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Abstract. ACL2 refers to a mathematical logic based on applicative Common
Lisp, as well as to an automated theorem prover for this logic. The numeric system
of ACL2 reflects that of Common Lisp, including the rational and complex-rational
numbers and excluding the real and complex irrationals. In conjunction with the
arithmetic completion axioms, this numeric type system makes it possible to prove
the non-existence of specific irrational numbers, such as

√
2. This paper describes

ACL2(r), a version of ACL2 with support for the real and complex numbers. The
modifications are based on non-standard analysis, which interacts better with the
discrete flavor of ACL2 than does traditional analysis.
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1. Introduction

Non-standard analysis, introduced by Abraham Robinson [31] in the
1960s, gave rigorous foundations to the sort of reasoning about infinites-
imal quantities that was used by Leibniz back when he co-invented
the calculus and is still used today by engineers and scientists when
applying calculus. A feature of many arguments using non-standard
analysis is the use of mathematical induction and recursion in place of
standard limit and compactness arguments.

In this paper we describe the integration of non-standard analysis
into a semi-automated theorem prover, ACL2, that is particularly well-
suited to the carrying out of proofs involving induction and recursion.
ACL2 stands for “A Computational Logic for Applicative Common
Lisp,” and denotes both a logic [22, 24] and a theorem prover for this
logic; see [20]. The ACL2 logic is closely related to the Boyer-Moore
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2 Gamboa and Kaufmann

logic [6, 7], sharing Lisp’s syntactic style, as well as its basic rules
of inference, namely propositional calculus, equality rules, induction,
and the introduction of new total recursive functions and constrained
functions. However, ACL2 is faithful to the semantics of the applicative
subset of Common Lisp, as defined for example in [18]. Support for
quantifiers is very limited in both the Boyer-Moore logic and the logic
of ACL2. It is possible to reason about generic functions in both logics,
even though they are both strictly first-order; see [5, 24].

A significant difference between the Boyer-Moore logic and that
of ACL2 lies in the treatment of numbers. The Boyer-Moore logic
recognizes only the integers, whereas ACL2 has built-in support for
all rational numbers in the complex plane. However, the ACL2 predi-
cate characterizing numbers enumerates all the possible numeric types,
explicitly ruling out the irrationals. This may seem to be a reason-
able limitation if one views ACL2 as a vehicle for proving theorems
about Common Lisp functions. Note specifically that although Com-
mon Lisp’s realp function recognizes floating-point numbers, floating-
point arithmetic does not conform to the rational field axioms, e.g., in
that domain it is not necessarily the case that (x − y) + y is equal to
x. There is good reason, therefore, to eschew the irrationals and rea-
son only about the rationals, explicitly treating floating-point numbers
as limited-precision rationals where they are needed. This approach
has yielded impressive results for microprocessors, such as the me-
chanical verifications of the AMD-K5TM microprocessor1 floating-point
division [8, 26] and square root [34] microcode, and hardware imple-
mentation of square root and other algorithms at the register-transfer
level on the AMD AthlonTM microprocessor [33].

However, even in these projects the lack of support for the irrationals
exacts a price. For example, in [34] Russinoff observes that the lack
of the irrational numbers in ACL2 prevented him from mechanically
proving the square root microcode against the exact IEEE specification.
Instead, he had to prove a theorem using rational numbers, and then
show outside of ACL2 why the verified theorem was equivalent to the
IEEE specification.

We noted above, when considering the equation (x−y)+y = x, that
familiar properties of rational functions may depend on their being in-
terpreted over the rational numbers rather than floating-point numbers.
Thus, the equation above is easily proved in ACL2. However, if we are
interested in properties of transcendental functions then we can find
ourselves stymied in ACL2 when approximating rational functions do

1 AMD, the AMD logo and combinations thereof, AMD-K5, and AMD Athlon
are trademarks of Advanced Micro Devices, Inc.
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Non-Standard Analysis in ACL2 3

not have those properties. A simple example is sufficient to illustrate
this point: consider the equation

√
x4 = x2. This equation follows from

the fact that
√
u2 = |u|, which however may be false when sqrt(u) is

used in place of
√
u. This example is actually not as contrived as it may

seem. The correctness of the Fast Fourier Transform depends on the
algebraic properties of the complex roots of unity, for example the fact
that wn/2 = −1, where wn is the nth complex root of 1 [14]. However,
this key fact is not necessarily true of a given rational approximation
to the nth complex root function. To reason effectively about these
functions, it is important to reason about the abstract mathematical
functions first, and only then to consider a Common Lisp rational or
floating-point approximation.

Since ACL2 is a first-order logic with only limited support for quan-
tification, it seems far too weak to reason about the reals. Consider,
for example, the least upper bound axiom, which states that every
bounded set of real numbers has a least upper bound. This simple fact
can not be expressed in ACL2, since ACL2 does not have a first-class
notion of infinite set. In this paper, we will present a brief overview of
non-standard analysis, first presented by Robinson as a formalization of
infinitesimal calculus [31]. The main contribution of this paper will be
to show that non-standard analysis provides a suitable framework for
reasoning about the irrationals in ACL2. Moreover, this formalization
should also be applicable to other theorem provers with support for
induction.

Consider the proof of a simple theorem from analysis — given that
f and g are continuous functions at a point x0, the product f · g is also
continuous at x0. In a traditional analysis context, we would proceed
as follows. Let ε > 0. Since f and g are continuous at x0, f and g
are bounded around some neighborhood N of x0, say |f(x)| < F and
|g(x)| < G for all x ∈ N . Let δ > 0 be sufficiently small so that for all
x with |x− x0| < δ, we have for all x ∈ N : |f(x0)− f(x)| < ε/2G, and
|g(x0) − g(x)| < ε/2F . With some algebraic simplification, it follows
that |f(x0)g(x0)− f(x)g(x)| < ε, completing the proof.

The mechanical verification of this argument in ACL2 would be
considerably complicated as ACL2 would not be able to instantiate δ,
F , or G automatically. ACL2 instantiates free variables by choosing an
appropriate term from the current clause, but in this case the required
terms do not occur elsewhere in the proof.

This same theorem can be proved more directly using non-standard
analysis. The function f is continuous at a “standard” point x0 if f(x0)
is “infinitely close” to f(x0 + δ) for every “infinitely small” δ. Consider
f(x0 +δ) ·g(x0 +δ). Since f and g are continuous, f(x0 +δ) is infinitely

nsa_pdf.tex; 23/02/2001; 16:12; p.3



4 Gamboa and Kaufmann

close to f . That is, it is equal to f(x0) + ε1 for some infinitely small
ε1. Similarly, g(x0 + δ) is equal to g(x0) + ε2 for some infinitely small
ε2. Using nothing more than algebraic manipulation, we can conclude
that f(x0 + δ) · g(x0 + δ) = f(x0) · g(x0) + ε1g(x0) + ε2f(x0) + ε1ε2. But
ε1g(x0) must be infinitely small, since it is the product of an infinitely
small number with a standard number. Similarly, the other two terms
involving ε are seen to be infinitely small. This shows that f(x0 + δ) ·
g(x0+δ) is infinitely close to f(x0)·g(x0); that is, that f ·g is continuous
at x0.

The argument using non-standard analysis is much simpler, espe-
cially from an automated reasoning perspective. At no point does a
free variable need to be instantiated. In fact, we may suspect the proof
is too easy. Is it really true that ε1 · g(x) is small? It should be false if
g(x) = 1/ε1, for example. The difficulty of determining when a particu-
lar term is insignificant led historically to the distrust of “infinitesimal
analysis,” and hence to the development of traditional analysis. It was
only in the 1960’s that Robinson showed how the notion of infinitesimals
could be treated rigorously [31].

In the next section, we will provide an axiomatic introduction to
non-standard analysis. This will lay the theoretical foundation for the
introduction of non-standard analysis into ACL2, presented in Sec-
tion 3. In Section 4, we present a complete ACL2 example illustrating
how a transcendental function can be defined and reasoned about in
ACL2 using non-standard analysis. Section 5 contains some concluding
remarks. Sections 3 and 4 present ACL2 functions and expressions in
their native Common Lisp syntax. We assume the reader is sufficiently
familiar with a Lisp dialect to read these formulas.

2. An Introduction to Non-Standard Analysis

The formalism of non-standard analysis in ACL2 follows the axiomatic
approach pioneered by Nelson in Internal Set Theory (IST) [28]. There
are several good introductions to this approach to non-standard anal-
ysis, for example [30, 9, 27]. In this section, we select from known
definitions and results in order to develop the basics needed to under-
stand the material that follows. However, this section is not intended
to be a comprehensive introduction to non-standard analysis.

Non-standard analysis changes our intuitive understanding of the
number line in the following ways. The integers are divided into two
groups. The standard integers include all the familiar integers: 0, ±1,
±2, . . . . There is at least one non-standard integer N . Moreover, ±N ,
±(N±1),±(N±2), . . . ,±(N±k) are also non-standard for any standard
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integer k. Notice in particular that there is no least non-standard in-
teger. A number is called i-large if it is larger in magnitude than all
standard numbers; otherwise, the number is considered i-limited. No-
tice that the i-limited integers are precisely the same as the standard
integers. The i- prefix in the preceding terms is a reminder that these
are mathematically precise notions, unlike their informal counterparts,
e.g. “large” or “small.” It should be read as “ideally,” as in “ideally
large” or “ideally small,” to distinguish these notions from the modern
sense of infinity [9].

Non-standard analysis is typically unintuitive at first glance, but
perhaps the following “picture” will help. Imagine a total order con-
structed as follows: for each rational number put a copy of the integers
in its place. Formally, consider the Cartesian product S of the rationals
and integers ordered lexicographically: 〈q, n〉 < 〈q′, n′〉 if and only if
q < q′ or [q = q′ and n < n′]. The standard integers Z0 is the set
of pairs 〈0, n〉. An interesting fact is that addition, subtraction, and
multiplication can be extended from the standard integers to S so that
their usual properties (such as commutative, associative, and distribu-
tive laws) still hold, though we do not prove that here. Traditionalists
(among non-standard analysts!) would consider the “actual” integers
to be the standard ones, which are isomorphically embedded into S.
Nelson’s approach, which we adopt below, is to axiomatize the integers
and a notion of standard in such a manner that S may be viewed as
a model of these axioms, with Z0 interpreting the predicate standard.
Of course Nelson and other non-standard analysts do not stop with
the integers; but the two viewpoints above can be extended from the
integers to the reals.

The corresponding picture for the reals is a little more complex.
Certainly, there are i-large numbers, such as the i-large integer N , as
well as N/2,

√
N , etc. As is the case with the integers, all reals larger in

magnitude than N are also i-large, as is any number N −x for i-limited
x. Moreover, there are reals smaller in magnitude than any positive
standard real, such as 1/N . Such numbers are called i-small. We call
two numbers i-close if their difference is i-small. Every i-limited real is
i-close to a standard real. That is, if x is i-limited, it can be written as
x = x∗ + ε, where x∗ is standard and ε is i-small. The number x∗ is
called the standard-part of x.

The formal underpinning of non-standard analysis can start with
the undefined unary predicate standard, introduced to the language
of set theory containing just {∈}. It is reasonable to ask whether an
arbitrary set is standard. Since all mathematical constructs can be built
in the language of set theory, it is possible to ask whether an arbitrary
mathematical structure, e.g., a function, is standard.
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6 Gamboa and Kaufmann

The predicate standard is special in that it is not considered to
be set-forming. The familiar specification axiom schema from ZF set
theory allows the construction of a set S′ = {x ∈ S | P (x)} from an
arbitrary predicate P provided S is a set. However, no such set can
be constructed based on the predicate standard, nor on any predicate
defined using standard. We refer to standard and all predicates built
using standard as non-classical predicates. The original predicates are
referred to as classical2. The precise restriction is that only classical
predicates can be used to define sets using the specification axiom
schema of set theory. Note, this does not disallow any construction
that was possible in the theory before the introduction of the predicate
standard.

We may refer to a formula or to a function definition as classi-
cal or non-classical. This is a purely syntactic notion, depending on
whether the formula in question is defined using the predicate standard
or some other non-classical predicate. We may describe the meaning
of a formula or of a function definition, which is a set or function
(respectively), as either standard or not. It is a non-trivial observation
that a classically defined function is necessarily standard. However, the
converse of this observation is not true. For example, the function f(x)
defined as standard(x) ∨ ¬standard(x) is not classically defined, but it
is standard since it is equivalent to the classical function true. We will
shortly see examples of standard sets and functions being constructed
using non-classical primitives. It is best, therefore, to keep in mind
the distinction between the purely syntactic notion of classical and the
mathematical notion of standard.

There are three axioms governing the use of the predicate standard.
The first axiom is the idealization axiom. This states that for any clas-
sical binary relation R(x, y), the following statements are equivalent:

− For every standard, finite set F there is a y so that R(x, y) is true
for all x in F .

− There is a y so that R(x, y) holds for all standard x.

As an example, let R be the < relation. It is certainly the case that
there is an upper bound for every finite set of reals. The idealization
axiom asserts the existence of a, necessarily non-standard, real y that
is greater than all standard reals.

A second axiom is the standardization axiom, which states that for
any standard set S and any property P , whether classical or not, there
is a unique standard subset S′ of S such that for any standard element
x, x ∈ S′ if and only if x ∈ S and P (x) is true. This powerful axiom is

2 Nelson [27] refers to classical predicates as internal, and the rest as external.
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an analogue of the specification axiom, allowing a non-classical prop-
erty P to be used in set construction. Note, however, that the axiom
does not guarantee anything about the non-standard elements of S′. In
particular, S′ may contain a non-standard element x for which P (x) is
false, or it may fail to contain a non-standard element x ∈ S for which
P (x) is true. For example, let P be the property standard, and consider
the set T = {x ∈ R | standard(x)}. Since standard is a non-classical
predicate, T is not an admissible set. However, the standardization
principle guarantees the existence of a unique standard set T so that,
for standard x, x ∈ T if and only if x ∈ R and standard(x). That is, T
is a standard subset of the reals containing all the standard reals. Since
R is itself a subset of R containing all standard reals, it follows that
T = R, since the axiom guarantees the subset T is unique.

Although the specification axiom schema can not be used to cre-
ate sets, it is convenient to consider set-like objects formed by S =
{x | P (x)} where P (x) is a non-classical property. For such an S, the
standardization axiom justifies the construction of a set ◦S, which for
S ⊂ R is given by ◦S = {x ∈ R | P (x)}. ◦S is the unique standard
set that agrees with S on all standard elements. It is referred to as
the shadow of S. A similar construction can be performed when S is
not composed entirely of real numbers. It is only necessary to find a
standard supserset of S, e.g., the complex numbers; the value of ◦S is
then easily seen to be independent of the choice of superset.

The final axiom is called the transfer axiom. It states that a classical
predicate P (x) referencing only standard constants is true for all x if it
is true for all standard x. This axiom implies that if a classical predicate
P (x) with only standard constants is satisfied by some x0, it must be
satisfied by some standard x1. In particular, if the predicate P can be
satisfied by only one element, this (unique) element must be standard.
Examples of such elements include 0, 1, π, R, etc.

Forgetting to restrict the specification axiom to classical properties is
a common mistake made when learning to use non-standard analysis.
This is often a subtle mistake. Consider, for example, the following
argument. 0 is a standard natural number. If n is a natural number
and n is standard, so is n+ 1. (This follows from the transfer principle,
since n+1 is uniquely determined and n and 1 are standard.) Appealing
to the principle of induction, therefore, we can conclude that all the
natural numbers are standard. This is false. To understand the error,
recall that the induction principle is based on the well-foundedness
of the naturals: every non-empty set of naturals has a least element.
Induction is sound, because the induction hypothesis guarantees the set
of counter-examples to the theorem can not have a least element, hence
it must be empty. However, in this case the set of counterexamples is
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8 Gamboa and Kaufmann

S = {n ∈ N | ¬standard(n)}, and since standard is not a classical prop-
erty, this set is not well-formed. What this means is that the principle
of induction can not be used to prove non-classical properties. As was
the case with the specification axiom, notice that this restriction does
not invalidate any proof that was possible before the introduction of
the standard predicate.

Using the concept of a shadow set, it is possible to derive a weaker in-
duction principle that is applicable to any predicate. Let P be a classical
or non-classical property defined over the natural numbers n ∈ N, and
further assume that P (0) and P (n)⇒ P (n+ 1) have been established.
Let S = ◦{n ∈ N | P (n)}. That is, S is the shadow of the “set” of
naturals satisfying P . We observe that S is the set of all naturals, since
S is a classical set, and therefore membership in S can be established
using the classical induction principle. But since S is a shadow set, we
can only conclude that P (n) is true for standard n. Therefore, the non-
standard induction principle can conclude standard(n) ⇒ P (n) from
P (0) and P (n)⇒ P (n+ 1) for any property P .

The concept of shadows allows more powerful constructions. Con-
sider a non-classically defined function f : R → R. The function f is
a set of tuples (x, f(x)), with the restriction that no two tuples have
the same first element. Observe, the shadow of this set ◦f is also a
function. For if there exist x together with distinct y and z for which
(x, y) and (x, z) both belong to ◦f , then by the (contrapositive of the)
transfer axiom there are standard such x, y, and z; but then (x, y) and
(x, z) are distinct standard elements of ◦f and hence, by definition of
◦f , of f , which contradicts the assumption that f is a function. Since f
and its shadow have the same standard elements, it follows that given
any function f such that f(x) is standard whenever x is, it is possible
to implicitly define a standard function g so that g(x) = f(x) for all
standard x; namely, g is the shadow of f . As in the case with all shadow
constructions, it is not possible to say what the value of g is for a non-
standard x, except by indirect means. For example, if we can establish
that g(x) = x2 for all standard x, then using the transfer principle we
find that g(x) = x2 for all x, even though f(x) may not be x2 for a
non-standard x.

As we have seen, the standard predicate and the idealization, stan-
dardization, and transfer principles are surprisingly powerful. Using
them, we can formalize the intuitive notions introduced at the be-
ginning of this section. We call a number i-small if it is smaller in
magnitude than all positive standard numbers. That is, ε is i-small
if |ε| < x is true for all standard x > 0. Clearly 0 is i-small, but it
is not the only i-small number. Recall, using the idealization axiom,
we discovered a number y> that is greater than all standard reals.
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Consequently, 1/y> is smaller in magnitude than all non-zero standard
reals, and so it is i-small. Similarly, a number x is called i-large if it is
larger in magnitude than all standard numbers. The number y> serves
as an example. It is clear that y is i-large if and only if y 6= 0 and 1/y
is i-small, and that y is i-small if and only if y = 0 or 1/y is i-large.
A number that is not i-large is called i-limited. All standard numbers
are i-limited. Two numbers x and y are i-close when x − y is i-small.
Since 0 is the only standard i-small number, it follows that two standard
numbers are i-close if and only if they are equal.

In addition, we can prove the existence of a function standard-part,
which assigns a standard number i-close to each i-limited real. That
is, for i-limited x, standard-part(x) is standard and i-close to x. The
number standard-part(x) can be defined as the supremum of ◦{y ∈ R |
y ≤ x}. This set is bounded above: for since x is i-limited, there must
be a standard number M with |x| ≤ M . From the transfer principle,
we know that standard-part(x) is standard, since it is the supremum
of a standard set. That standard-part(x) is i-close to x follows from
the fact that for any standard c > 0, x − standard-part(x) ≥ c im-
plies that x ≥ standard-part(x) + c and so standard-part(x) + c is
in ◦{y ∈ R | y ≤ x}, since it is standard and at most x, but then
standard-part(x) would not be a supremum of this set. Similarly, if
standard-part(x) − x ≥ c, we have that standard-part(x) − c ≥ x and
so ◦{y ∈ R | y ≤ x} would be bounded by standard-part(x) − c, again
contradicting standard-part(x) as the supremum of the set. Therefore,
standard-part(x) and x are i-close. Since standard-part(x) is standard,
it follows that it is the unique standard number i-close to x.

The power of non-standard analysis becomes evident when we real-
ize that these new predicates possess simple algebraic properties. For
example, x + y is i-small if both x and y are i-small. If x is i-limited
and ε is i-small, ε · x is i-small and for x, ε 6= 0, x/ε is i-large. If x is
i-close to y and y is i-close to z, then x is i-close to z.

The power becomes more obvious when traditional notions from
analysis are written in the language of non-standard analysis. For ex-
ample, a standard sequence {an} converges to the standard point A iff
A is i-close to aN for all i-large natural numbers N . A standard function
f is continuous at a standard point x iff f(y) is i-close to f(x) for all
y i-close to x. These definitions are easier to use than the traditional
definitions from analysis. Consider the function f(x) = sin(1/x). It is
a classical result from analysis that this function can not be extended
continuously at x = 0. The traditional proof is to find two sequences
{an} and {bn} converging to 0, so that {f(an)} and {f(bn)} converge to
different values. In non-standard analysis, the argument is considerably
more direct. Consider x0 = 1

2πn and x1 = 1
2πn+π/2 , where n is an i-large
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integer. Then x0 and x1 are i-close (both being i-small), but f(x0) = 0
is not i-close to f(x1) = 1. Therefore, no value of f(0) can be i-close to
f(y) for all y i-close to 0, and hence f can not be continuously extended
at x = 0.

3. Adding Non-Standard Analysis into ACL2

In this section, we introduce ACL2(r)3, a modified version of ACL2
with support for non-standard analysis.

Before introducing non-standard analysis into ACL2, it is neces-
sary to extend the ACL2 numeric system to include the irrationals.
This can be accomplished by adding the new type recognizers realp
and complexp. In addition, the ACL2 arithmetic axioms need to be
modified to account for these new types. In many cases, this can be
accomplished by substituting realp for rationalp and complexp for
complex-rationalp. For example, the Positive axiom, stating that if
x and y are positive rationals then x ·y is a positive rational, is trivially
extended to the reals. In other cases, it is more appropriate to add a
new axiom corresponding to the original one. For example, it is a built-
in axiom that the product of two rationals is a rational. Rather than
weakening this axiom by changing rational to real, it is better to add
the corresponding closure axiom for the reals. Of course, a few axioms
can not be extended to the irrationals, such as the axiom defining the
numerator and denominator of a rational number.

In addition to containing basic arithmetic axioms, ACL2 also defines
many useful arithmetic functions, such as abs, floor, and trunc. All
of these functions need to be extended to accept irrational arguments.
This is trivial in the case of functions like abs. However, the functions
floor and trunc are defined using integer-quotient, which is axiom-
atized to perform division by repeated subtraction. For example, the
floor of 17/2 is found by dividing 2 into 17 using repeated subtraction
of 2, starting at 17, giving a value of 8. Note in particular that the
algorithm does not proceed by repeatedly subtracting 1 from 17/2. The
reason is that in the latter case ACL2 would not accept the recursion,
since the decreasing “measure” is fractional, hence not well-founded.
In the case of rationals, an integer measure can be found by looking
at the numerator and denominator of the number; however, a similar
trick will not work for the reals. A simple solution to this problem is
to introduce a new undefined function floor1 which is axiomatized to

3 ACL2(r) is distributed with ACL2 as of ACL2 Version 2.5. It can be obtained
from the ACL2 home page: http://www.cs.utexas.edu/users/moore/acl2/. The
documentation for topic real is a useful starting point.
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return the correct value of floor for an arbitrary number. Of course,
it would be easier to axiomatize floor directly, but that would prevent
the function floor from being executable for any arguments. By intro-
ducing floor1, it is possible to allow ACL2(r) to have an executable
version of floor, at least for rational constants.

Note, as modified above, ACL2(r) will be able to reason about the
irrational numbers, but it can not construct irrational numbers. In par-
ticular, there are no irrational constants, and there is no mechanism to
allow an ACL2(r) function to return an irrational result given rational
arguments. Nevertheless, it can reason effectively about the real and
complex numbers. For example, it is a theorem of the unmodified ACL2
that x ·x 6= 2 for all x [13]. However, this statement is false in ACL2(r).
Instead, ACL2(r) can prove that if x · x = 2 then x must be real but
not rational. But, as described so far, ACL2(r) can not prove that
there must be some x with x · x = 2. To do that requires knowledge
that the real number line is complete. We do this below in ACL2(r)
using non-standard analysis.

We begin the treatment of non-standard analysis in ACL2(r) with
the following functions: standard-numberp, standard-part, and i-
-large-integer. We refer to these functions as the primitive non-
standard functions in ACL2(r). The function standard-numberp tests
whether a number is standard or not. Note, standard-numberp can
only be true of ACL2(r) numbers, not arbitrary objects. The function
standard-part returns the standard part of an i-limited real or com-
plex number. The constant i-large-integer, as its name suggests,
is an integer axiomatized to be i-large. The functions i-small, i-
-large, i-limited, and i-close are given explicit definitions in terms
of standard-part. A number is i-small if its standard-part is zero;
it is i-large if its inverse is i-small; and it is i-limited if it is not
i-large. Two numbers are i-close if their difference is i-small.

All of these functions are special in two ways. First, none of the prim-
itive non-standard functions is given an executable definition. Instead,
they are all treated as constrained functions, as if they had been intro-
duced using encapsulate or defstub; ACL2(r) can not evaluate the
value of any term involving these functions. Second, ACL2(r) introduces
the notion of classical and non-classical functions. These new functions
are considered to be non-classical, as are any functions defined in terms
of non-classical functions. Note, any ACL2(r) functions (formulas) that
are also ACL2 functions (formulas) are necessarily classical. ACL2(r)
considers constrained functions to be classical, and only classical func-
tions are allowed as witnesses to or functional instances of constrained
functions.
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12 Gamboa and Kaufmann

ACL2(r) treats non-classical functions specially. Non-classical func-
tions can not be defined recursively. Moreover, the use of induction on
non-classical formulas is restricted. Recall that in internal set theory
induction can only be used over the standard integers. Similarly, the
induction principle in ACL2 can be used to establish the truth of non-
classical formulas only for standard instances of their variables. The
remaining cases are treated separately, similar to the “base” cases.
That is, for each variable appearing in the formula, the ACL2(r) in-
duction principle adds the proof obligation that the formula is true
for non-standard instances of the variable4. Details of the non-standard
induction principle in ACL2(r) can be found in Appendix A.

Consider the function 2n defined as follows:

(defun expt-2 (n)
(if (and (integerp n) (< 0 n))

(* 2 (expt-2 (- n 1)))
1))

Suppose we attempt to prove that expt-2 always returns a standard
value:

(standard-numberp (expt-2 n))

The unmodified ACL2 induction principle would reduce this theorem
to the following base and induction cases:

(implies (not (and (integerp n) (< 0 n)))
(standard-numberp (expt-2 n)))

(implies (and (and (integerp n) (< 0 n))
(standard-numberp (expt-2 (- n 1))))

(standard-numberp (expt-2 n)))

In addition, since the original theorem uses the non-classical function
standard-numberp, ACL2(r) would add the following base case:

(implies (not (standard-numberp n))
(standard-numberp (expt-2 n)))

Intuitively, the first two goals prove the theorem for any standard n,
and the last goal proves it for any non-standard n. Of course, in this
case the last goal can not be established, and so ACL2(r) will not prove

4 Actually, it is only necessary to add this obligation for some of the variables in
the term, intuitively those changed by the induction scheme. For example, to prove
that xn is i-limited, it is only necessary that n be standard and x be i-limited but
not necessarily standard.
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Non-Standard Analysis in ACL2 13

that 2n is standard for all integers n. As can be seen, this modification
to the induction principle is crucial for soundness, since the first two
induction goals are clearly true.

To see how the modified induction principle works, consider the
following theorem, which only requires that expt-2 return a standard
value for standard arguments:

(implies (standard-numberp n)
(standard-numberp (expt-2 n)))

In this case, the base and induction steps are as follows:

(implies (and (not (and (integerp n) (< 0 n)))
(standard-numberp n))

(standard-numberp (expt-2 n)))

(implies (and (and (integerp n) (< 0 n))
(standard-numberp n)
(implies (standard-numberp (- n 1))

(standard-numberp
(expt-2 (- n 1)))))

(standard-numberp (expt-2 n)))

ACL2(r) can quickly and automatically prove both of these goals. In
addition, ACL2(r) adds the following goal, since the theorem is non-
classical:

(implies (and (not (standard-numberp n))
(standard-numberp n))

(standard-numberp (expt-2 n)))

ACL2(r) is able to prove this goal, since the hypotheses are obviously
contradictory. That completes the proof of the original conjecture. In
practice, the only non-classical theorems that can be proved by induc-
tion are those that specifically apply to standard values, for example by
having standard-numberp as an explicit hypothesis, as in the expt-2
example.

ACL2(r) introduces two new events to deal with non-classical formu-
las. The event defun-std is used to define a standard function using a
non-classical body. Only non-recursive functions may be defined using
defun-std. The resulting definition is considered classical; that is, the
new function symbol may be used in subsequent classical definitions.
This event can be justified only when the function body returns a
standard value for standard arguments. In these cases, the function is
explicitly defined only for standard arguments; that is, the function is
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14 Gamboa and Kaufmann

defined by its body only for standard arguments. For the remaining
arguments, the function is implicitly defined, as being the (unique)
standard function that agrees with the body for standard arguments.
That such a function uniquely exists is guaranteed by the principle of
standardization, as observed in the remarks about function ◦f in the
previous section.

Consider, for example, the function introduced as follows:

(defun-std std-pt (x)
(standard-part x))

This function is accepted, because for standard numbers x, (standard-
-part x) is also standard. It is important to realize that std-pt is
not the same as the function standard-part. The standard function
std-pt is only guaranteed to be equal to standard-part for standard
values of x. Since standard-part returns x for these values, we can
conclude that std-pt is the identity function for standard x. But, since
std-pt is a standard function, it must also be the identity function for
all values of x, since two classical functions that have equal values for
standard arguments must have equal values for all arguments (by the
transfer principle), and therefore must be equal functions.

The other event new to ACL2(r) is defthm-std, which is an analogue
of the transfer principle. Using defthm-std, it is possible to prove a
theorem by proving it only for standard arguments; however, defthm-
-std can only be used to prove classical formulas. For example, suppose
we wished to prove the following theorem:

(implies (acl2-numberp x)
(equal (std-pt x) x))

Since std-pt is a classical function, this theorem can be proved using
defthm-std. ACL2(r) will prove this theorem by proving the theorem
for standard numeric values of x only. That is, it attempts to prove the
following formula instead:

(implies (and (standard-numberp x)
(acl2-numberp x))

(equal (std-pt x) x))

Since x is known to be standard, we can expand the term (std-pt
x) using the body of std-pt, and the proof is then trivial. Note, the
theorem could not have been proved using defthm instead of defthm-
-std, since without the hypothesis (standard-numberp x), the term
(std-pt x) can not be expanded: std-pt was introduced using defun-
-std, so its explicit definition is only applicable for standard arguments.
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Non-Standard Analysis in ACL2 15

Moreover, a similar theorem about standard-part instead of std-pt
could not have been proved even using defthm-std, since the resulting
formula is not classical.

Using defun-std and defthm-std, it is possible to introduce ir-
rational functions and to prove theorems about them. Consider the
function

√
x. In [13], it is established that the

√
x function can not be

defined in ACL2, although ACL2 can define the function iter-sqrt
so that if s is equal to (iter-sqrt x ε), then 0 ≤ x − s2 ≤ ε, for
arbitrary positive ε and nonnegative x. The function iter-sqrt is
defined using the bisection method, starting with an initial range equal
to [0,max(1, x)] and terminating when the current range is no wider
than ε.

We can define the square root function in ACL2(r) as follows:

(defun-std sqrt (x)
(standard-part
(iter-sqrt x (/ (i-large-integer)))))

The proof obligation is to show that the body of this definition has a
standard value when x is standard. Let s abbreviate the term (iter-
-sqrt x (/ (i-large-integer))). The term s is bounded by the
maximum of x and 1, so it is i-limited given that x is i-limited. There-
fore, if x is standard, the body of sqrt is a standard number, and we
may use defun-std. Moreover, for standard x, the results in [13] show
that

− (<= 0 (- x (* s s))) and

− (<= (- x (* s s)) (/ (i-large-integer)))

are true for non-negative reals x. Since (/ (i-large-integer)) is
i-small, x and (* s s) are i-close. Hence x and (* (sqrt x) (sqrt
x)) are i-close; then since they are standard, they must be equal. This
establishes that for standard x, (* (sqrt x) (sqrt x)) is equal to x.
We can generalize this result using defthm-std:

(defthm-std sqrt-sqrt
(implies (and (realp x) (<= 0 x))

(equal (* (sqrt x) (sqrt x)) x)))

In particular, this allows us to identify the real number x = (sqrt 2)
such that x2 = 2.

We have extended ACL2 while keeping in mind the development
in Section 2, but with particular attention to the induction principle
as worked out in Appendix A. At a more practical level, we have il-
lustrated how non-standard analysis can be used in ACL2(r) to define
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16 Gamboa and Kaufmann

and reason about irrational functions. In the next section, we present
a more detailed example of reasoning with non-standard analysis.

4. An Extended Example

In this section, we develop a complete example used historically to
motivate the development of ACL2(r). Specifically, we will use ACL2(r)
to compute the value of sin(1/2) with an error no larger than 1/645120.
We will also show how more mathematically interesting theorems can
be derived, such as sin(−x) = − sin(x).

Recall that the Taylor expansion of sin(x) about x = 0 is given by

sin(x) = x− x3

3!
+ · · ·+ −1n · x2n+1

(2n+ 1)!
+ · · ·

We proceed by defining an approximation

sN (x) = x− x3

3!
+ · · ·+ −1N · x2N+1

(2N + 1)!
s(x) = standard-part(sN (x))

for some i-large integer N .
As a warm-up exercise, we check for i-limited x that s(x) is standard

and is independent of the choice of the i-large integer N . First, observe
that for i-limited x, s(x) is standard because sN (x) is also i-limited,
which we demonstrate as follows. The first d|x|e terms of sN (x) are all
i-limited, hence their sum is i-limited. Moreover, the remaining terms
form an alternating series, and so their sum is bounded by their first
term, which is i-limited. Therefore, sN (x) is i-limited. Now, consider
sM (x), where M > N . sM (x)−sN (x) = −1N+1·x2N+3

(2N+3)! + · · ·+ −1M ·x2M+1

(2M+1)! ,

hence |sM (x)−sN (x)| ≤ |x|2N+3

(2N+3)! . But for i-limited x, this is i-small since

it is no greater than (|x|/(2N+3))·|x|d|x|e, the product of an i-small and
an i-limited number. Hence, since sN (x) is i-limited and sM (x) is i-close
to sN (x), it follows that standard-part(sN (x)) = standard-part(sM (x))
for all i-large M and N .

The function s(x) defined above is not identical to the trigonometric
sine function. As a simple counterexample, consider s(ε) for some pos-
itive, i-small ε. Clearly, 0 < sN (ε) < ε, and so s(ε) = 0. But sin(ε) 6= 0,
since 0 < ε < π and there are no roots of sine in the range (0, π).
However, since sN (x) is i-limited for i-limited x, it follows that s(x)
is standard for standard x, and so we can use defun-std to define ◦s,
the shadow of s (see Section 2). That is, there is a standard function
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Non-Standard Analysis in ACL2 17

sin(x) that coincides with s(x) for all standard numbers x. The transfer
principle guarantees that this standard function is unique.

Why should this unique standard function ◦s be the same as the
trigonometric sine function? The reason is that for any x and any posi-
tive ε, we can find a positive integer M0 such that | sin(x)− sM (x)| < ε
for any integer M ≥M0. Moreover, we can choose M so that it is also
larger than N , the arbitrary i-large integer used to define s(x). If x is
standard and ε is i-small, sM (x) and sin(x) are i-close, since their dif-
ference is i-small. Since sin(x) is standard, it follows that sin(x) is equal
to the standard-part of sM (x). And as seen earlier, the standard-part
of sM (x) is equal to the standard part of sN (x), namely s(x). Since
sin(x) = ◦s(x) for all standard x, sin(x) = ◦s(x) for all x by the transfer
principle.

We will now use ACL2(r) to formalize the definition of the sine
function using the reasoning described above. The key lemma is the fact
that sN (x) is i-limited for i-limited values of x, and this follows from
the fact that the Taylor expansion for sine is ultimately an alternating
series. We begin by building the necessary theory of alternating series.
Sequences are represented as lists, and a series is the sum of a sequence.
The sum is computed using the function sumlist, defined as follows:

(defun sumlist (x)
(if (consp x)

(+ (car x) (sumlist (cdr x)))
0))

We are particularly interested in the sumlist of alternating sequences,
so we develop that theory next. There are two important properties we
require of alternating sequences. First, adjacent terms in the sequence
have opposite signs. Second, terms in the sequence decrease in mag-
nitude. We define these properties separately, so that we can reason
about them independently.

(defun opposite-signs-p (x y)
(or (= x 0)

(= y 0)
(equal (sign x) (- (sign y)))))

(defun alternating-sequence-1-p (lst)
(if (null lst)

t
(if (null (cdr lst))

t
(and (opposite-signs-p (car lst) (cadr lst))
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18 Gamboa and Kaufmann

(alternating-sequence-1-p (cdr lst))))))

(defun alternating-sequence-2-p (lst)
(if (null lst)

t
(if (null (cdr lst))

t
(and (or (and (equal (car lst) 0)

(equal (cadr lst) 0))
(< (abs (cadr lst))

(abs (car lst))))
(alternating-sequence-2-p (cdr lst))))))

(defun alternating-sequence-p (lst)
(and (alternating-sequence-1-p lst)

(alternating-sequence-2-p lst)))

Note, the definitions treat zero specially. Zero is considered to be of
opposite signs to any number, and adjacent zeros are considered to
decrease in magnitude. This allows a sequence with a suffix consisting
entirely of zeros to be considered an alternating sequence.

ACL2(r) is able to prove (when the user guides it by posing suitable
lemmas) that the sum of an alternating sequence is bounded by its
first element. The following lemma is useful in enumerating all the
possibilities. Given the alternating sequence {an}, if a1 is positive, it
follows that −a1 <

∑n
2 an ≤ 0. Similarly, if a1 is negative, −a1 >∑n

2 an ≥ 0; and if a1 is zero,
∑n

2 an = 0:

(defthm sumlist-alternating-sequence-lemma
(implies (and (alternating-sequence-p x)

(real-listp x)
(consp x))

(cond ((< 0 (car x))
(and (< (- (car x))

(sumlist (cdr x)))
(<= (sumlist (cdr x)) 0)))

((equal 0 (car x))
(and (equal (sumlist x) 0)

(equal (sumlist (cdr x)) 0)))
((< (car x) 0)
(and (< (sumlist (cdr x))

(- (car x)))
(<= 0 (sumlist (cdr x)))))))

:hints ...)

nsa_pdf.tex; 23/02/2001; 16:12; p.18



Non-Standard Analysis in ACL2 19

Note, ACL2(r) requires the user to provide hints before it is able to
prove many of the theorems we present. For ease of presentation, we
will omit these hints as done above.

Using this lemma, it is simple to establish the fundamental result of
alternating series:

(defthm sumlist-alternating-sequence
(implies (and (alternating-sequence-p x)

(real-listp x)
(consp x))

(<= (abs (sumlist x)) (abs (car x))))
:hints ...)

This result will allow us to show that the sum of an alternating series
is i-small when the first element of the sequence is i-small.

The Taylor expansion for sine can be defined as follows:

(defun base-taylor-sin-term (x counter)
(/ (expt x counter)

(factorial counter)))

(defun taylor-sin-term (x counter)
(* (expt -1 counter)

(base-taylor-sin-term x (1+ (* 2 counter)))))

(defun taylor-sin-list (nterms counter x)
(if (or (zp nterms)

(not (integerp counter))
(< counter 0)
(not (realp x)))

nil
(cons (taylor-sin-term x counter)

(taylor-sin-list (1- nterms)
(1+ counter)
x))))

The variables counter and nterms in taylor-sin-list are used to
keep track of the current term and the numbers of terms remaining,
respectively. We would like to define the function sine by using the
following:

(defun-std sine (x)
(standard-part
(sumlist (taylor-sin-list (i-large-integer)

0
x))))
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However, this definition is inadmissible at this point, because ACL2(r)
needs guidance in order to prove that its body is standard for all
standard values of its arguments. What is needed is to show that the
value of the sumlist is i-limited for i-limited, or at least standard,
arguments. To do that, we will show that taylor-sin-list can be
broken into an i-limited prefix and an alternating sequence suffix.

It is easy to establish that the terms in taylor-sin-list alternate
in sign. A key step in the proof is the following technical lemma, typical
of many ACL2 efforts:

(defthm taylor-sin-term-x-+1-counter
(implies (and (integerp counter)

(<= 0 counter))
(equal (taylor-sin-term x (+ 1 counter))

(* -1 x x
(/ (+ 3 (* 2 counter)))
(/ (+ 2 (* 2 counter)))
(taylor-sin-term x counter))))

:hints ...)

This lemma forces ACL2 to rewrite occurrences of (taylor-sin-term
x (+ 1 counter)) into the given expansion. For real x and positive
counter, it follows that adjacent taylor-sin-terms alternate in sign.
This is shown by the following lemma:

(defthm opposite-signs-p-taylor-sin-term
(implies (and (integerp counter)

(<= 0 counter)
(realp x))

(opposite-signs-p
(taylor-sin-term x counter)
(taylor-sin-term x (1+ counter))))

:hints ...)

It is then trivial for ACL2(r) to prove by induction that the terms in
taylor-sin-list alternate in sign:

(defthm alternating-sequence-1-p-taylor-sin-list
(alternating-sequence-1-p (taylor-sin-list nterms

counter
x))

:hints ...)

It is harder to show that the terms are (ultimately) decreasing in
magnitude. We begin by showing that successive base-taylor-sin-
-term terms decrease, for a sufficiently large counter:
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(defthm abs-base-taylor-sin-term-decreasing
(implies (and (integerp counter)

(<= 0 counter)
(realp x)
(not (equal x 0))
(< (abs x) counter))

(< (abs
(base-taylor-sin-term x (1+ counter)))
(abs (base-taylor-sin-term x counter))))

:hints ...)

This result looks at adjacent terms in base-taylor-sin-term, but
taylor-sin-term accesses only the odd elements of base-taylor-
-sin-term. Extending the result above to the case when counter is
incremented by 2 is trivial.

Using the lemma presented above, ACL2 can prove that successive
taylor-sin-term terms (ultimately) decrease in magnitude.

(defthm abs-taylor-sin-term-decreasing
(implies (and (integerp counter)

(<= 0 counter)
(realp x)
(not (equal x 0))
(< (abs x) counter))

(< (abs (taylor-sin-term x (1+ counter)))
(abs (taylor-sin-term x counter))))

:hints ...)

In turn, this allows ACL2 to establish that taylor-sin-list has an
alternating sequence suffix.

(defthm alternating-sequence-p-taylor-sin-list
(implies (< (abs x) counter)

(alternating-sequence-p
(taylor-sin-list nterms counter x)))

:hints ...)

This allows us to place a bound on the sumlist of all but the first d|x|e
elements of taylor-sin-list. We will now show that the sum of these
first d|x|e elements must be i-limited.

First, we establish that taylor-sin-term is i-limited for i-limited
values of x and counter.

(defthm limited-taylor-sin-term
(implies (and (<= 0 counter)
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(i-limited counter)
(i-limited x))

(i-limited (taylor-sin-term x counter)))
:hints ...)

The term (taylor-sin-term x counter) can be broken down into the
product of (expt -1 counter), which is either −1 or 1 and so clearly
i-limited, (/ (factorial counter)) which is a positive number at
most equal to 1 and so is also i-limited, and (expt x counter).

So it is only necessary to show that (expt x n) is i-limited when x
and n are i-limited and n is non-negative5:

(defthm expt-limited
(implies (and (<= 0 n)

(i-limited n)
(i-limited x))

(i-limited (expt x n)))
:hints ...)

This is an interesting theorem, because it illustrates the use of induction
on a non-classical theorem. Besides the usual proof obligations required
by induction in ACL2, ACL2(r) must establish the theorem is true when
n is non-standard. This latter case is trivially true, since n is i-limited
by hypothesis, hence it is either standard or not an integer, in which
case (expt x n) is defined to be 0.

A similar non-standard induction is required to prove the sumlist
of the terms in taylor-sin-list is i-limited:

(defthm taylor-sin-list-limited-up-to-limited-counter
(implies (and (i-limited nterms)

(integerp counter)
(i-limited counter)
(i-limited x))

(i-limited
(sumlist
(taylor-sin-list nterms counter x))))

:hints ...)

Aside from the use of non-standard induction, this is a straightforward
consequence of limited-taylor-sin-term.

We are ready to complete the proof obligation generated by the
above definition of sine using defun-std. First we show that the sum
of the first d|x|e terms is i-limited, by instantiating the theorem above
with d|x|e in place of counter:

5 The counterexample (expt ε −1) illustrates why n must be non-negative.
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(defthm taylor-sin-list-limited-lemma-1
(implies (and (realp x)

(i-limited x))
(i-limited
(sumlist
(taylor-sin-list (next-integer (abs x))

0
x))))

:hints ...)

It remains to show that the sumlist of terms in taylor-sin-list

following the d|x|eth term is also i-limited. This result follows from
the fact that the taylor-sin-list is an alternating sequence beyond
the d|x|eth term, and moreover that this term is i-limited; see sumlist-
-alternating-sequence and alternating-sequence-p-taylor-sin-
-list above.

(defthm taylor-sin-list-limited-lemma-2
(implies (and (integerp nterms)

(<= 0 nterms)
(realp x)
(i-limited x))

(i-limited (sumlist
(taylor-sin-list
nterms
(next-integer (abs x))
x))))

:hints ...)

The only remaining detail is to show how a sequence can be split into
a prefix and suffix. This is handled with the following theorems. Their
ACL2(r) proofs illustrate induction’s important role in non-standard
analysis.

(defthm taylor-sin-list-split
(implies (and (integerp n1) (<= 0 n1)

(integerp n2) (<= 0 n2)
(integerp counter) (<= 0 counter))

(equal
(taylor-sin-list (+ n1 n2) counter x)
(append (taylor-sin-list n1 counter x)

(taylor-sin-list n2
(+ counter n1)
x))))
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:hints ...)

(defthm sumlist-append
(equal (sumlist (append x y))

(+ (sumlist x) (sumlist y)))
:hints ...)

These theorems show that a sequence can be split at any point, and
that its sum can be recovered from the sum of the parts. When n1 is
equal to d|x|e and n2 is equal to i-large-integer − d|x|e, this splits
the taylor-sin-list into components that can be processed using the
limited-lemmas above. This allows ACL2(r) to prove that the sum of
a taylor-sin-list is i-limited:

(defthm taylor-sin-list-limited
(implies (i-limited x)

(i-limited
(sumlist
(taylor-sin-list (i-large-integer)

0
x))))

:hints ...)

This is precisely the proof obligation needed to use defun-std to
introduce the sine function, so we can now proceed to do so:

(defun-std sine (x)
(standard-part
(sumlist (taylor-sin-list (i-large-integer)

0
x))))

It is worth emphasizing that the resulting function sine is equal to the
(standard) trigonometric sine function, even though ACL2(r) can only
open up the definition for standard values of x.

Next, we can prove some theorems about the sine function. An easy
theorem is that sin(−x) = − sin(x). To show this, we begin with the
analogous result for taylor-sin-term:

(defthm taylor-sin-term-uminus
(implies (and (realp x)

(integerp counter)
(<= 0 counter))

(equal (taylor-sin-term (- x) counter)
(- (taylor-sin-term x counter))))

:hints ...)
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This result can be easily generalized to taylor-sin-list as follows:

(defthm taylor-sin-list-uminus
(implies (realp x)

(equal
(sumlist (taylor-sin-list nterms

counter
(- x)))

(- (sumlist (taylor-sin-list nterms
counter
x)))))

:hints ...)

The transfer principle can be used to extend this result to the sine
function as follows:

(defthm-std sine-uminus
(implies (realp x)

(equal (sine (- x))
(- (sine x))))

:hints ...)

The transfer principle allows ACL2(r) to add (standard-numberp x)
as a hypothesis to the theorem above. Usage of the transfer principle is
justified since the theorem does not refer to any non-standard functions.
In particular, notice that the sine function is standard, since it was
introduced using defun-std. Since the hypothesis is now restricted to
standard numbers, ACL2(r) can expand the body of the sine function,
and the result trivially follows from the lemma taylor-sin-list-
-uminus and an axiom that (standard-numberp (- x)) is equal to
(standard-numberp x) for numeric x.

We close this section with an example illustrating computation with
the sine function. Although direct computation is impossible, since
the body of sine uses the undefined constant i-large-integer, it is
possible to find good approximations.

For example, a taylor-sin-list can be split into its first three
terms and the remainder. Using the theorems already proved, it is easy
to show that under suitable restrictions, the remaining terms add up
to no more than the fourth term in the taylor-sin-list. Indeed, we
have proved the following theorem using ACL2(r):

(defthm taylor-sin-approx-by-3-error-best
(implies (and (realp x)

(< (abs x) 3))
(<= (standard-part
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(abs
(- (sumlist (taylor-sin-list

(i-large-integer)
0
x))

(sumlist
(taylor-sin-list 3 0 x)))))

(standard-part
(abs (car (taylor-sin-list

(- (i-large-integer) 3)
3
x))))))

:hints ...)

The value of (sumlist (taylor-sin-list 3 0 1/2)) can be directly
computed; it is 1841/3840. Similarly, the value of (car (taylor-
-sin-list (- (i-large-integer) 3) 3 x)), the fourth term in the
Taylor expansion for sin(1/2), can be computed to be 1/645120. Thus,
ACL2(r) can quickly compute a good approximation for (sine 1/2):

(defthm sine-one-half
(<= (abs (- (sine 1/2)

1841/3840))
1/645120)

:hints ...)

More trigonometric examples, including approximation schemes to the
sine and cosine functions and a proof of the correctness of the Fast
Fourier Transform, can be found in [15]. Examples from analysis, in-
cluding the fundamental theorem of calculus, appear in [16, 19].

5. Summary

In this paper, we described ACL2(r), a version of ACL2 with support
for non-standard analysis. In particular, we showed how it is possible to
reason mechanically about transcendental functions such as the square
root and trigonometric functions.

A more traditional approach to mechanizing the real number line is
provided by standard analysis. Typically, this involves adding a com-
pleteness axiom to the theorem prover. Such an approach is followed by
PVS [29, 10], imps [11], Mizar [32, 35], and others. Harrison presents a
constructive approach in his dissertation [17], where he takes advantage
of the expressive power of HOL. Our approach in ACL2(r) has to differ
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from the above because of ACL2’s comparatively weak logic — in
particular, it offers no support for infinite objects and only minimal
support for quantifiers. The trade-off is that ACL2(r) can draw on its
relatively powerful proof engine, in particular its support for recursion
and induction, which are central to many arguments in non-standard
analysis.

Fleuriot and Paulson describe a system using non-standard anal-
ysis in geometry [12]. Their experience proving theorems from New-
ton’s Principia illustrates the power of non-standard analysis. Newton’s
intuitive proofs find elegant counterparts mechanized in Isabelle.

Bledsoe developed several theorem provers capable of proving many
results from elementary analysis, such as the intermediate value the-
orem [3, 4]. Ballantyne and Bledsoe describe a version of Bledsoe’s
theorem prover IMPLY that proves theorems in the theory of non-
standard analysis [1, 2]. Using this system, they are able to prove several
theorems of elementary analysis, including the equivalence of the “stan-
dard” and “non-standard” definitions of the basic analysis concepts. For
example, they present a mechanical proof that the traditional definition
of sequence convergence is equivalent to the non-standard version. Al-
though there are some clear similarities, ACL2(r) differs significantly
from Bledsoe and Ballantyne’s prover. Specifically, ACL2(r) benefits
from using ACL2’s powerful induction engine. Recursion and induction
play a central role in many proofs from non-standard analysis. For
example, the intermediate value theorem can be proved by defining a
step function that approximates the desired continuous function. The
intermediate value theorem follows from induction on the number of
“steps” used in the interval of interest, to prove that a zero lies at the
standard part of a point found by recursion.

It is significant that ACL2(r) can prove any theorems at all from
analysis, since its language, with weak support for quantifiers and
without infinite sets, may appear too barren for analysis. The results
presented here and in [14, 15, 16, 19] show that non-standard analysis
is a natural way to reason about the reals not just in the context of
ACL2, but in the more general context of a rewrite-based theorem
prover, particularly one with support for induction and recursion.
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Appendix

A. Soundness of Non-Standard Induction in ACL2(r)

In this section, we present a proof of the soundness of the non-standard
induction principle in ACL2(r). The treatment is based on the sound-
ness proof of the Nqthm and ACL2 induction principles given in [6,
22].

The non-standard induction principle is as follows:
Suppose:

− p is a term;

− r is a classical function symbol that denotes a well-founded
relation;

− m is a classical function symbol of n arguments;

− x1, . . . , xn are distinct variables;

− q1, . . . , qk are terms;

− h1, . . . , hk are positive integers;

− for 1 ≤ i ≤ k and 1 ≤ j ≤ hi, si,j is a classical substitution,
and it is a theorem that

(IMPLIES qi
(r (m x1 . . . xn)/si,j (m x1 . . . xn)))

and

− y1, . . . , yu are the variables occurring in p that are one of the
xi or are changed by the si,j .

Then p is a theorem if

(IMPLIES (AND (NOT q1) ...(NOT qk))
p)

is a theorem, for each 1 ≤ i ≤ u,

(IMPLIES (NOT (STANDARD-NUMBERP yi))
p)

is a theorem, and for each 1 ≤ i ≤ k,
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(IMPLIES (AND qi p/si,1 ...p/si,hi)
p)

is a theorem.
Compare this to the formal definition of the induction principle of
Nqthm or ACL2, found in [6, 7, 22].

To understand why the non-standard induction principle is sound,
consider a specific choice p, r, m, xi, qi, hi, si,j such that the conditions
above can be established. Then the following proof in the language of
non-standard analysis establishes the validity of p.
Proof: Without loss of generality, assume that the xi are X1, X2, . . . ,
Xn; that r is R; that m is M ; that Xn+1, Xn+2, . . . , Xz are all of
the variables other than X1, X2, . . . , Xn occurring free in p, the qi, or
either component of any pair in any si,j ; that p is (P X1 . . .Xz); that
qi is (Qi X1 . . .Xz); that si,j replaces Xv with some term di,j,v; and
that the Yi are given by X1, X2, . . . , Xu, for some n ≤ u ≤ z. Note
that di,j,v is equal to Xv for u < v ≤ z.

Let RM be the function on u-tuples defined by

(RM 〈U1 . . . Uu〉 〈V1 . . . Vu〉) = (R (M U1 . . . Un) (M V1 . . . Vn)).

Note that RM is classical and well-founded.
Let the tuple C = 〈Cu+1 Cu+2 . . . Cz〉 be a binding for the tuple

of variables 〈Xu+1 Xu+2 . . . Xz〉. Define the set GC as the shadow set
of all u-tuples U for which (P U C) is false. That is, it is defined as
follows:

GC = ◦{〈U1 . . . Uu〉 | (P U1 . . . Uu Cu+1 Cu+2 . . . Cz) is false}

We will show that GC is empty. Let us complete the proof of the
theorem pending the proof of this claim. From the definition of GC
(and shadow), it then follows that for any standard tuple 〈X1 . . . Xu〉,
(P X1 . . . Xu Cu+1 . . . Cz) must be true. If 〈X1 . . . Xu〉 is a non-standard
tuple, it follows from the assumptions that (P X1 . . . Xu Cu+1 . . . Cz)
is also true. This is because if 〈X1 . . . Xu〉 is non-standard, one of
the Xi must be non-standard, and then the theorem follows from the
hypothesis

(IMPLIES (NOT (STANDARD-NUMBERP Xi))
p)

This establishes that (P X1 . . . Xu Cu+1 . . . Cz) is true for all tuples
〈X1 . . . Xu〉. Since the Ci are arbitrary, for all possible values of the Xi,
it follows that (P X1 . . . Xu Xu+1 . . . Xz) is true. This establishes the
validity of p. It remains only to show that GC is empty.
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Since GC is a standard set, membership in GC can be decided using
the classical principle of induction. In particular, if GC is non-empty,
it must have an RM -minimal tuple. Moreover, GC is a standard set,
so by the transfer principle, if it is non-empty, it must have a standard
RM -minimal tuple. Let 〈X1 X2 . . . Xu〉 be such a tuple. We obtain a
contradiction in each of the two cases to consider.
Case 1: Suppose none of the qi is true. (P X1 . . . Xu Cu+1 . . . Cz) is
true by the base case, so 〈X1 . . . Xu〉 should not be in GC, yielding a
contradiction.
Case 2: Suppose at least one of the qi is true. Without loss of generality,
assume that the term (Q1 X1 . . . Xu Cu+1 . . . Cz) is true. From the
conditions on r, m, q, and si,j , it follows that

(R (M d1,1,1 . . . d1,1,n) (M X1 . . . Xn))
(R (M d1,2,1 . . . d1,2,n) (M X1 . . . Xn))

...
(R (M d1,h1,1 . . . d1,h1,n) (M X1 . . . Xn))

are all true. By the definition of RM ,

(RM 〈d1,1,1 . . . d1,1,u〉 〈X1 . . . Xu〉)
(RM 〈d1,2,1 . . . d1,2,u〉 〈X1 . . . Xu〉)

...
(RM 〈d1,h1,1 . . . d1,h1,u〉 〈X1 . . . Xu〉)

are all true as well. Observe, the terms d1,i,j are all standard, since the
Xi are standard, and the substitutions s1,i are assumed classical, hence
they return standard values for standard arguments. Since 〈X1 . . . Xu〉
is an RM -minimal u-tuple such that (p U C) is false and the d1,i,j are
all standard, it follows that

(P d1,1,1 . . . d1,1,u Cu+1 . . . Cz)
(P d1,2,1 . . . d1,2,u Cu+1 . . . Cz)

...
(P d1,h1,1 . . . d1,h1,u Cu+1 . . . Cz)

are all true. Hence, (P X1 . . . Xu Cu+1 . . . Cz) follows from the first
induction step, contradicting the assumption that 〈X1 . . . Xu〉 is in GC.

The contradiction above establishes that GC is empty, which as ex-
plained above concludes the proof of the soundness of the non-standard
induction principle.
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