a vector V . We will write ep in infix notation:

〈x〉 ep v = 〈x〉 (1)
(p 1 q) ep v = p ep v2 + v · (q ep v2) (2)
p ep (u | v) = (p ep u) | (p ep v) (3)

Note that in the case 〈x〉 ep (u | v) we can proceed using either rule 3 or rule 1.
Unfortunately, this will result in different answers. Thus, we tacitly restrict using
rule 1 while rule 3 is applicable. We claim, without proof for now, this is the only
inconsistency as long as the arithmetic operators used in rule 2 are assumed to
apply pointwise to vectors. The Fourier transform can now be defined simply as

FT (p) = p ep Wn (4)

where n is the length of p and Wn = (wn, w2
n, . . . , w

n
n).

The FFT is an algorithm which evaluates the Fourier transform in O(n log n)
sequential steps, by using the special properties of the vector of powers of wn. In
particular, let Wn = (wn, w2

n, . . . , w
n
n), for n a power of two greater than one. Then,

we find that Wn can be written as

Wn = u | −u
Wn/2 = u2

Since we are only interested in the powers of 2, it is convenient to use the notation
Wn = W2n . This way, we have the properties

Wn = u | −u
Wn−1 = u2

which are more amenable to induction.
We derive the Fast Fourier Transform as follows. For singleton powerlists, it is

clear that

FT (〈x〉) = 〈x〉 ep W 0 (5)
= 〈x〉 (6)

Since W 0 is a singleton (equal to 1), we can use rule 1 of the definition of ep to
evaluate the term. For a powerlist of length 2N > 1, we have that

FT (p 1 q) = (p 1 q) ep WN (7)
= (p 1 q) ep (u | −u) (8)
= ((p 1 q) ep u) | ((p 1 q) ep − u) (9)
= (p ep u2 + u · (q ep u2)) | (p ep u2 − u · (q ep u2)) (10)
= (p ep WN−1 + u · (q ep WN−1)) |

(p ep WN−1 − u · (q ep WN−1)) (11)
= (FT (p) + u · FT (q)) | (FT (p)− u · FT (q)) (12)
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Using these results, we define the Fast Fourier Transform as follows:

FFT (〈x〉) = 〈x〉 (13)
FFT (p 1 q) = (FFT (p) + u · FFT (q)) | (FFT (p)− u · FFT (q)) (14)

where the vector u contains the first 2N/2 elements of WN , and 2N is the length
of p 1 q.

4. Reasoning About Powerlists in ACL2

ACL2 is a theorem prover over a total, first-order, quantifier-free logic. Historically,
ACL2 derives from the Boyer-Moore theorem prover, or Nqthm, which established
itself as the premier theorem over the natural numbers. Among the pioneering
efforts in Nqthm were the automatic generation of induction plans from recursive
functions and the “waterfall” design, which allowed conjectures to be successively
modified in such a way as to permit a “clean” inductive proof. Moreover, Nqthm
was based on an executable logic, a simplified dialect of LISP, hence functions in
Nqthm could be directly executed. These characteristics have been carried over
into ACL2. It is fair to say that ACL2 grew out of a desire to “do Nqthm, only
better” [13].

The syntax of ACL2 is essentially that of Common LISP with defun as the pri-
mary way to introduce new function symbols into the logic, and defthm as the
primary way to prove theorems about these functions. With its LISP heritage,
carried over from Nqthm, it is no surprise that ACL2 is best suited to prove the-
orems by induction. That is, ACL2 proves theorems about recursive functions by
finding suitable induction hypotheses. It is reasonable, therefore, to assume that
ACL2 presents a natural vehicle for reasoning about powerlists, since powerlists are
recursive data structures, and powerlist algorithms are mostly written as recursive
functions, e.g., the definition of FFT in the previous section. In fact, Kapur and
Subramaniam report similar success in formalizing powerlists using the RRL the-
orem prover [7, 8, 9]. We will use the ACL2 formalization of powerlists presented
in [6]. In the remainder of this section, we will present the necessary background.

First of all, we create powerlists using the operators zip (1) and tie (|). Since
ACL2 uses the syntax of LISP, we cannot define functions in the pattern-matching
style traditional in powerlists. This forces us to define the explicit powerlist de-
structors p-untie-l and p-untie-r which are defined so that p-untie-l(p|q) is
equal to p and p-untie-r(p|q) is equal to q. Similarly, we define p-unzip-l and
p-unzip-r to let us define functions in terms of zip. The only thing left is the
type predicate powerlist-p which lets us differentiate powerlists from scalars; this
corresponds to the scalar case in the regular powerlist notation, e.g., the defini-
tion of FT (〈x〉). For notational convenience, we will use a more traditional logical
notation, instead of ACL2’s LISP syntax.

Departing from the tradition of powerlists, we think of powerlists not as linear
lists, but as trees constructed with tie. Since ACL2 is a total logic, we do not
restrict the length of powerlists to the powers of two. Instead, a powerlist can
be created with an arbitrary tie tree structure. Most theorems about powerlists
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continue to be true in this more general setting, but obviously some do not. The
predicate p-regular-p recognizes the powerlists with a power of two length. More
precisely, a powerlist is p-regular-p if its tie tree representation is a complete
binary tree. Often, we will be interested in p-similar-p powerlists, which are
those with isomorphic tie trees. Similar powerlists are the only ones for which we
can reasonable define point-wise operators, e.g., a function to add two powerlists.

5. Verifying the Fast Fourier Transform in ACL2

In this section, we will translate the hand proof found in Sect. 3 into ACL2. We
begin by translating the function ep into ACL2. Recall, the definition of P ep V was
non-deterministic: it was possible to recurse based on the polynomial P or the vec-
tor V . We disambiguate in favor of the vector V , so we split ep into two functions,
eval-poly and eval-poly-at-point. Their definitions are straightforward:

Definition 1
eval-poly-at-point (p, x )
=
if powerlist-p (p)
then eval-poly-at-point (p-unzip-l (p), x · x )

+ x · eval-poly-at-point (p-unzip-r (p), x · x )
else fix (p)

Definition 2
eval-poly (p, x )
=
if powerlist-p (x )
then eval-poly (p, p-untie-l (x )) | eval-poly (p, p-untie-r (x ))
else eval-poly-at-point (p, x )

We use fix (p) instead of simply p in the definition of eval-poly-at-point
because we want the value returned to be numeric, even when p is not. This
preserves the tradition of ACL2 that treats all non-numeric arguments to a numeric
function as zero and forces numeric functions to always return a numeric value.

The correctness proof uses not only the definition of ep over points, but also over
vectors. In particular, the steps 9-10 use polynomial versions of the arithmetic
operators. ACL2 reserves the arithmetic operators for numbers only; in fact, x · 1
is equal to zero for all non-numeric arguments x, including vectors represented
as powerlists. We must define our own “arithmetic” operators over powerlists:
⊕, 	, and ⊗ for pairwise addition, subtraction and multiplication, respectively.
With these operators, we can rewrite polynomial evaluation over vectors, using the
following theorem:

Theorem 1 (eval-poly-lemma)
powerlist-p (p)

→ eval-poly (p, x )
= eval-poly (p-unzip-l (p), x ⊗ x )
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⊕ x ⊗ eval-poly (p-unzip-r (p), x ⊗ x )

The theorem eval-poly-lemma is almost sufficient to prove (10). However, (10)
also uses properties of −u, such as (−u)2 = u2. To prove these facts in ACL2,
we introduce unary minus on powerlists and prove some basic lemmas about its
interaction with the other arithmetic operators, such as (	 x ) ⊗ y = 	 (x ⊗ y), (	
x ) ⊗ (	 x ) = x ⊗ x , and p-similar-p (x , y)→ x ⊕ (	 y) = x 	 y . The similarity
requirement in the last theorem is needed because the function ⊕ is defined to
recurse in terms of the structure of its first argument, so it is possible that y will
“run out” of terms before x does, in which case ⊕ will recurse using the p-untie-l
and p-untie-r of a non-powerlist object.

We are ready to attempt the following theorem, justifying step 10 of the proof:

Theorem 2 (eval-poly-u)
powerlist-p (x )

→ eval-poly (x , u | 	 u)
= eval-poly (p-unzip-l (x ), u ⊗ u)

⊕ u ⊗ eval-poly (p-unzip-r (x ), u ⊗ u)
| eval-poly (p-unzip-l (x ), u ⊗ u)
	 u ⊗ eval-poly (p-unzip-r (x ), u ⊗ u)

Unfortunately, this proof attempt fails, because the ACL2 rewriter will not use
the rewrite rules about unary minus, as it can not relieve the similarity hypothesis.
For example, part of the proof requires eval-poly (x, x ⊗ u) to be similar to
u⊗eval-poly (y, u ⊗ u) which, while true, is not obvious to the ACL2 rewriter,
and hence the rewrite rule taking (x ep u2) + (−(u · y ep u2)) to the simpler
(x ep u2)− (u · y ep u2) is not applied.

There are two solutions to this problem. The first is to add a number of rules to
help ACL2 determine when two objects are similar. This approach is successful,
but it results in a large number of tedious lemmas. ACL2 provides a more imme-
diate approach: “forcing.” Essentially, ACL2 allows a hypothesis to be marked as
“forceable,” which means that it is assumed true by the rewriter, allowing the proof
to proceed. At the end of the proof, the forced hypotheses are tackled using the
full power of the theorem prover, not just the rewriter. To take advantage of this,
the similarity conditions in the lemmas about 	 are marked as forceable. At this
point, ACL2 proves eval-poly-u without a problem. It may be tempting to con-
sider forcing as a panacea. Why not, one may ask, simply force all the hypotheses,
allowing the theorem prover to proceed at blinding speed, only to discard those
pesky hypotheses at a later time? There are two answers. First, if we use a rewrite
rule with a false forced hypothesis, the proof attempt will subsequently fail — even
if some other rewrite rule could have been applied at that time. This means that
one should never force a hypothesis that is not expected to be “always” true, where
by “always” we mean in the terms that the theorem prover will encounter. In
our case, since we are dealing with similar powerlists, the p-similar-p hypothesis
seems like a good candidate for forcing. There is a second caveat, however. In
the forcing round, ACL2 does not restore all the facts that were available when
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the forced rewrite rule was used. In particular, it is possible for ACL2 to “drop” a
hypothesis that will be needed when ACL2 attempts to prove the forced hypothesis.

We are now ready to consider the lists Wn. The only properties of this function
that we actually need are the following:

Wn = u | −u
Wn−1 = u2

Since the function Wn is quite complicated, involving powers of the principal (2n)th

power of 1, it is advantageous to pursue the proof at an abstract level, where the only
known properties are the ones stated above. ACL2 refers to this style of proof as a
“structured” proof. It provides several mechanisms designed to support this style
of proof, including the encapsulation principle. Using encapsulate, it is possible
to introduce new function symbols without making their definition visible. Instead,
these functions are identified only by some of their properties, called constraints.
Once a theorem is proved about a constrained function, it can be automatically
proved about an arbitrary function, given that it satisfies all the constraints of the
constrained function. The constraints on Wn are as follows:

Constraint 1
acl2-numberp (p-omega (0))

Constraint 2
¬ zp (n) → p-omega (n) = p-omega-sqrt (n−1) | 	 p-omega-sqrt (n−1)

Constraint 3
p-omega-sqrt (n) ⊗ p-omega-sqrt (n) = p-omega (n)

Note, the ACL2 idiom ¬ zp (n) is used to recognize the positive integers; it is
traditional to use zp (n) in recursive definitions.

The preceding event introduces the two constrained function symbols p-omega
and p-omega-sqrt; p-omega(n) corresponds to Wn and p-omega-sqrt(n) is its
square root. It is important that the constrained functions are actually defined
inside the encapsulate because this allows ACL2 to verify that the constraints
assumed about them are not contradictory. This prevents a user from unknowingly
(or deliberately) introducing unsoundness into his theory. It is a tradition of con-
venience to choose simple “witness” functions in place of the constrained functions.
This simplifies the theorem proving requirement inside the encapsulate, while not
affecting the remainder of the proof — for our purposes, p-omega can be witnessed
by a function returning a complete binary tree with zeros in all leaves. Outside
of the encapsulate, the only known facts about the constrained functions are the
actual constraints. Note in particular, we had to define a specific function for u,
since it’s a different u for each value of n. We call this function p-omega-sqrt, as
suggested by the last constraint.

We can prove the following theorem, justifying step 9 in Misra’s proof:

Theorem 3 (eval-poly-omega-n)
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powerlist-p (x ) ∧ ¬ zp (n)
→ eval-poly (x , p-omega (n))

= eval-poly (p-unzip-l (x ), p-omega (n−1))
⊕ p-omega-sqrt (n−1)
⊗ eval-poly (p-unzip-r (x ), p-omega (n−1))

| eval-poly (p-unzip-l (x ), p-omega (n−1))
	 p-omega-sqrt (n−1)
⊗ eval-poly (p-unzip-r (x ), p-omega (n−1))

Proving this theorem requires a hint to encourage ACL2 to use the rule converting
p-omega-sqrt(n− 1) into its u | −u equivalent so that the theorem eval-poly-u

can apply. We also need hints to keep ACL2 from considering lemmas relating
to several functions. This is because the intermediate terms are so large they
contain many function instances which ACL2 would like to consider further —
unfortunately, once ACL2 starts going down that path, it loses the special structure
of the theorem that allows a simple proof. It is rare that one needs to override the
ACL2 heuristics quite so much.

At this point, we are almost ready to prove the main result. However, at this
stage our reasoning is very general since it deals with any sequence of powers of
roots of 1. It is not restricted to the specific sequence with as many elements as
required by the Fourier Transform. To do so, we need to reason about the length
of a list, or better yet, about the logarithm of its length, i.e., its depth as a binary
tree. This yields the following lemma:

Definition 3
p-depth (x )
=
if powerlist-p (x ) then 1 + p-depth (p-untie-l (x ))
else 0

Theorem 4
powerlist-p (x )

→ eval-poly (x , p-omega (p-depth (x )))
= eval-poly (p-unzip-l (x ), p-omega (p-depth (x )−1))

⊕ p-omega-sqrt (p-depth (x )−1)
⊗ eval-poly (p-unzip-r (x ), p-omega (p-depth (x )−1))

| eval-poly (p-unzip-l (x ), p-omega (p-depth (x )−1))
	 p-omega-sqrt (p-depth (x )−1)
⊗ eval-poly (p-unzip-r (x ), p-omega (p-depth (x )−1))

This theorem can almost be proved mechanically, but ACL2 fails to use the lemma
eval-poly-omega-n because of the hypothesis that N is positive. This hypothesis
is clearly satisfied since for powerlist x, p-depth(x) is at least 1. Rather than forcing
the hypothesis, as before, we will prove this simple lemma first:

Theorem 5
powerlist-p (x ) → ¬ zp (p-depth (x ))
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Once this fact is known, ACL2 has no more problems with the theorem.
This is a good time to actually define the Fourier Transform in ACL2:

Definition 4
p-ft-omega (x ) = eval-poly (x , p-omega (p-depth (x )))

We would like to prove the main result which extends eval-poly-omega-depth

into p-ft-omega, but this will force us to reason about the p-depth of p, given the
p-depth of p 1 q. Therefore, we proceed with the following technical lemma:

Theorem 6
powerlist-p (x ) ∧ p-regular-p (x )

→ p-depth (p-unzip-l (x )) = p-depth (x )−1
∧ p-depth (p-unzip-r (x )) = p-depth (x )−1

It may be surprising that this is the only place where we require the powerlist x
to be regular.

Finally, we can prove the main result given in the hand-proof of Sect. 3:

Theorem 7
powerlist-p (x ) ∧ p-regular-p (x )

→ p-ft-omega (x )
= p-ft-omega (p-unzip-l (x ))

⊕ p-omega-sqrt (p-depth (x )−1) ⊗ p-ft-omega (p-unzip-r (x ))
| p-ft-omega (p-unzip-l (x ))
	 p-omega-sqrt (p-depth (x )−1) ⊗ p-ft-omega (p-unzip-r (x ))

To complete the proof, we need only introduce the ACL2 version of the Fast
Fourier Transform:

Definition 5
p-fft-omega (x )
=
if powerlist-p (x )
then p-fft-omega (p-unzip-l (x ))

⊕ p-omega-sqrt (p-depth (x )−1) ⊗ p-fft-omega (p-unzip-r (x ))
| p-fft-omega (p-unzip-l (x ))
	 p-omega-sqrt (p-depth (x )−1) ⊗ p-fft-omega (p-unzip-r (x ))

else fix (x )

Note, again, the use of fix to ensure p-fft-omega always returns a numeric
result. This is required here because of our choice to do so in eval-poly. Otherwise,
we would be unable to prove our main theorem, which equates the Fast Fourier
Transform with the Fourier Transform:

Theorem 8 (fft-omega-correctness)
p-regular-p (x ) → p-fft-omega (x ) = p-ft-omega (x )

ACL2 needs a subtle hint to use the main lemma in the inductive part of the
proof.
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This proof is more general than necessary. It proves the correctness of an FFT-
like algorithm for any polynomial evaluation at vectors satisfying the constraints on
WN . In the next section, we will refine this proof by defining instances of p-omega
and p-omega-sqrt in terms of complex exponentiation. These instances correspond
to the traditional definition of the Fourier Transform, and the correctness result can
be established directly by functional instantiation.

Note that splitting the proof into these two parts has two main benefits. First, it
serves as an aid in a presentation of the proof. Notice, for example, that the first
part of the proof closely follows Misra’s hand proof. Second, it helps ACL2 find
a mechanical proof of the result because it isolates the theories needed to reason
about each part of the proof. I.e., the proof presented in this section does not
depend at all on the theory of trigonometry. On the other hand, trigonometry will
play a central role in the next section, whereas polynomial arithmetic will not. This
reduces the number of lemmas that must be considered at each step, so it greatly
reduces the size of the search space needed to find a proof.

6. Specializing the ACL2 Proof

In the previous section, we showed how the function

FT (x) = x ep Wn

where n is the depth of x can be quickly computed for any family of vectors Wn

such that

Wn = u | −u
Wn−1 = u2

for some u, possibly depending on n. The actual Fourier Transform uses powers of
the (2n)th principal root of 1 in place of Wn. In this section, we will try to prove
that this particular vector satisfies the needed properties.

The nth principal root of 1 is given by the complex number e2πi/n. Using the
standard definition of complex exponentiation, this gives

wn = e2πi/n

= cos(2π/n) + i sin(2π/n)

The properties of the vector Wn = (w2n , w
2
2n , . . . , w

2n

2n ) can be derived from the
basic properties of sine, cosine, and π. We will take this approach.

Note, the currently released version of ACL2 does not support the real numbers,
so the trigonometric functions cannot be defined in it. The theorems in this section
were verified using the most current beta version of ACL2, enhanced by the author
to support the real numbers as well as the rationals.

In order to establish the multiplicative properties of eix, we will require the formu-
las for sin(x+ y) and cos(x+ y). Moreover, in order to establish that Wn = u | −u,
we will need the facts that sinπ = 0 and cosπ = −1. ACL2 does not have built-in
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knowledge of these trigonometric facts. These functions can be defined in ACL2
using the recent ACL2 features supporting non-standard analysis. The actual con-
struction is beyond the scope of this paper, so we will simply assume these basic
trigonometric facts in this section.

We next consider the definition of Wn from w2n = e2πi/2n . This is one place where
it would be simpler, programmatically, to process the elements of Wn serially than
in parallel, i.e., where it would be easier to use linear lists than powerlists. The
reason is that it is not simple to do a “for i from 1 to n” type of loop in powerlists
because their recursive structure is always a split down the middle. The solution is
to think of our defining properties as a recurrence relation:

Wn =
√
Wn−1

∣∣∣ −√Wn−1

W 0 = 1

This gives a recurrence relation for the exponents as follows:

En = En−1/2 | (En−1/2 + π)
E0 = 2π

where the arithmetic operators are defined over pointwise powerlists. We can then
derive Wn = eiEn .

We begin with the definition of the scalar operators:

Definition 6
p-halve (x )
=
if powerlist-p (x ) then p-halve (p-untie-l (x )) | p-halve (p-untie-r (x ))
else x / 2

Definition 7
p-offset (x , p)
=
if powerlist-p (p)
then p-offset (x , p-untie-l (p)) | p-offset (x , p-untie-r (p))
else x + p

Definition 8
p-exponents (n)
=
if zp (n) then 2 · acl2-pi
else let sqrt-expnts be p-halve (p-exponents (n−1))

in
sqrt-expnts | p-offset (acl2-pi, sqrt-expnts)

Definition 9
complex-expt (x ) = complex (acl2-cosine (x ), acl2-sine (x ))
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Definition 10
p-complex-expt (x )
=
if powerlist-p (x )
then p-complex-expt (p-untie-l (x )) | p-complex-expt (p-untie-r (x ))
else complex-expt (x )

It is now possible to define the functions p-expt-omega and p-expt-omega-sqrt

which generate Wn and
√
Wn, respectively.

Definition 11
p-expt-omega (n) = p-complex-expt (p-exponents (n))

Definition 12
p-expt-omega-sqrt (n)
=
p-complex-expt (p-halve (p-exponents (n)))

We now show that these functions satisfy all the constraints associated with
p-omega and p-omega-sqrt. We begin with the simplest constraint, namely that
W 0 is numeric:

Theorem 9
acl2-numberp (p-expt-omega (0))

We will next show that p-expt-omega-sqrt is the square root of p-expt-omega.
To do this, we need the fact that ex/2ex/2 = ex. We can prove this in ACL2 with
the following theorem:

Theorem 10 (complex-expt-/-2)
acl2-numberp (x )

→ complex-expt (1/2 · x ) · complex-expt (1/2 · x )
= complex-expt (x )

ACL2 needs hints to generate good instances of the sine of sums and cosine of
sums axioms. This is the most common type of hint we have to give ACL2, since
its heuristics are not powerful enough to pick good lemma instances in general.

The next step is to generalize the lemma complex-expt-/-2 to powerlists in
general. We do this as follows:

Theorem 11
p-acl2-number-list (x )

→ p-complex-expt (p-halve (x )) ⊗ p-complex-expt (p-halve (x ))
= p-complex-expt (x )

The hypothesis p-acl2-number-list is needed, because complex-expt-/-2 re-
quires x to be a number. A required hint disables complex-expt so that the rewriter
does not expand its body and fail to see the rewrite rule complex-expt-/-2.

With the new rule, it is easy to prove the next constraint required, namely that
p-expt-omega-sqrt is the square root of p-expt-omega:
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Theorem 12
p-expt-omega-sqrt (n) ⊗ p-expt-omega-sqrt (n) = p-expt-omega (n)

Here again, ACL2 requires a hint to guide the selection of a proper lemma in-
stance.

We now turn our attention to the final constraint, which deals with unary minus.
The only lemma we need is the following:

Theorem 13
p-complex-expt (p-offset (acl2-pi, expnts)) = 	 p-complex-expt (expnts)

This follows from the facts that ex+y = exey and eiπ = −1 — Euler’s beautiful
identity. ACL2 can then immediately extend this result to powerlists, which is our
third and last constraint on p-omega and p-omega-sqrt:

Theorem 14
¬ zp (n)

→ p-expt-omega (n)
= p-expt-omega-sqrt (n−1) | 	 p-expt-omega-sqrt (n−1)

What this means is that we can now instantiate the theorems proved in Sect. 5
about the Fast Fourier Transform. Hence, we proceed with the new definitions of
FT and FFT , these based on the trigonometric version of Wn:

Definition 13
p-ft-expt-omega (x ) = eval-poly (x , p-expt-omega (p-depth (x )))

Definition 14
p-fft-expt-omega (x )
=
if powerlist-p (x )
then p-fft-expt-omega (p-unzip-l (x ))

⊕ p-expt-omega-sqrt (p-depth (x )−1)
⊗ p-fft-expt-omega (p-unzip-r (x ))

| p-fft-expt-omega (p-unzip-l (x ))
	 p-expt-omega-sqrt (p-depth (x )−1)
⊗ p-fft-expt-omega (p-unzip-r (x ))

else fix (x )

ACL2 immediately verifies that the new definition of FFT correctly computes
the Fourier Transform:

Theorem 15
p-regular-p (x ) → p-fft-expt-omega (x ) = p-ft-expt-omega (x )

A hint is required to prove this by instantiating the meta-theorem fft-omega-

correctness, because ACL2 does not attempt to use meta-theorems by itself. It
is a pity that ACL2 can not do this directly, but we have already seen how difficult it
can be to pick good instances of a regular lemma, so perhaps this final automation
would be expecting too much of the theorem prover.
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7. Conclusions

In this paper, we showed how ACL2 can be used to prove the correctness of the
Fast Fourier Transform algorithm using the notational convenience of powerlists.
The proof itself was taken from Misra’s seminal paper on powerlists [16]. We
consider it a victory for ACL2 that it is able to follow a proof as elegant as the
one given by Misra. We believe this establishes the fact that ACL2 is a wonderful
vehicle for automated reasoning about recursive data structures and algorithms,
e.g., the powerlist data structures. This reinforces the feeling developed in [6],
where powerlists were introduced into ACL2.

Another important aspect of the formal proof is that it was structured using
ACL2’s encapsulation principle. As seen from the hand proof, the correctness of
the FFT follows from the key properties of the powers of roots of unity. ACL2
allows the formal proof to be split into two parts, the first establishing that the key
properties do indeed prove the correctness of the FFT, and the second showing that
the vectors of powers of roots of unity have the key properties. By allowing proofs
to be decomposed in this fashion, it is easier to find mechanical proofs of complex
theorems. Put another way, it is easier to prove two “medium-sized” theorems
than one “large” theorem, especially in the context of a mechanical theorem prover.
Support for structured theory development is one of the ways ACL2 addresses the
requirements of industrial-strength theorem proving [10, 14].

Moreover, the FFT proof suggests that ACL2 can be used to reason about numeric
algorithms, especially those based on recursive definitions. That is, while ACL2 may
not be the theorem prover of choice to prove topological facts about the reals — a
higher-order theorem prover may be better suited for this task — it is a perfectly
wonderful system for proving recursive algorithms about the reals, such as the FFT,
in much the same way that its predecessor, Nqthm, was the theorem prover of choice
for algorithms over the naturals, e.g., the Euclidean algorithm.

The source code for all the ACL2 examples listed here, as well as the refined proof
using complex exponentiation, can be found in our web page at the URL http:
//www.lim.com/~ruben/research/acl2/powerlists. This code was processed
with ACL2 version 2.1(r), an enhanced version of ACL2 2.1 with support for the
real numbers.
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