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Abstract. The IBM Power4TM processor uses series approximation to
calculate square root. We formally verified the correctness of this algo-
rithm using the ACL2(r) theorem prover. The proof requires the analysis
of the approximation error on a Chebyshev series. This is done by proving
Taylor’s theorem, and then analyzing the Chebyshev series using Taylor
series. Taylor’s theorem is proved by way of non-standard analysis, as
implemented in ACL2(r). Since Taylor series of a given order have less
accuracy than Chebyshev series in general, we used hundreds of Taylor
series generated by ACL2(r) to evaluate the error of a Chebyshev series.

1 Introduction

We discuss the formal verification of a floating-point square root algorithm used
in the IBM Power4TM processor. The same algorithm was first presented and
proven, not formally, by Agarwal et al in [AGS99]. Obviously, the drawback of
a hand-proof is that it does not provide an absolute assurance of correctness.
Formal verification gives a higher-level of confidence by mechanically checking
every detail of the algorithm.

The formal verification of square root algorithms used in industrial processors
has been studied in the past. Russinoff used the ACL2 theorem prover [KM96]
to verify the microcode of K5 Microprocessor [Rus99]. Later he also verified
the square root algorithm in the K7 microprocessor and proved that the under-
lying RTL model actually implements such an algorithm [Rus98]. Aagaard et
al. [AJK+00] verified the square root algorithm used in an Intel processor with
the Forte system [OZGS99] that combines symbolic trajectory evaluation and
theorem proving.

The square root algorithms mentioned above use the Newton-Raphson algo-
rithm or one of its variants [PH96]. This algorithm starts with an initial estimate
and iteratively calculates a better estimate from the previous one. The formula
to obtain the new estimate is relatively simple. It takes a few iterations to obtain
an estimate that is accurate enough. This estimate is rounded to the final answer



according to a specified rounding mode. In Newton-Raphson’s algorithm, many
instructions are dependent on earlier instructions. The algorithm may require
more execution cycles on a processor with many pipeline stages and high latency.

The IBM Power4 processor and its predecessor Power3TM processor use a
different method of function iteration to calculate square root. From the initial
approximation, it obtains a better approximation using a Chebyshev polyno-
mial. Polynomial calculation needs more instructions than a single iteration of
the Newton-Raphson algorithm. However, only a single iteration is sufficient to
obtain the necessary precision. Since instructions in the polynomial calculation
are less dependent on earlier instructions than those in the Newton-Raphson al-
gorithm, more instructions can be executed in parallel with a pipelined floating-
point unit.

The biggest challenge for the formal verification of this algorithm, and also
the one that distinguishes our verification work from others, is the error size
analysis on the polynomial approximating the square root function. We need
to verify that a Chebyshev polynomial used in our algorithm has errors small
enough to guarantee that the final estimate is rounded to the correct answer.

The verification was carried out with the ACL2(r) theorem prover [Gam99].
ACL2(r) is an extension of the ACL2 theorem prover that performs reasoning
on real numbers using non-standard analysis [Rob59].

The verification of the square root algorithm took place in two steps:

1. Prove Taylor’s theorem.
2. Prove the square root algorithm using Taylor’s theorem.

Taylor’s theorem represents a differentiable function as the sum of an approx-
imating polynomial and a remainder term. Our approach is to use a Taylor
polynomial in the measurement of the error size of a Chebyshev polynomial.
One problem is that a Chebyshev polynomial in general gives a better approx-
imation than a Taylor polynomial, thus it is not straightforward to verify the
error size of a Chebyshev polynomial with a Taylor polynomial. In order to solve
this problem, we analyzed the Chebyshev polynomial with hundreds of Taylor
polynomials generated by the ACL2(r) prover.

This paper is organized as follows. In Section 2, we introduce the non-
standard analysis features of ACL2(r) that form a basis for our proof. In Sec-
tion 3, we describe the proof of Taylor’s theorem in ACL2(r). In Section 4, we
describe the square root algorithm used in the Power4 processor and its verifi-
cation. This section assumes that certain proof obligations are met. These proof
obligations are proved in Section 5, using Taylor’s theorem. Finally, we conclude
in Section 6. If the reader is not interested in the non-standard analysis, it is
safe to skip Section 2 and the proof of Taylor’s theorem in Section 3.

2 ACL2(r) : Real Analysis using Non-Standard Analysis

Non-standard analysis, introduced by Robinson in the 1960s using model-theoretic
techniques and later given an axiomatization by Nelson [Rob59,Nel77], provides
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a rigorous foundation for the informal reasoning about infinitesimal quantities
used by Leibniz when he co-invented the calculus and still used today by engi-
neers and scientists when applying calculus. There are several good introductions
to non-standard analysis, for example [Rob88,Nel]. In this section, we give the
reader enough of the background to follow subsequent discussions.

Non-standard analysis changes our intuitive understanding of the real number
line in a number of ways. Some real numbers, including all numbers that can be
uniquely defined in first-order logic, such as 0, 1, e, and π, are called standard.
There are real numbers that are larger in magnitude than all the standard reals;
these numbers are called i-large. Numbers that are not i-large are called i-limited.
Moreover, there are reals smaller in magnitude than any positive standard real;
these numbers are called i-small. It follows that 0 is the only number that is
both standard and i-small. Notice that if N is an i-large number, 1/N must
be i-small. Two numbers are called i-close if their difference is i-small. It turns
out that every i-limited number is i-close to a standard number. That is, if x is
i-limited, it can be written as x = x∗ + ε, where x∗ is standard and ε is i-small.
The number x∗ is called the standard-part of x.

The terms i-large, i-small, and i-close give mathematical precision to the
informal ideas “infinitely large,” “infinitely small,” and “infinitely close.” These
informal notions are ubiquitous in analysis, where they are often replaced by
formal statements about series or by ε− δ arguments. A feature of non-standard
analysis is that it restores the intuitive aspects of analytical proofs.

For example, the sequence {an} is said to converge to the limit A if and only
if aN is i-close to A for all i-large N . This agrees with the intuitive notion of
convergence: “an gets close to A when n is large enough.” Similarly, consider
the notion of derivatives: the function f has derivative f ′(x) at a standard point
x if and only if (f(x)− f(y))/(x− y) is i-close to f ′(x) whenever x is i-close to
y. Again, the formal definition follows closely the intuitive idea of derivative as
the slope of the chord with endpoints “close enough.”

The non-standard definition principle allows the definition of functions by
specifying their behavior only at standard points. For example, consider the
function

√
x. One way to define it is to provide an approximation scheme fn(x)

so that {fn(x)} converges to the square root of x. For standard points x, the
function

√
x can be defined by

√
x = (fN (x))∗, where N is an i-large integer.

Using the non-standard definitional principle, this function defined over standard
numbers is extended to the function

√
x defined over the entire real number line.

The transfer principle allows us to prove a first-order statement P (x) about
the reals by proving it only when x is standard. This principle can be applied only
when the statement P (x) is a first-order statement in the language of real anal-
ysis, without using the new functions of non-standard analysis, such as standard,
i-large, i-small, i-close, or standard-part. Consider the example given above for√

x. The function fN (x) is an approximation to the square root of x, so it is
reasonable that fN (x) · fN (x) is i-close to x when x is i-limited and N is i-large.
In fact, such a theorem can proved in ACL2(r) using induction on N . What this
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means is that for standard x,
√

x ·
√

x = (fN (x))∗ ·(fN (x))∗ = (fN (x) ·fN (x))∗ =
x. The transfer principle then establishes

√
x ·

√
x = x for all x.

Using the non-standard definition and transfer principles in tandem is a pow-
erful and ubiquitous technique in ACL2(r). To illustrate it, we present a proof of
the maximum theorem in ACL2(r). The theorem states that if f is a continuous
function on the closed interval [a, b], there is a point x ∈ [a, b] so that f(x) ≥ f(y)
for all y ∈ [a, b]. This theorem is used in the proof of Rolle’s Lemma, which in
turn is the key to proving Taylor’s Theorem.

We begin by introducing an arbitrary continuous function f in a domain.
This can be done in ACL2 using the encapsulate event:

(encapsulate
((f (x) t)
(domain-p (x) t))

(local (defun f (x) x))
(local (defun domain-p (x) (realp x)))

(defthm domain-real
(implies (domain-p x)

(realp x)))

(defthm domain-is-interval
(implies (and (domain-p l) (domain-p h)

(realp x) (<= l x) (<= x h))
(domain-p x)))

(defthm f-standard
(implies (and (domain-p x)

(standard-numberp x))
(standard-numberp (f x))))

(defthm f-real
(implies (domain-p x)

(realp (f x))))

(defthm f-continuous
(implies (and (domain-p x) (standard-numberp x)

(domain-p y) (i-close x y))
(i-close (f x) (f y))))

)

ACL2’s encapsulate mechanism allows the introduction of constrained func-
tions. This event introduces the functions f and domain-p. The first argument
of the encapsulate establishes that they are unary functions. The definitions
of f and domain-p are marked local, and they are not available outside of the
encapsulate. Their only purpose is to demonstrate that there are some functions
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which satisfy the given constraints. The constraints are specified by the defthm
events inside of the encapsulate. These constraints serve to make domain-p
an arbitrary function that accepts intervals of real numbers, and f an arbitrary
standard, real, and continuous function.

To show that f achieves its maximum on a closed interval, we split the interval
[a, b] into n subintervals of size ε = b−a

n . It is easy to define a function that finds
the point a + k · ε where f achieves the maximum of the points in the ε-grid of
points a + i · ε. That much of the reasoning uses only the traditional concepts
in ACL2, notably recursion and induction. Non-standard analysis takes center
stage when we consider what happens when n is i-large, hence when ε is i-small.
Consider the point xmax = (a + k · ε)∗. This is a standard point, since it is
the standard-part of an i-limited point. Let y be a standard point in [a, b]. Since
y ∈ [a, b], there must be an i so that y ∈ [a+(i−1) · ε, a+ i · ε]. Since ε is i-small,
it follows that y is i-close to a+ i · ε, so f(y) = (f(a+ i · ε))∗ from the continuity
of f . But from the definition of xmax it follows that f(y) = (f(a + i · ε))∗ ≤
(f(a + k · ε))∗ = f(xmax). This suffices to show that f achieves its maximum
over standard points y ∈ [a, b] at xmax. Using the transfer principle, we have
that f achieves its maximum over [a, b] at xmax.

In ACL2(r), we prove the result by defining the function find-max-f-x-n
which finds the point a + k · ε where f achieves its maximum over the ε-grid:

(defun find-max-f-x-n (a max-x i n eps)
(if (and (integerp i) (integerp n) (<= i n)

(realp a) (realp eps) (< 0 eps))
(if (> (f (+ a (* i eps))) (f max-x))

(find-max-f-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-max-f-x-n a max-x (1+ i) n eps))

max-x))

It is a simple matter to prove that this function really does find the maximum
in the grid. Moreover, under natural conditions, the point it finds is in the range
[a, b]. The next step is to use the non-standard definitional principle to introduce
the function that picks the actual maximum over [a, b]. In ACL2(r) this is done
by using the event defun-std in place of defun to define the function:

(defun-std find-max-f-x (a b)
(if (and (realp a) (realp b) (< a b))

(standard-part
(find-max-f-x-n a a 0 (i-large-integer)

(/ (- b a) (i-large-integer))))
0))

The function i-large-integer in ACL2(r) is used to denote a positive i-large
integer. Since find-max-f-x-n is in the range [a, b], we can use the transfer
principle to show that find-max-f-x is also in [a, b].

A simple inductive argument can establish that find-max-f-x-n finds the
point in the ε-grid where f achieves its maximum. Taking the standard-part of
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both sides of this inequality shows that the point selected by find-max-f-x is
also a maximum over the points in the grid:

(defthm find-max-f-is-maximum-of-grid
(implies (and (realp a) (standard-numberp a)

(realp b) (standard-numberp b)
(< a b) (domain-p a) (domain-p b)
(integerp i) (<= 0 i) (<= i (i-large-integer)))

(<= (standard-part (f (+ a (* i (/ (- b a)
(i-large-integer))))))

(f (find-max-f-x a b)))))

Once we have this result, we can see that find-max-f-x finds the point where f
achieves its maximum on the standard points of [a, b]. It is simply necessary to
observe that any standard point x ∈ [a, b] must be i-close to some point a + i · ε
in the ε-grid of [a, b].

(defthm find-max-f-is-maximum-of-standard
(implies (and (realp a) (standard-numberp a)

(realp b) (standard-numberp b)
(realp x) (standard-numberp x)
(domain-p a) (domain-p b)
(<= a x) (<= x b) (< a b))

(<= (f x) (f (find-max-f-x a b)))))

To complete the proof, it is only necessary to invoke the transfer principle on the
theorem above. In ACL2(r) this is done by using the event defthm-std when
the theorem is proved:

(defthm-std find-max-f-is-maximum
(implies (and (realp a) (domain-p a)

(realp b) (domain-p b)
(realp x) (<= a x) (<= x b) (< a b))

(<= (f x) (f (find-max-f-x a b)))))

The techniques described above, combining defun-std and defthm-std,
have been used extensively in ACL2(r), resulting in proofs as varied as the
correctness of the Fast Fourier Transform and the fundamental theorem of
calculus [Gam02,Kau00]. A more complete account of ACL2(r) can be found
in [Gam99,GK01].

3 Proof of Taylor’s Theorem

Given a function f with n continuous derivatives on an interval [a, b] Taylor’s
formula with remainder provides a means for estimating f(x) for an arbitrary
x ∈ [a, b] from the values of f and its derivatives at a. Formally, Taylor’s Theo-
rem can be stated as follows:
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Taylor’s Theorem If f (n)(x) is continuous in [x0, x0 + δ] and f (n+1)(x) exists
in [x0, x0 + δ], then there exists ξ ∈ (x0, x0 + δ) such that

f(x0 + δ) = f(x0) + f ′(x0)δ +
f ′′(x0)

2!
δ2 + · · ·+ f (n−1)(x0)

(n− 1)!
δ(n−1) +

f (n)(ξ)
n!

δn

=
n−1∑
i=0

f (i)(x0)
i!

δi +
f (n)(ξ)

n!
δn

The term
∑n−1

i=0
f(i)(x0)

i! δi is called the Taylor polynomial of f of degree n−1, and
f(n)(ξ)

n! δn is called the corresponding Taylor remainder. The Taylor polynomial is
often used to approximate f(x); the approximation error can be estimated using
the Taylor remainder.

The proof of this theorem, presented in [Ful78] among others, is similar to
the proof of the mean value theorem. First, a special function F is constructed,
and then Rolle’s Lemma is applied to F to find a ξ for which F ′(ξ) = 0. Tay-
lor’s formula follows from solving F ′(ξ) = 0 for f(x0 + δ). From an automated
theorem perspective, the main challenge is to find F ′, which can be done by
repeated application of the theorems concerning the derivatives of composition
of functions, and then to solve the equation accordingly.

To formalize Taylor’s Theorem in ACL2(r), we use encapsulate to intro-
duce the constrained function f. The derivatives of f are constrained in the
function f-deriv, which takes arguments corresponding to i and x in f (i)(x).
The constraints on f-deriv follow the non-standard definition of derivatives as
discussed in section 2. Also constrained is the bound tay-n on the order of the
Taylor approximation. Note in particular that for i greater than tay-n, we do
not assume that f-deriv continues to find derivatives, since these higher-order
derivatives are not even assumed to exist as part of Taylor’s theorem. In the
interest of brevity, we present only the constraints of f-deriv:

(encapsulate
((f (x) t)
(f-deriv (i x) t)
(domain-p (x) t)
(tay-n () t))
...
(defthm f-deriv-0
(implies (domain-p x)

(equal (f-deriv 0 x)
(f x))))
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(defthm f-deriv-chain
(implies (and (standard-numberp x)

(domain-p x) (domain-p y)
(i-close x y) (not (= x y))
(integerp i) (<= 0 i) (<= i (tay-n)))

(i-close (/ (- (f-deriv i x) (f-deriv i y))
(- x y))

(f-deriv (1+ i) x))))
)

The Taylor series can be defined in terms of the constrained functions f and
f-deriv:

(defun tay-term (i x0 delta)
(* (fn-deriv i x0)

(expt delta i)
(/ (factorial i))))

(defun tay-sum (i n x0 delta)
(if (and (integerp i) (integerp n) (<= i n))

(+ (tay-term i n x0 delta)
(tay-sum (1+ i) n x0 delta))

0))

We found it useful to split this into two functions, because it makes the statement
of Taylor’s theorem more succinct. In particular, the error term uses tay-term.
The formal statement of Taylor’s theorem in ACL2(r) is as follows:

(defthm taylor-series
(implies (and (domain-p x0) (domain-p (+ x0 delta))

(integerp n) (< 1 n) (<= n (tay-n)))
(and (domain-p (tay-xi n x0 (+ x0 delta)))

(<= (min x0 (+ x0 delta)) (tay-xi n a (+ x0 delta)))
(<= (tay-xi n a (+ x0 delta)) (max x0 (+ x0 delta)))
(equal (f (+ x0 delta))

(+ (tay-sum 0 (1- n) x delta)
(tay-term n (tay-xi n a x) delta))))))

where the function tay-xi finds the point ξ used in the error term in Taylor’s
theorem. It is defined in terms of find-max-f-x, and its properties follow from
Rolle’s Lemma. Details of this proof can be found in [GM02].

4 Verification of a Square Root Algorithm

4.1 Description of the Algorithm

Following is the description of the square root algorithm used in the Power4
processor. First we introduce a few functions. We define expo(x) as the func-
tion that returns the exponent of x. Function ulp(x, n) returns the unit of least
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position; that is defined as:

ulp(x, n) = 2expo(x)−n+1.

This corresponds to the magnitude of the least significant bit of an n-bit pre-
cision floating point number x. Function near(x, n) rounds a rational number
x to a floating-point number with n-bit precision using IEEE nearest round-
ing mode. Function rnd(x,m, n) rounds x to an n-bit precision floating-point
number using rounding mode m, where m can be near, trunc, inf or minf cor-
responding to the four IEEE rounding modes [Ins]. The predicate exactp(x, n)
is true if x can be exactly represented as an n-bit IEEE floating-point number.
Thus exactp(near(x, n), n) and exactp(rnd(x,m, n), n) are true. These functions,
except ulp(x, n), are defined in the library distributed with the ACL2 system.

We assume that b is an IEEE double precision floating-point number sat-
isfying 1/2 ≤ b < 2 and discuss the algorithm to calculate the square root of
b. This restricted algorithm can be easily extended to the full range of IEEE
floating-point numbers, because the exponent of the square root is calculated by
dividing the exponent of b by 2.

In this algorithm, an on-chip table provides the initial 12-bit estimate of
the square root of b, which is named q0. Another on-chip table gives the 53-bit
rounded value of 1/q2

0 , which is denoted y0. In order to reduce the size of the
on-chip tables, the tables entries exist only for 1/2 ≤ b < 1. When 1 ≤ b < 2, the
algorithm looks up the table entries for b/2 and adjusts them by dividing y0 by
2 and multiplying q0 by *root2*, which is a precomputed 53-bit representation
of
√

2. The adjusted values are called y0s and q0s, respectively.
Let e = 1 − y0sb. The difference between the squares of q0s and

√
b can be

calculated as:
q2
0s − b ' q2

0s(1− by0s) = q2
0se.

By solving this equation with respect to
√

b, we get
√

b ' q0s

√
1− e ' q0s(1 + c0e + c1e

2 + c2e
3 + c3e

4 + c4e
5 + c5e

6)

where 1 + c0e + · · · + c5e
6 is a Chebyshev polynomial approximating

√
1− e.

Further manipulation of the right-hand side leads to the following:
√

b ' q0s + q0se(c0 + · · · c5e
5)

= q0s + q0s(1− y0sb)(c0 + · · · c5e
5)

' q0s + q0s(q2
0sy0s − y0sb)(c0 + · · · c5e

5)
= q0s + q0sy0s(q2

0s − b)(c0 + · · · c5e
5).

The algorithm in Table 1 uses this equation to calculate a better approxima-
tion q1 of

√
b. The procedure to obtain y0s from y0 is not explicit in Table 1 as

it is simply an exponent adjustment. Chebyshev coefficients c0 through c5 are
53-bit precision floating-point numbers obtained from an on-chip table. In fact,
we use two sets of Chebyshev coefficients, one of which is intended to be used for
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Table 1. Double-precision floating-point square root algorithms used in Power4.

Algorithm to calculate
√

b

Look up y0s

Look up q0

e := near(1− y0s × b, 53)
q0s := near(*root2*× q0, 53) if 1 ≤ b < 2

:= q0 if 1/2 ≤ b < 1
t3 := near(c4 + c5 × e, 53)
t4 := near(c2 + c3 × e, 53)
esq := near(e× e, 53)
t5 := near(c0 + c1 × e, 53)
e1 := near(q0s × q0s − b, 53)
t1 := near(y0s × q0s, 53)
t6 := near(t4 + esq × t3, 53)
q0e := near(t1 × e1, 53)
t7 := near(t5 + esq × t6, 53)
q1 := q0s + q0e × t7
sqrt-round(q1,b,mode)

0 ≤ e ≤ 2−6 and the other for −2−6 ≤ e < 0. Let c0p, c1p, c2p, c3p, c4p and c5p

be the set of coefficients intended for the positive case, and c0n, c1n, c2n, c3n, c4n

and c5n for the negative case. In our algorithm, the 6th fraction bit of b, instead
of the polarity of e, determines which set of coefficients will be used. This can
be justified by the fact that e tends to be positive when the 6th fraction bit of
b is 0, and negative otherwise. However, this relation between the 6th fraction
bit of b and the polarity of e is not always true, and we must verify that this
heuristic in selecting Chebyshev coefficients does not cause too much error. We
will come back to this in Section 5.

The function sqrt-round(q1, b,m) at the end of the algorithm represents the
hardwired rounding mechanism for the square root algorithm. It rounds the final
estimate q1 to the correct answer rnd(

√
b, m, 53), if the error of the final estimate

q1 is less than a quarter of the ulp, i.e.,

|q1 −
√

b| < ulp(q1, 53)/4.

Our verification objective is to prove that the final estimate q1 falls into this
required error margin.

4.2 Verification of the Algorithm

The proof of the square root algorithm has been mechanically checked by the
ACL2(r) prover. The proof outline is basically the same as that provided by
Agarwal et al[AGS99]. We describe the proof from the perspective of mecha-
nization, and explain what must be proven with Taylor’s theorem.

First we define the intermediate values q0s, y0s, e, t3, t4, esq, t5, e1, t1, t6, q0e, t7
and q1 that appear in Table 1 as ACL2(r) functions. These are, in fact, functions
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of b, but we omit the argument b for simplicity in the paper. The same is true
for the Chebyshev coefficients c0, c1, c2, c3, c4 and c5, which are selected from
two sets of coefficients depending on b. For each of the intermediate values, we
define ẽ, t̃3, t̃4, ˜esq, t̃5, ẽ1, t̃1, t̃6, ˜q0e and t̃7 as the infinitely precise value before
rounding. We define re, rt3 , rt4 , resq, rt5 , re1 , rt1 , rt6 , rq0e

and rt7 as the values
added to the infinitely precise values by rounding. Formally speaking:

ẽ = 1− y0s × b e = near(ẽ, 53) re = e− ẽ
t̃3 = c4 + c5 × e t3 = near(t̃3, 53) rt3 = t3 − t̃3
t̃4 = c2 + c3 × e t4 = near(t̃4, 53) rt4 = t4 − t̃4
˜esq = e× e esq = near( ˜esq, 53) resq = esq − ˜esq

t̃5 = c0 + c1 × e t5 = near(t̃5, 53) rt5 = t5 − t̃5
ẽ1 = q0s × q0s − b e1 = near(ẽ1, 53) re1 = e1 − ẽ1

t̃1 = y0s × q0s t1 = near(t̃1, 53) rt1 = t1 − t̃1
t̃6 = t4 + esq × t3 t6 = near(t̃6, 53) rt6 = t6 − t̃6
˜q0e = t1 × e1 q0e = near( ˜q0e, 53) rq0e

= q0e − ˜q0e

t̃7 = t5 + esq × t6 t7 = near(t̃7, 53) rt7 = t7 − t̃7

We also define µ as µ = y0sq
2
0s − 1.

From an automatic case-analysis of the look-up table, ACL2(r) can show that
|ẽ| < 2−6, |µ| ≤ 397/128 × 2−53, 50/71 ≤ q0s < 71/50 and 1/2 ≤ y0s < 2. The
amount rounded off by the nearest-mode rounding is at most half of the ulp as
stated in the following lemma.

Lemma 1. For rational number x and a positive integer n,

|near(x, n)− x| ≤ ulp(x, n)/2

By applying this lemma, we can show that |re| ≤ 2−60.
Furthermore, from the definition given above and Lemma 1, ACL2(r) proves

that other intermediate values satisfy the following conditions.

|t̃3| ≤ 2−5 + 2−11 |t3| ≤ 2−5 + 2−11 |rt3 | ≤ 2−58

|t̃4| ≤ 2−4 + 2−10 |t4| ≤ 2−4 + 2−10 |rt4 | ≤ 2−57

| ˜esq| ≤ 2−12 |esq| ≤ 2−12 |resq| ≤ 2−66

|t̃5| ≤ 2−1 + 2−7 |t5| ≤ 2−1 + 2−7 |rt5 | ≤ 2−54

|ẽ1| ≤ 2−5 + 2−50 |e1| ≤ 2−5 + 2−50 |re1 | ≤ 2−58

|t̃1| < 182
128 |t1| < 182

128 |rt1 | ≤ 2−53

|t̃6| ≤ 2−4 + 2−9 |t6| ≤ 2−4 + 2−9 |rt6 | ≤ 2−57

| ˜q0e| ≤ 182
128 × 2−5 |q0e| ≤ 182

128 × 2−5 |rq0e
| ≤ 2−58

|t̃7| ≤ 2−1 + 2−6 |t7| ≤ 2−1 + 2−6 |rt7 | ≤ 2−54

Next we represent each intermediate value as the sum of the formula the
intermediate value is intended to represent and an error term. For example, esq
is the sum of ẽ× ẽ and the error term Eesq = 2ẽre + r2

e + resq.

esq = (ẽ + re)× (ẽ + re) + resq

= ẽ× ẽ + 2ẽre + r2
e + resq

= ẽ× ẽ + Eesq,

11



From the magnitude of the intermediate values, the size of the error term Eesq

can be calculated as:

|Eesq| < 2|ẽ||re|+ |re|2 + |resq| < 2−64

Similarly, with appropriate error terms Eq0e
, Et3 , Et4 , Et5 , Et6 and Et7 , we

can represent qe0, t3, t4, t5, t6 and t7 in the following way.

q0e = q0s(ẽ + µ) + Eq0e |Eq0e
| ≤ 2−56

t3 = c4 + c5ẽ + Et3 |Et3 | ≤ 2−58 + 2−65

t4 = c2 + c3ẽ + Et4 |Et4 | ≤ 2−57 + 2−64

t5 = c0 + c1ẽ + Et5 |Et5 | ≤ 2−54 + 2−61

t6 = c2 + c3ẽ + c4ẽ
2 + c5ẽ

3 + Et6 |Et6 | ≤ 2−56 + 2−63

t7 = c0 + c1ẽ + c2ẽ
2 + c3ẽ

3 + c4ẽ
4 + c5ẽ

5 + Et7 |Et7 | ≤ 2−53 + 2−60

Let P (x) denote the polynomial3 c0 + c1x + c2x
2 + c3x

3 + c4x
4 + c5x

5. Then we
can represent the final estimate q1 as:

q1 = q0s + q0s(ẽ + µ)P (ẽ) + Eq1 |Eq1| ≤ 2−56

with an appropriate error term Eq1.
We are going to rewrite the last equation using a number of series approxi-

mation. Let us define

Esu =
√

1 + µ− (1 + µ/2)

Ese =
√

1− ẽ− (1− ẽ/2)
Echeb =

√
1− ẽ− (1 + ẽP (ẽ))

Further we define the following error terms:

Epet2 = P (ẽ)− (−1/2− ẽ/8)

Esb = q0s × Ese −
√

b× (Esu + µ/2)

Efinal = −3/8× q0sµẽ− q0sEcheb + µEsb/2 +
√

bEsu + Eq1 + q0sµEpet2

Then we can prove that
q1 =

√
b + Efinal.

This proof of this equation is long and tedious, but ACL2(r) can prove it us-
ing only five defthm proof commands. The details of the proof are provided in
[Saw02].

Let us assume that the following inequalities hold:

|Esu| ≤ 2−105 (1)
|Ese| ≤ 2−15 + 2−19 (2)

|Echeb| ≤ 3/2× 2−58 (3)
3 Since coefficients c0 through c5 depend on b, P (x) depends on b as well. In ACL2(r),

we define it as a function that takes b and x as its arguments.

12



Then, we can prove from the definition of Efinal that

|Efinal| < 2−55 ≤ ulp(b, 53)/4.

This implies that the final estimate q1 is less than one quarter of the ulp away
from

√
b. The inequalities (1)-(3) are proof obligations that we must resolve using

Taylor’s theorem.

5 Use of Taylor’s Theorem in Error Calculation

In this section, we prove the inequalities (1)-(3) from the previous section that
give the upper bounds of |Esu|, |Ese| and |Echeb|.

Since the square root function is infinitely differentiable and its derivatives
are continuous on the positive domain, we can apply Taylor’s theorem on its
entire positive domain. Let us define a(n, x) as:

a(n, x) =
1
n!

n−1∏
i=0

(
1
2
− i)x

1
2−n.

Function a(n, x0) gives the n’th Taylor coefficient for
√

x at x0. Thus Taylor’s
equation presented in Section 3 can be written for square root as:

√
x0 + δ =

n−1∑
i=0

a(i, x0)δi + a(n, ξ)δn.

Given that (nth-tseries-sqrt i x0 δ) represents i’th term in the Taylor
series a(i, x0)δi, we define the n’th degree Taylor polynomial in the ACL2(r)
logic as follows:

(defun tseries-sqrt (n x delta)
(if (zp n)

0
(+ (nth-tseries-sqrt (- n 1) x delta)

(tseries-sqrt (- n 1) x delta))))

We also define the term ξ in Taylor’s theorem as the function (taylor-sqrt-xi
n x δ) using the same principle as tay-xi. Then Taylor’s theorem as proved in
Section 3 can be instantiated to the following theorem:

(defthm taylor-theorem-on-sqrt
(implies (and (integerp n) (< 1 n) (<= n (tay-degree-ubound))

(realp x) (realp delta) (< 0 x) (< 0 (+ x delta)))
(equal (acl2-sqrt (+ x delta))

(+ (tseries-sqrt n x delta)
(nth-tseries-sqrt n (taylor-sqrt-xi n x delta) delta))))
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We can also prove that (taylor-sroot-xi n x δ) returns a real number that
is in the open segment (x, x + δ). The condition (<= n (tay-degree-ubound))
guarantees that n is i-limited in the sense discussed in Section 2.

Using this theorem, we will prove the upper bound of the error terms. An
upper bound of |Esu| can be directly calculated by applying Taylor’s theorem.
Since Esu is equal to the second degree Taylor remainder for the function

√
1 + µ

at µ = 0:

Esu =
√

1 + µ− (1 + µ/2) = −1
8
(1 + ξ)−

3
2 µ2.

Since |ξ| < |µ| ≤ 397
128 × 2−53, an upper bound of |Esu| is given as

|Esu| <
1
8
(1− 397

128
× 2−53)−

3
2 × (

397
128

× 2−53)2 < 2−105.

Similarly, the upper bound for |Ese| can be calculated as

|Ese| <
1
8
× (1− 2−6)−

3
2 × (2−6)2 < 2−15 + 2−19.

We also used the Taylor series in the calculation of an upper bound of
|Echeb| = |

√
1− ẽ − (1 + ẽP (ẽ))|. Since the Chebyshev polynomial 1 + ẽP (ẽ)

is a better approximation of
√

1− ẽ than the Taylor polynomial of the same de-
gree, using a Taylor polynomial in the measurement of this approximation error
is not straightforward.

Our approach is to divide the range of ẽ into small segments, generate a
Taylor polynomial for each segment, and use it to calculate the error of the
Chebyshev polynomial for every segment one at a time. Each segment should be
small enough so that the generated Taylor polynomial is far more accurate than
the Chebyshev polynomial. The range of ẽ is [−2−6, 2−6]. We divided it into 128
segments of size 2−12 and performed error analysis on each segment.

In order to carry out the proof on many segments efficiently, it is critical
to automate the error analysis at each segment. One of the major obstacles to
automatic analysis is that ACL2(r) cannot directly compute the square root,
because acl2-sqrt is defined using non-standard analysis, and it might return
irrational numbers which cannot be computed by ACL2(r).

Consequently, we used a function approximating the square root function.
The ACL2(r) function (iter-sqrt x ε) returns a rational number close to

√
x.

In this paper, we write
√

x
?
ε to denote this function. This function satisfies

√
x

?
ε×√

x
?
ε ≤ x and x−

√
x

?
ε ×

√
x

?
ε < ε for a positive rational number ε. From this, we

can easily prove that
√

x−
√

x
?
ε ≤ max(ε, ε/x).

Using this function, we define an ACL2(r) function a?(x, i, η) that calculates
the approximation of a(i, x0). More precisely,

a?(x, i, η) =
1
n!

n−1∏
i=0

(1/2− i)
√

x
?
ηx−n.
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Then we can show

|a(x, n)− a?(x, n, η)| ≤ 1
n!

n−1∏
i=0

(1/2− i)×max(η, η/x)x−n.

As discussed in Section 4, our algorithm selects Chebyshev coefficients from
two sets of constants depending on the 6th fraction bit of b. Let

Chebp(e) = 1 + c0pe + c1pe
2 + c2pe

3 + c3pe
4 + c4pe

5 + c5pe
6

Chebn(e) = 1 + c0ne + c1ne2 + c2ne3 + c3ne4 + c4ne5 + c5ne6

Then Echeb =
√

1− ẽ−Chebp(ẽ) when the 6th fraction bit of b is 0, and Echeb =√
1− ẽ− Chebn(ẽ) when it is 1.

Let us calculate the size of Echeb for the case where the 6th fraction bit of b
is 1. Even though the heuristics discussed in Section 4 suggests that ẽ tends to
be negative in this case, a simple analysis shows that −2−6 ≤ ẽ ≤ 3/2× 2−12; e
could take some positive numbers. We analyze the entire domain of ẽ by dividing
it into 66 small segments. We substitute e0−eδ for ẽ in

√
1− ẽ−Chebn(ẽ), where

e0 is one of the 66 constants −63 × 2−12, −62 × 2−12, . . ., 2 × 2−12, while eδ

is a new variable that satisfies 0 ≤ eδ ≤ 2−12. The upper bound for the entire
domain of ẽ is simply the maximum value of all the upper bounds for the 66
segments.

The upper bound for |Echeb| can be represented as the summation of three
terms.

|
√

1− e0 + eδ − Chebn(e0 − eδ)| ≤

∣∣∣∣∣√1− e0 + eδ −
5∑

i=0

a(1− e0, i)e
i
δ

∣∣∣∣∣ +∣∣∣∣∣
5∑

i=0

a(1− e0, i)e
i
δ −

5∑
i=0

a?(1− e0, i, η)ei
δ

∣∣∣∣∣ +∣∣∣∣∣
5∑

i=0

a?(1− e0, i, η)ei
δ − Chebn(e0 − eδ)

∣∣∣∣∣ .

An upper bound for the first term can be given by applying Taylor’s theorem.

|
√

1− e0 + eδ −
5∑

i=0

a(1− e0, i)e
i
δ| ≤ |a(ξ, 6)e6

δ| ≤
1

6!

5∏
i=0

|1
2
− i||ξ−

11
2 ||e6

δ|

<
1

6!

5∏
i=0

(
1

2
− i)×max((1− e0)

−6, (1− e0)
−5)× 2−78.

Here ξ is the constant satisfying Taylor’s theorem such that 1 − e0 < ξ <
1− e0 + eδ. Note that this upper bound can be calculated by ACL2(r) as it does
not contain square root nor variables.
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The upper bound for the second term can be calculated as follows:∣∣∣∣∣
n−1∑
i=0

a(1− e0, i)e
i
δ −

n−1∑
i=0

a?(1− e0, i, η)ei
δ

∣∣∣∣∣ ≤
n−1∑
i=0

|a(1− e0, i)− a?(1− e0, i, η)| ei
δ

≤
n−1∑
i=0

{
2−13i

i!

i−1∏
j=0

(1/2− j)×max(η, η/(1− e0))× (1− e0)
−i

}
.

We chose η to be 2−60 to make this term small enough. Again the upper bound
has no variables involved and can be calculated by ACL2(r).

The third term is the difference between the Chebyshev series approximation
and the Taylor series approximation. Since e0 and η are constant in the third
term, we can simplify the term

∑5
i=0 a?(1−e0, i, η)ei

δ−Chebn(e0−eδ) into a poly-
nomial of eδ of degree 6. Here having the computational function a?(1− e0, i, η)
rather than the real Taylor coefficient allows ACL2(r) to automatically simplify
the formula. We denote the resulting polynomial as

∑6
i=0 bie

i
δ, where coefficient

bi is a constant automatically calculated by ACL2(r) during the simplification.
Then the upper bound can be given as∣∣∣∣∣

5∑
i=0

a?(1− e0, i, η)ei
δ − Chebn(e0 − eδ)

∣∣∣∣∣ = |
6∑

i=0

bie
i
δ| ≤

6∑
i=0

|bi| × 2−13i.

By adding the three upper bounds, we can prove that

|
√

1− e0 + eδ − Chebn(e0 − eδ)| < 3/2× 2−58.

for all 66 values for e0. This is the upper bound of |Echeb| when the 6th fraction
bit of b is 1. Similarly, we can prove that |

√
1− e0 + eδ − Chebp(e0 − eδ)| <

3/2×2−58 for the case where the 6th fraction bit is 0. In this case, −6/5×2−12 ≤
ẽ ≤ 2−6. Since the ranges of ẽ are overlapping for the two cases, we repeat the
upper bound analysis on some segments. Summarizing the two cases, |Echeb| has
the upper bound 3/2×2−58. This will complete the proof of the previous section.

Each step of this proof has been mechanically checked by ACL2(r). By mak-
ing the upper bounds of the error terms computational by ACL2(r), this unbound
calculation for the hundreds of segments was performed automatically.

6 Discussion

We mechanically proved Taylor’s theorem using non-standard analysis imple-
mented in ACL2(r), and then we used it to formally verify that the Power4
square root algorithm satisfies an error size requirement. One major challenge
for its verification was evaluating the approximation error for the Chebyshev
polynomial. We have performed error size calculation of the Chebyshev polyno-
mial in hundreds of small segments. For each segment, a Taylor series is generated
to evaluate the approximation error of the Chebyshev series. This type of proof
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can be carried out only with a mechanical theorem prover or other type of com-
puter program, because the simplification of hundreds of formulae is too tedious
for humans to carry out correctly.

One might wonder why we did not prove theorems about Chebyshev series
and use them in the error size analysis. One answer is that the mathematics
behind Chebyshev series is much more complex than Taylor series. We believe
our approach is a good mix of relatively simple mathematics and the power of
mechanical theorem proving.

The upper bound proof of the Chebyshev series approximation was carried
out automatically after providing the following:

1. ACL2(r) macros that automates the proof for small segments.
2. Computed hints that guides the proof by case analysis.
3. A set of rewrite rules that simplify a polynomial of rational coefficients.

Since this proof is automatic, we could change a number of parameters to try
different configurations. For example, we changed the segment size and η used
to calculate

√
x
∗
η. In fact, Chebyshev series approximation error was obtained

by trial-and-error. At first, we set a relatively large number to an ACL2(r) con-
stant *apx error* and ran the prover to verify |Echeb| <*apx error*. If it is
successful, we lowered the value of *apx error*, iterated the process until the
proof failed.

The approximation error analysis using Taylor series requires less compu-
tational power than brute-force point-wise analysis. When |ẽ| ≤ 2−6, the value√

1− ẽ ' 1− ẽ/2 ranges approximately from 1−2−7 to 1+2−7. In order to prove
that the error of its Chebyshev series approximation is less than 1.5× 2−58, our
estimate suggests that we need to check over 250 points, assuming the mono-
tonicity of the square root function. On the other hand, the entire verification
of the square root algorithm using Taylor’s polynomials took 673 seconds on a
Pentium III 400MHz system. It is not sheer luck that we could finish the error
calculation by analyzing only hundreds of segments. Because the n’th degree
Taylor remainder for the square root function is O(dn) for the segment size d,
the approximation error by a Taylor series quickly converges to 0 by making the
segment smaller when n is, say, 6. We believe that we can apply our technique
to other algorithms involving series calculations.
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