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Abstract

The LDL system provides a declarative logic-based language and
integrates relational database and logic programming technologies so
as to support advanced data and knowledge-based applications. This
paper contains a comprehensive overview of the system and contains
a description of the LDL language and the compilation techniques
employed to translate LDL queries into target queries on the stored
data. The paper further contains a description of the architecture and
runtime environment of the system and the optimization techniques
employed in order to improve the performance and assure the safety
of the compiled queries. The paper concludes with an account of the
experience gained so far with the system, and discusses application
areas where the LDL approach appears to be particularly effective.

1 Introduction

The objective of the Logic Data Language (LDL) System is to develop the
technology for a new generation of database systems that support the rapid
development of sophisticated applications—such as expert systems and ad-
vanced scientific and engineering applications. This objective is not new,
since there has been considerable interest in database languages [BaBu],
which have been proposed as the vehicle for facilitating the development
of complex data intensive applications, and bridging the gap between the
database and the programming language—this gap is often described as
∗Now at Bell Communication Research, Morristown, N.J, 07960
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an ‘impedance mismatch’ [CoMa]. Yet, the approach favored by previous
researchers has been that of interfacing relational DBMSs to traditional
languages [RIGEL, Sch77] More recently, major efforts have been made to
integrate databases and programming languages under the Object-Oriented
paradigm [KiLo]. These approaches tend to abandon relational databases in
favor of an object-oriented one—often supporting a limited query capability
and the navigational query style of pre-relational systems. In contradistinc-
tion with these approaches, the LDL research has taken the viewpoint that
full programming capabilities can and should be achieved through exten-
sions of relational query languages, and through technology advances that
provide efficient support for this as an integral part of the database man-
agement system. It is also believed that such a system represents an im-
portant way-station toward future Knowledge Management Systems, which
will have to combine efficient inference mechanisms from Logic with efficient
and secure management of large information banks from Database Systems.
Toward this goal, the LDL project, which began in 1984, has produced a
new language, new techniques for compilation and query optimization and
an efficient and portable prototype. This paper recounts this experience and
various lessons learned in this effort.

1.1 Overview

From the beginning, LDL was designed as a rule-based extension to rela-
tional domain calculus based languages. (In a domain calculus, variables
stand for values, rather than tuples as in tuple-oriented calculus.) This was
largely due to the influence of Prolog, and also to QBE (in-line version).
It was felt that the expressive power of the former and the ease of use of
the latter provided more desirable beacons for our endeavor than a straight
extension of SQL. Yet, domain calculus and tuple calculus are known to be
equivalent [Ull], and the overall techniques used for implementing LDL can
be easily applied to suitable SQL extensions.

The basic research challenge faced was to provide a system that com-
bined the expressive power of Prolog with the functionality and facilities
of Data Base Management Systems (DBMSs), such as, support for trans-
actions, recovery, schema-based integrity, and efficient management of sec-
ondary storage. It soon became clear that an approach based on coupling
Prolog with relational databases [Boc, CeGW, KuYo, Li, JaCV] would not
support the level of functionality, performance and ease of use that we were
seeking. We realized that a fully integrated system is required, where there
is no distinction between query language and application language, and that
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arduous research challenges stood in the way of realizing such a goal.
The first issue that came into focus was that of users’ responsibility for

execution control. In the ’70s and early ’80s, the database field had witnessed
a dramatic evolution from navigational systems into relational ones. In navi-
gational systems, such as Codasyl-compliant DBMSs, the programmer must
explicitly navigate through the maze of database records, paying careful at-
tention to the sequential order in which these records are visited—the key
to efficiency. In relational DBMSs, instead, the user is only responsible for
the formulation of a correct query (using logic-based languages of limited
expressive power, such as SQL or QUEL [Ull]). A special system module,
called the query optimizer, then compiles each query into an efficient exe-
cution plan. By contrast, in Prolog, the programmer must carefully order
rules and goals to ensure efficient execution and termination. This basic
mismatch, from which all systems coupling Prolog with relational DBMSs
suffer, also challenged LDL’s quest for a harmonious integration, leaving
two alternative paths open [Zan1]. One consisted of adding navigational
database facilities to a Prolog-like language; the other of rejecting the nav-
igational (procedural) semantics of Prolog, in favor of a purely declarative
one, whereby the order of goals and rules in a program becomes immaterial.

In the fall of 1984, the critical decision was taken to pursue the sec-
ond solution, with the expectation that it would provide better usability
and suitability for massive parallelism, and it will lead to more exciting
research problems and technology break-throughs. As described in the fol-
lowing paragraphs, this early decision had profound repercussions on both
the design of the language and its implementation.

A Prolog programmer must be keenly aware of its sequential execu-
tion model (SLD-resolution where the leftmost goal and the first rule is
selected [vEKo, Llo]), not only because the termination and performance of
the program will depend on it, but also because the very semantics of the
many non-Horn constructs —primarily cuts, and updates, but also negation
and ‘set-of’ predicates— are based on such an execution model. These non-
Horn constructs were introduced in Prolog to obtain the expressive power
needed for application development. Having decided to divorce execution
from the order of rules and goals in the program, the first technical challenge
facing LDL research was to provide a clean design and a formal declarative
semantics for the non-Horn constructs that were needed in the language for
reasons of expressive power. The result is a language that is very different
from Prolog in terms of the constructs and programming style it entails.

Most design choices regarding the LDL implementation approach were
dictated by the need for supporting database applications efficiently. Thus,
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in LDL only rules are compiled. The fact base is described at compile
time by a schema, and can then be updated freely at run time with no
need for program interpretation or recompilation. This is a first difference
from Prolog systems where facts and rules are treated in the same way
(thus requiring interpretation when facts are changed). Furthermore, we
concluded that the implementation technology of Prolog and systems based
on backward-chaining, which is based on efficient implementations of SLD-
resolution and unification [Llo, War], was too dependent on main memory,
and a different approach was needed to obtain maximum performance on
secondary-storage resident data. Thus, a simpler execution model was se-
lected that is based upon the operations of matching and the computation of
least fixpoints through iterations. A benefit of this approach is that match-
ing operators on sets of facts can be implemented using simple extensions
to the Relational Algebra [Zan2, Zan3] used by many relational databases.
A second advantage is that since recursion has been replaced by iteration,
we can now use a simpler and more static environment for execution.

Having chosen a simpler target language, the LDL designers were faced
with the challenge of designing a more sophisticated compiler to support the
full functionality of the source language. The approach chosen is built on
two pillars:

• the use of global analysis to infer the bindings induced by a specific
query in rules and goals, and

• the compilation methods which rewrite recursive programs that, as
such, are not efficient or safe to implement by fixpoint computations
into equivalent programs that are.

The first LDL implementation, completed in 1987, was based on a com-
piler using an early version of a language called FAD as the target language,
and on an interpreter for this language [DaKV]. FAD is a language based
on relational algebra that is supported by a massively parallel database ma-
chine designed at MCC. While this experiment produced a fully functional
system, FAD was then dropped as the target language for the following
reasons. The FAD interpreter that was available was not robust and fast
enough to support serious experimentation. Furthermore, the only FAD im-
plementation which was to be made available was for a large and expensive
parallel system—hardly an affordable and portable vehicle for the release
of LDL. This led to the decision of designing and developing SALAD—an
efficient and portable LDL system for UNIX. This implementation assumed
a single-tuple get-next interface between the compiled LDL program and
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the underlying fact manager. The single-tuple framework created an op-
portunity for refinements and optimization that was not available in the
framework of relational algebra. The implementation included a fact man-
ager for a database residing in virtual memory that supported efficient access
to the complex and variable record structures available in LDL.

The completion of the SALAD prototype in 1988 made it possible to
start developing interesting applications in LDL. Various extensions and
improvements were added to the system as a result of this experience. As
the system improved, we have expanded the domain of its applications be-
yond traditional database applications. Owing to its open architecture and
its compiling into C, SALAD finds applications as a rule-based system for
rapid prototyping of applications in the C environment. An incipient un-
derstanding of a paradigm for programming in LDL has also emerged from
this experience, along with various ideas for desirable improvements.

1.2 Structure of the Paper

Section 2 summarizes key techniques and concepts implemented in the system—
most of them novel and untried techniques developed by the LDL researchers
or by parallel efforts, such as [Meta]. Thus, Section 2.1 gives a brief sur-
vey of the novel features of the language, while 2.2 summarizes the rule
compilation techniques for constant pushing and efficient implementation of
recursion. Section 2.3 describes the various execution schemes supported by
the system, while 2.4 describes the optimizer that, at compile time, selects
a safe and efficient execution for the given query.

Section 3 describes the architecture and implementation of SALAD, in-
cluding a discussion of the main modules (Section 3.1), various techniques
for peephole optimization (Section 3.2) and the fact manager (Section 3.3).

Section 4 recounts our experience with LDL and SALAD and with using
them in novel application areas.

2 Enabling Technology

2.1 Language Design

The language was designed to combine the declarative style of relational
languages with the expressive power of Prolog. Concretely, that meant
using Horn Clauses as Prolog did, and rejecting all the remaining Prolog
constructs, such as negation, set of, updates, cuts, etc. These constructs
were added to Prolog to obtain the expressive power necessary for writing
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general applications. While Horn Clauses have a well-defined declarative
semantics, these additional constructs only had an operational semantics
which is based on Prolog’s execution model. Thus, a first challenge in our
work was to design into the language proper constructs for negation, sets,
updates and non-determinism and give them a formal semantics that ex-
tends that of Horn Clauses. This semantics can be formally defined using
the notion of minimal model; an alternative but equivalent definition based
on the notion of least fixpoint is also possible [vEKo, Llo]. A detailed discus-
sion of the LDL design is outside the scope of this paper which focuses on
implementation issues. Thus, we will only provide a brief discussion of the
main constructs to illustrate the richness of the language and the complexity
of compilation and optimization issues posed by its implementation. The
reader interested in a detailed discussion of LDL and its formal semantics
is referred to [NaTs].

Languages such as DATALOG support rules and recursion. A full Horn
Clause language also supports complex terms through the use of function
symbols. Thus, for instance, the record of an employee could have the
following form:

employee(name(joe, doe), admin,
education(high school, 1967))

Along with the employee name we find the department where he works
(admin) and his education. While admin is a simple term, the other two are
complex terms, entailing an internal structure of unrestricted complexity.
For instance, in the education field, one may want to keep more detailed
information (such as school name, level and major) for people with college
degrees, and, for instance, have a record of the following format:

employee(name(joe, cool), sales,
education(college(harvard, bs, math), 1971))

Each sub-argument can be further refined into a more detailed descrip-
tion, thus enabling the modeling of objects of arbitrarily complex structure—
including recursive structures such as lists and trees. LDL has enhanced
this complex term capability by providing for set terms and nested rela-
tions. Thus, we can now have a complete education record for a person as
follows:

employee(name(joe, smart), mts,
education({(high school, 1967),

(college(harvard, bs, math), 1971)
(college(harvard, ms, engr), 1973) })).
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Set terms in LDL are first class citizens, having the well-known prop-
erties of sets, such as commutativity and idempotence— but not associa-
tivity [BNST, ShTZ]. In addition to nested relations, LDL provides simple
constructs for nesting and unnesting these relations.

The problem of negated goals in recursive rules represents one of the
main research challenges in defining a declarative semantics for LDL. This
problem has been resolved with the introduction of the rather natural con-
cept of stratification [ApBW, Naq, Prz]. Informally speaking, this result
disallows the circular definition of a predicate using the negation of the
same. Similar constraints must also be observed when defining the nesting
of sets [BNST, ShNa].

Updates were defined so as to allow the full use of these constructs
in rules and to support the notion of database transactions [NaKr]. The
difficult problem of formalizing their semantics was solved through the use
of dynamic logic [Har]. The semantics so defined reduces to first order logic
in the absence of updates.

Finally, the notion of functional dependencies was used to support non-
determinism through a construct called choice [KrN1].

2.2 The Compilation Problem

The LDL compiler performs several functions, beginning with the parsing
of the rules into a Predicate Connection Graph (PCG) [KeOT] and end-
ing with the code generation phase. Some details of this complex process
are discussed in Section 3, others are beyond the scope of this paper. In
this section, we describe the rule rewriting phase which is the conceptual
kernel of the compiler. The objective of this is to specialize and refine the
original program into one that is specialized for the particular constraints
resulting from the query and rules at hand. To a large extent, this process
can be viewed as a generalization of the well-known principle of pushing
selection and projection operations into relational expressions. This com-
pilation phase begins when a query form is given, i.e., a query with mode
declarations specifying the arguments that will be given (ground) at actual
query time. Then, the constant migration step for non-recursive predicates
is performed. For instance, consider the query form

?grandma($X,Y).

(where $X denotes that a value is to be supplied at actual query time) and
the following set of rules:
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grandma(X,Z) ← parent(X,Y), mother (Y,Z).
parent(X,Y) ← father(X,Y).
parent(X,Y) ← mother(X,Y).

The constant migration step will actually insert $X (since this value is known
at run time, it is treated as a constant by the compiler) into the correspond-
ing arguments and variables in the rules, yielding

?grandma($X,Y).
grandma($X,Z) ← parent($X,Y), mother (Y,Z).
parent($X,Y) ← father($X,Y).
parent($X,Y) ← mother($X,Y).

This set of rules can be further simplified by dropping the first argument in
grandma and parent:

?grandma’(Y).
grandma’(Z) ← parent’(Y), mother (Y,Z).
parent’(Y) ← father($X,Y).
parent’(Y) ← mother($X,Y).

Thus, the original program has been specialized for the given query form.
Furthermore, since $X has been migrated from the query form into the
database predicates (father and mother), the corresponding selection op-
eration has been pushed from the root of the relational algebra tree repre-
senting the query to the leaf nodes, where the selection is applied against
the database tuples [Ull]. This ‘selection pushing’ operation, which is the
linchpin of the query processing strategy of relational systems [KrZa, Ull],
is implemented here by simple rule transformation techniques.

The treatment of recursive predicates is, in general, more complex. The
program specialization approach described above works for some simple
cases of recursive predicates. For instance, the following query

?anc(marc, Z).
anc(X, Z) ← anc(X, Y), parent(Y, Z).
anc(X, X) ← person(X).

can be supported by specializing the anc rules into

anc(marc, Z) ← anc(marc, Y), parent(Y, Z).
anc(marc, marc) ← person(marc).

and then dropping the constant argument from anc to yield:
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anc’(Z) ← anc’(Y), parent(Y, Z).
anc’(marc) ← person(marc).

A single fixpoint iteration computes this transitive closure efficiently.
The original query condition is now applied directly to the datum parent
relation and not the derived anc relation, i.e., selection has been pushed
inside recursion. Furthermore, a refinement of fixpoint known as semi-naive
fixpoint is used to solve this problem [Ban, BaR, Ull, SaZ4]. The seminaive
fixpoint iteration basically will begin by computing the parents of marc and
then the parents of the parents, and so on until no new ancestor is found.

More complex rewriting is required, however, before the following query
can be mapped into a single fixpoint:

?anc(X, brian).

Here, the recursive rule must be first rewritten in its right-linear form, as
follows:

anc"(X, Z) ← parent(X,Y), anc"(X, Z).

Then, the specialization approach can be applied, resulting in linear tran-
sitive closure kind of rules that are easily mapped into a single seminaive
fixpoint.

Because of the frequency with which simple transitive-closure type of
rules are encountered, the LDL compiler performs some sophisticated anal-
ysis to recognize cases where the recursion can be supported efficiently
through a single fixpoint computation.

However, there are many situations were constants cannot be pushed
into recursion [AhUl], and, therefore, a recursive goal with bound arguments
cannot be computed efficiently or safely by a single fixpoint computation.
(The problem of detecting when constants can be pushed into recursion is
in general undecidable [Bet2]).

Thus, more complex rewriting techniques are used to handle the general
case. Take, for instance, the well-known same generation example (two
individuals are of the same generation if their parents are, and everyone is
of the same generation as him/herself).

sg(X,X).
sg(X,Y) ← parent(X, XP), sg(XP, YP), parent(Y, YP).

A query such as,

?sg(marc, X).
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cannot be supported by the rules obtained by replacing X by marc. More-
over, a bottom-up computation is impossible since the exit rule, sg(X,X),
could qualify an infinite number of tuples. Similar problems occur in compu-
tational procedures, such as list-append, where taking advantage of bound
arguments is essential for a safe and efficient implementation.

A considerable amount of research has been devoted to this key problem
and the reader is referred to [BaRa] for an overview of these techniques. The
LDL compiler uses the magic set method [BMSU, SaZ2] and the generalized
counting method [SaZ3], which are expressible by rule rewriting scripts and
lead to efficient implementations using fixpoint computations. In a nutshell,
these methods take a recursive clique that, for the given query, cannot be
supported well by means of a fixpoint computation and recast it into a pair
of connected recursive cliques, each amenable to efficient fixpoint implemen-
tation.

This transformation can be illustrated by the example where people of
the same generation as marc are sought. One alternative way to find these
people consists of

• deriving the ancestors of marc and counting the levels as we go up
(marc being a zero level ancestor of himself).

• once an ancestor of marc, say X, is found, then the descendants of X
are computed, while levels are counted down. Descendants for which
the level counter is zero are of the same generation as marc.

We can express the previous computations as follows (J+1 and J-1 denote
the respective successor and predecessor of the integer J):

sg.up(0, marc).
sg.up(J+1, XP) ← parent(X, XP), sg.up(J, X).
sg.down(J, X) ← sg.up(J, X).
sg.down(J-1,X) ← sg.down(J, YP), parent(Y, YP).
?sg.down(0,X).

Thus, the initial recursive clique has been reformulated into a pair of re-
cursive cliques connected via the index J. Each recursive clique can now be
implemented efficiently and safely using a fixpoint computation (indeed each
is basically a transitive closure operation).

The equivalence preserving transformation that we have just introduced
using the intuitive semantics of ancestry, can be performed with full gen-
erality on a purely syntactic basis. Indeed, observe that in the succession
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of recursive calls generated by the goal sg(marc, X), X and XP are bound
whereas Y and YP are not. Thus, the recursive sg.down rule is basically con-
structed by dropping the bound arguments and retaining the others, while
a new argument is added to perform the count-down. The recursive rule
for sg.up is instead built by retaining the bound arguments and then ex-
changing the recursive predicate in the head with that in the tail of the rule
(indeed, we want to simulate a top-down computation by a bottom-up one),
and then adding the count-up indexes. Also observe that the original exit
rule is used to glue together the up and down computations. Finally, the
bound part of the query goal becomes the new exit rule for sg.up, while
the unbound part becomes the new query goal. The generalized and for-
mal expression of these rule rewriting techniques, known as the generalized
counting method are given in [SaZ3].

The counting method is very efficient for acyclic databases, but will loop
forever, as Prolog does, for cyclic databases, e.g., for the same-generation
example above, if the parent relation has cycles. The magic set method
can be used to solve the cycle problem and also for complex recursive situ-
ations [BMSU, SaZ2].

While no function symbols were present in the previous examples, all the
compilation techniques just described apply when these are present. This
entails the manipulation of trees, lists and complex structures.

Another area of considerable innovation in the LDL compiler is the sup-
port for set terms. Set terms are treated as complex terms having the com-
mutativity and idempotence properties. These properties are supported via
compile time rule transformation techniques, that use sorting and various
optimization techniques to eliminate blind run-time searches for commuta-
tive and idempotent matches [ShTZ].

2.3 Modes of Execution

Even though LDL’s semantics is defined in a bottom-up fashion fashion (e.g.,
via stratification), the implementor can use any execution that is faithful to
this declarative semantics. In particular, the execution can be bottom-up
and top-down as well as hybrid executions that incorporate memoing [Mi68].
These choices enable the optimizer/compiler to be selective in customizing
the most appropriate mode for the given program.

As a first approximation, it is easy to view the LDL execution as a
bottom up computation using relational algebra. For instance, let p(...)
be the query with the following rule, where p1 and p2 are either database
or derived predicates:
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p(X,Y) ← p1(X,Z), p2(Z,Y).

Then, this query can be answered by first computing the relations repre-
senting p1 and p2 and then computing their join followed by a projection.
In actuality, the LDL optimizer and compiler can select and implement the
rule above using four different execution modes, as follows:
• Pipelined Execution computes only those tuples in p2 that join

with tuples of p1 in a pipelined fashion. This avoids the computation
of any tuple of p2 that does not join with p1 (i.e., no superfluous
work), whereas, if a tuple in p2 joins with many tuples in p1 then it
is computed many times.

• Lazy Pipelined Execution is a pipelined execution in which, as the
tuples are generated for p2, they are stored in a temporary relation,
say rp2, for subsequent use. Therefore, any tuple in p2 is computed
exactly once even if it is used many times (i.e., amortized work as well
as no superfluous work of pipelined execution). Further, as both these
pipelined executions compute p2-tuples one at a time, it is possible to
avoid residual computation in the case of intelligent backtracking—this
will be called backtrackable advantage.

• Lazy Materialized Execution proceeds as in the lazy pipelined case
except that, for a given Z-value, all tuples in p2 that join with the tuple
in p1 are computed and stored in a relation before proceeding. The
main advantage of this execution is that the execution is reentrant (a
property that is important in the context of recursion), whereas the
above two pipelined execution are not as they compute tuples of p2
one at a time. On the other hand, this execution does not have the
backtrackable advantage.

• Materialized Execution computes all tuples in p2 and stores them
in the relation, say rp2. Then, the computation proceeds using the
tuples from rp2. Note this has the amortized work and reentrant ad-
vantages but lacks the backtrackable and superfluous work advantage.

Note that the above discussion can be generalized to any OR-node with a
(possibly empty) set of bound arguments.

In conclusion, the pipelined execution is useful if the joining column is a
key for p1, whereas the materialized execution is the best if all the Z-values
of p2 are joined with some p1 tuple. Note that in both of these cases, the
respective lazy evaluation incurs more overhead due to the checking that is
needed for each p1 tuple. The reentrant property is especially useful if the
predicate is in the scope of a recursive query that is being computed top-
down. Therefore, in such cases, lazy materialized execution is preferred over

12



lazy pipelined execution. Otherwise, lazy pipelined execution is preferred to
exploit the backtrackable property.

Even though we have limited our discussion here to a single non-recursive
rule, this can be generalized to include arbitrary rules with recursion. This
is presented in detail in [CGK89b].

2.4 The Optimization Problem

The query optimizer is delegated the responsibility of choosing an optimal
execution —a function similar to that of an optimizer in a relational database
system. The optimizer uses the knowledge of storage structures, information
about database statistics, estimation of cost, etc. to predict the cost of
various execution schemes chosen from a pre-defined search space and select
a minimum cost execution.

As compared to relational queries, LDL queries pose a new set of prob-
lems which stem from the following observations. First, the model of data is
enhanced to include complex objects (e.g., hierarchies, heterogeneous data
allowed for an attribute). Secondly, new operators are needed not only to op-
erate on complex data, but also to handle new operations such as recursion,
negation, etc. Thus, the complexity of data as well as the set of opera-
tions emphasize the need for new database statistics and new estimations of
cost. Finally, the use of evaluable functions (i.e., external procedures), and
function symbols in conjunction with recursion, provide the ability to state
queries that are unsafe (i.e., do not terminate). As unsafe executions are
a limiting case of poor executions, the optimizer guarantees the choice of a
safe execution.

We formally define the optimization problem as follows: “Given a query
Q, an execution space E and a cost model defined over E, find an execution
in E that is of minimum cost.” We discuss the advances in the context of this
formulation of the problem. Any solution to this problem can be described
along three main coordinates: (1) execution space, (2) search strategy, and
(3) cost model.

2.4.1 Search Space and Strategies

The search space for optimal executions is defined by set of all allowable
executions. This in turn is is defined, by a set of (i) execution graphs and
(ii) for each graph, a set of allowable annotations associated with its nodes.

An execution graph is basically a structure of nested AND/OR graphs.
This representation is similar to the predicate connection graph [KeOT], or
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rule graph [Ull], except that we give specific semantics to the internal nodes
as described below. The AND/OR graph corresponding to a nonrecursive
program is the obvious graph with AND/OR nodes having one-to-one cor-
respondence to the head of a rule and predicate occurrence. A recursive
predicate occurrence, p, has subtrees whose roots correspond not only to
the rules for this predicate but also to the rules in the recursive clique con-
taining p. Intuitively, the fixpoint of all the rules below this OR node (i.e.,
predicate occurrence for p) need to be computed, to compute p.

The annotation provides all other information that is needed to model
the execution. Intuitively, a parameter or property is modeled as an anno-
tation if, for a given structure of the execution graph, the optimal choice of
that information can be greedily chosen. For example, given the ordering
(i.e., the structure) of the joins for a conjunctive query, the choice of access
methods, creation of indices, and pushing of selection are examples of choices
that can be greedily decided. On the other hand, the pushing of selection
into a recursive clique is not a property that can be greedily chosen.

For instance, annotations define which of the four execution methods
previously described are to be used. Each predicate occurrence (i.e., OR
node) is annotated with an execution method. In addition, annotations
describe which indexes should be used and whether duplicate elimination
should be performed at the particular node.

Much effort has been devoted in devising efficient search strategies and
enabling the optimizer to use alternative strategies, including exhaustive
search, stochastic search and polynomial algorithms.

The traditional DBMS approach to using exhaustive search is to use the
dynamic programming algorithm proposed in [Seta]. It is well known that
even this is rendered useless if there is a join of 15 relations. In [KrZa] we
propose an exhaustive search for optimizing LDL programs over the execu-
tion space. This approach is feasible as long as the number of arguments
and the number of predicate occurrences in the body are reasonably small
(i.e., 10).

Stochastic approaches provide effective means to find a near-optimal
solution. Intuitively, near-optimal executions can be found by picking, ran-
domly, a “large” sub-set of executions from the execution space and choos-
ing the minimum cost execution. Simulated Annealing [IoWo], and varia-
tion thereof [SG88], are very effective in limiting the subset which must be
searched before a reasonable approximation is found.

Polynomial search algorithms can be obtained by making some simplify-
ing assumptions on the nature of cost functions. In [KrBZ], we presented a
quadratic time algorithm that computes the optimal ordering of conjunctive
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queries when the query is acyclic and the cost function satisfies a linearity
property called the Adjacent Sequence Interchange (ASI) property. Further,
this algorithm was extended to include cyclic queries and other cost models.

2.4.2 Cost Estimates and Safety

The cost model assigns a cost to each execution, thereby ordering them.
Intuitively, the cost of an execution is the sum of the cost of its individual
operations. Therefore, the cost function must be capable of computing the
cost of each operation based on the descriptors of the operands. Three
major problems are faced in devising such cost functions: 1) computation
of the descriptors, 2) estimating the cost of external predicates, 3) safety of
recursive queries.

In the presence of nested views, especially with recursion and complex
objects, estimating the descriptor for a relation corresponding to a predicate
is a very difficult problem. This is further complicated by the fact that logic
based languages allow the union of non-homogeneous sets of objects. The
net effect is that the estimation of the descriptor for any predicate is, in
effect, computing the query in an algebraic fashion. That is, the program
is executed in the abstract domain instead of the concrete domain. For
instance, the age attribute may take on values such as 16 in the concrete
domain whereas, in the abstract domain, it takes on values such as integer
between 16 to 65. Obviously, computation in this domain is very difficult
and approximations to such computation had to be devised that are not
only efficient but are also effective.

In LDL, external procedures (e.g., ‘C’ programs) are treated in an inter-
changeable manner with any predicate. Intuitively, the external procedure is
viewed as an infinite relation satisfying some constraints. Therefore, a con-
cise descriptor of such an infinite relation must be declared in the schema,
and the cost functions for the operations on these infinite relations must be
devised. The abstraction of the approach taken in LDL has been presented
in [CGK89c]. This approach integrates it with the traditional optimization
framework in a seamless fashion.

The cost model must associate an infinite cost for an execution that
computes an infinite answer or that never completes. Such unsafe queries
are to be detected so that the Optimizer can avoid choosing them. For
example consider the following definition of all integers from zero to a given
integer K.

int(K, 0) ← k ≥ 0.
int(K, J) ← int(K, I), I<K, J=I+1.
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As intended, the above program is unsafe when all arguments are free. So
let us discuss the safety of this predicate when the first argument is bound
and the second is free. Note that for each iteration of the recursive rule, the
value of J is increasing and there is an upper bound on the value, which is
the given value of K. Thus it can be concluded that the number of iterations
is finite and each iteration produces only finite tuples. Consequently, the
rule is safe.

In general, the problem of checking for safety is undecidable. The safety
checking algorithm proposed in [KrRS] is to find a well-founded formula that
can be used as a sufficient condition to guarantee safety. This algorithm is
an enumerative algorithm that exhausts an exponential number of cases, to
ensure the existence of a well-founded formula for each recursive cycle. The
enumerative algorithm guesses well-founded formulae and checks each one
of them until one is found to be satisfied.

3 System Architecture

Figure 1 shows the conceptual architecture for the current LDL prototype1.
There are six basic components or modules in the current prototype: the
User Interface, the Fact Manager, the Schema Manager, the Query Manager,
the Rule Manager and the Query Form Manager. Section 3.1 provides a
brief overview of the functionality of the different modules and section 3.2
discusses a few details pertaining to the system architecture and relevant to
the compilation process

3.1 Main Modules

The User Interface receives and processes user commands, i.e., it invokes
various procedures in the appropriate manager modules. The commands
available from the User Interface are described in [CG89]. The Fact Manager
is responsible for maintaining the various data structures associated with
the extensional database as well as for providing run-time support for LDL
queries. The Fact Manager data structures are collectively referred to as
the Internal Fact Base. The Schema Manager receives the schema definition
file from the User Interface and records the information in an internal form.
Type, index and key constraints are subsequently used by the Fact Manager
to verify the database. Base relation specifications are used by the Rule

1The current implementation contains approximately 70,000 lines of code, of which half
is in Prolog and half is in C.
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Figure 1: Conceptual architecture
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Manager to verify consistency. The Query Manager receives queries from
the User Interface, determines which compiled query form is appropriate for
the query, and invokes the corresponding C program, passing any constants
from the query as arguments.

The Rule Manager is responsible for processing the intentional database,
i.e., the rule base. During the initial processing, the rules are parsed and var-
ious syntactic consistency checks are performed. Each parsed rule is stored in
the Internal Rule Base and then sent to the Global PCG Generator, which is
responsible for transforming the rule set into a Predicate Connection Graph
(PCG). The Global PCG is a tabular data structure with entries specifying
the rule/goal index for all predicates occurring in the rule base. It provides
an efficient means of accessing the rules during subsequent query form pro-
cessing. After all rules have been processed, the Recursive Clique Analyzer
is invoked to identify maximal recursive cliques, detect cliques with no exit
rules, and create the necessary internal structures to represent the cliques
(RC-Boxes). The strongly connected components (predicates) of the PCG
define its recursive cliques. Additional data structures for representing LDL
modules and externals [CGK89a] are also produced by the Rule Manager.

The Query Form Manager embodies the bulk of the LDL compilation
technology. It receives a query form from the User Interface and is respon-
sible for producing the compiled version of the query form. Figure‘2 shows
the organization of the Query Form Manager.

The Relevant PCG Generator generates a Relevant PCG (RPCG) which
is an AND/OR graph containing only those rules relevant to the query form.
The data structure generated is actually a tree instead of a graph since
common sub-expression elimination is not currently part of the compiler
design. During the RPCG extraction process, constant migration, i.e., the
process of substituting deferred constants from the query form or constants
from the relevant rules for variables wherever possible is also performed.
Note that constants are not migrated into recursive rules.

The Optimizer transforms the RPCG and its associated recursive cliques
as necessary to choose an optimal execution. It performs safety analysis and
reorders goals (OR nodes) in the PCG appropriately. The nodes of the PCG
are annotated by the Optimizer to reflect, among other things, adornment,
pre-selection, post-selection and execution strategies to be employed. The
transformed RPCG is termed the Controlled PCG (CPCG).

The Pre-Enhancer is responsible for providing the program adornment
when the Optimizer is not used (AS-IS compilation). Miscellaneous rewrit-
ing optimizations, e.g., for choice, are also handled by the Pre-Enhancer.
The Enhancer is responsible for rewriting recursive rules such that the re-
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Figure 2: Query form manager architecture
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cursive cliques are recast into a form that guarantees efficient execution via
fixpoint operators. Various recursive query processing strategies are sup-
ported including a stack based implementation of the generalized counting
method, the magic set method, and the semi-naive fixpoint method. The
output of the Enhancer is the Enhanced PCG (EPCG).

The Set Rewriter uses rule transformation techniques to produce a re-
vised but equivalent PCG where set objects have been mapped into first
order terms in order to avoid set unification at run-time. The set properties
of commutativity and idempotence are supported via this rule rewriting. In
the process, the context of the rule is used to constrain the set of alternatives
that must be explored [ShTZ].

Finally, the Code Generator traverses the PCG, generating C code, ul-
timately resulting in a complete C Program which is then compiled and
linked to form the final compiled query form. The Code Generator is actu-
ally quite sophisticated in that it performs various peephole optimizations,
e.g., intelligent backtracking and existential query optimization, provides
default annotations in the case of AS-IS compilation, and supports various
execution strategies, all on the fly as code is generated.

3.2 Compilation Techniques

In addition to the rule transformations described in Section 2.2, the LDL
compiler applies a number of techniques to improve the efficiency of the
run-time code.

3.2.1 Pruning the Execution Graph

Much of the unification required to support complex terms is performed at
compile-time. Consider, for instance, the following rules:

r(X,Y) ← b1(X), p(f(X,Y)), b2(X,Z).

p(V) ← ..., V = g(U), ...
p(V) ← ..., V = f(U,U), ...

Compile-time rewriting of these rules will result in the function f(X,Y)
being migrated into the rules for p such as to replace all occurrences of V.
Subsequently, the first rule for p will be deemed false and will be thrown
out of the relevant rule set. Furthermore, the second rule for p will result in
the unification of X with Y and the substitution throughout the rule of X for
U. At compile-time it will be determined whether an assignment (value of X
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assigned to Y) or a check (value of X is the same as value of Y) is required,
based on whether the given variables are bound or not. Note that the code
generator would choose the entry to the rule for p as the appropriate place for
the check in order to detect early failure, whereas the assignment would be
placed at the success of the rule in order to avoid an unnecessary assignment
should the rule fail. Thus, the run-time effort is reduced by eliminating rules
and performing compile-time unification such that only simple matching and
assignments are necessary at run-time. This same philosophy is employed
for set unification such that set objects are mapped into first order terms at
compile-time so that only ordinary matching is required at run-time.

3.2.2 Static Variables

One of the goals of the rewriting performed by the system is to rename
variables, so that the scope of each variable is global with respect to the
program. The purpose of this rewriting is run-time efficiency. By making
each variable global, space for the variables can be allocated statically, as
opposed to dynamically as offsets from a frame pointer. Moreover, assigning
a variable can be done more efficiently in a global framework, as parameter
passing becomes unnecessary. On the other hand, non-recursive rules that
are invoked from more than one predicate are duplicated, thus resulting in
larger object code.

3.2.3 Adornment

For each query form, the compiler constructs an adorned program using the
notion of sideways information passing (SIP) as defined in [Ull], marking
each argument of each predicate as either bound (instantiated to a particu-
lar constant value at run-time), free (the current predicate occurrence will
instantiate it at run-time) or existential (it does not appear elsewhere in the
rule, except possibly in the head as an existential argument). Note that the
rules, in some cases, are duplicated (and renamed) for different adornments
of the predicate occurrence (referred to as stability transformation [SaZ2]).
Thus, each predicate in the adorned program is associated with an unique
binding pattern and every occurrence of that predicate conforms to that
binding pattern. The program segment generated for a predicate can exploit
the bound/existential arguments to generate efficient code. This approach
of generating code for a particular predicate with respect to a given binding
pattern is an important deviation from the approach taken in Prolog and it
results in an improved performance.
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3.2.4 Intelligent BacKtracking

The nested-loop join operation which is implied by pipelined execution
presents significant opportunities for avoiding computation that cannot gen-
erate new results. In the literature this is know as the intelligent backtracking
problem. Two types of intelligent backtracking been addressed in the com-
piler: get-next and get-first. Consider, again, the LDL rules given above.
Let us assume that the rules are compiled for the query ?r(X,Y). After com-
puting a tuple for r, backtracking to get the next tuple for b2 is unnecessary
since it will not yield any new tuples for r. The compiler will choose the
predicate p as the get-next backtrack point for the rule since the variable Y
is bound there2. To illustrate get-first intelligent backtracking, consider the
predicate b2. If the attempt to get the first tuple in b2 fails, it is unnec-
essary to backtrack to p since it does not change the bound argument for
b2. Therefore, if no tuples are found for b2, the backtrack point will be b1
since that is where the variable X is bound. Hence, by doing compile-time
analysis, intelligent backtracking is implemented with little (if any) overhead
incurred at run-time, and results in the elimination of unnecessary run-time
processing.

The rule for r also serves to illustrate an additional optimization uti-
lized by the compiler with respect to existential arguments. In the predicate
b2, the variable Z is a don’t care or existential variable. Therefore, the
assignment of a value to Z is unnecessary. While this might seem an incon-
sequential optimization, experience has shown that the avoidance of a single
assignment in the innermost loop can have a great influence on execution
time. Again, compile-time analysis has avoided unnecessary overhead at
run-time.

3.2.5 Implementation of Recursion, Updates and Choice

Above, we have discussed backtracking assuming a pipelined execution ala
Prolog. In order to efficiently compile some of the advanced constructs of
LDL, additional execution strategies, i.e. materialized, lazy materialized,
lazy pipelined, snapshot and stack-based executions, must be used. These
different execution methods along with their respective advantages and dis-
advantages are described in detail in [CGK89b]. The LDL code generator
is capable of selectively applying any execution strategy (chosen by the op-

2It is interesting to note that if the query were ?r(X, ) such that the variable Y was
existential with respect to the rule for r, then the get-next backtrack point for that rule
would be the predicate b1.
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timizer) to any predicate in the rule set. Moreover, some language features
dictate the appropriate execution strategy that must be applied. Set group-
ing and recursion are examples where materialization is essential to a correct
execution. Full materialization, however, does not allow for selection push-
ing and is, therefore, very inefficient in the presence of bound arguments.
Therefore, a lazy materialized execution is applied such that the bindings
can be utilized. Additionally, for recursion, rewriting strategies are employed
at compile-time which recast the recursion into a form that guarantees ef-
ficient execution via fixpoint operators. The magic set rewriting method,
which uses the lazy materialized execution strategy, is applied when there is
a possibility of cyclic data. The user can compile with an option which states
that there no need to detect cycles, in which case the compiler can choose a
stack-based implementation of the counting method for better performance
With this approach, a pipelined or lazy-pipelined execution strategy can
be employed. Hence, an appropriate execution strategy can be chosen in
context at compile-time to ensure an efficient run-time execution.

Because the semantics of LDL ascribe a dynamic logic interpretation
to updates[NaKr], a snapshot may be required for every update operation.
The compiler does, however, recognize instances where snapshots are not
necessary and, thus, sequences of updates can be collapsed.

The implementation of LDL’s nondeterministic choice construct requires
materialization to store the functional dependencies. In the following rules,
a table with X and Y values will be materialized due to the choice construct.

r(X,Y) ← ..., p(X,Y), X < Y, ...
p(X,Y) ← b(X), q(X,Y), choice((X),(Y)).

The chosen Y value for a particular X will only be committed, however, at
the success of the query. In the rule for r, it is possible that the goal X
< Y will fail resulting in backtracking into the rule for p and obtaining
a new choice, i.e., value for Y. This may be contrasted with the Prolog
cut with which a bad choice will result in failure for the query3. After
values have been committed, the materialized table can be used to avoid
unnecessary recomputation. Thus, after the binding for X is obtained from
the predicate b, a check is performed to determine if a value for Y has already
been committed and, if so, the remainder of the rule need not be executed.
Again, compile-time techniques have been used to reduce the computation
effort at run-time.

3The Prolog cut also does not provide for functional dependencies to be expressed.
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3.3 The Fact Manager

The fact manager provides the run-time environment for an LDL program.
It supports LDL objects, such as atoms, sets and lists, as well as database
objects, such as tuples and base and derived relations. In the current im-
plementation, all objects are kept in virtual memory.

The LDL data types are directly supported by the fact manager, which
implements them as C abstract data types. That is, the fact manager pro-
vides C type definitions as well as a set of routines that operate on objects
of these types. This is the level of abstraction maintained by the translator.
The fact manager itself, on the other hand, is free to take advantage of the
data representation for the sake of efficiency. For example, complex objects
are stored as one-dimensional arrays, where the first (zeroth in C) compo-
nent is the functor name. The function fm get functor arg(object,i) is
used by the translator to select the ith component of a complex object. The
fact manager implements this in-line (i.e., in the preprocessor) as the array
lookup object[i]. Similarly, the fact manager stores sets as sorted arrays,
so that set operations such as union and intersection can be implemented
efficiently.

Efficient support for base and derived relations is provided at the tuple
level, with calls such as fm get first and fm get next. A key consideration
in the design of the fact manager was the number of operations performed at
the inner-most loop of an execution (i.e., nested join); for example, getting
the next tuple from a base relation and post-selecting for bound arguments.
Thus, relations are stored so that the call to fm get next is reduced to
following a linked list, and is hence suitable for in-line implementation. This
is possible, because the database is kept in-memory, thus it is never necessary
to access the next tuple from disk.

In order to speed up equality comparisons, used in post-selection, for
example, each object in the database is assigned an unique representation
that can be compared using the hardware (integer) compare instruction. In
the case of numeric constants, the unique representation is quite natural.
For strings and complex objects, the memory address of the actual object
is used as the unique representation. Whenever a new complex object is
created, the fact manager guarantees this address is unique by first checking
whether the object already exists, an efficient operation, since all objects
are kept in memory. This unique representation can also be used by the
fact manager to perform other database operations more efficiently. For
example, when an index is used, the hash function operates directly on
the unique representation rather than the LDL object itself — this can
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be a substantial savings, since LDL objects can be arbitrarily complex.
Moreover, once a bucket is selected, searching to find the matching tuples
involves an equality comparison, so the unique representation is exploited
here as well. Intuitively, the unique representation allows the fact manager
to reduce the cost of subsequent index lookups by partially hashing an object
when it is created.

Derived relations are used by the translator to support some LDL lan-
guage features, such as recursion and grouping. Recursion can be imple-
mented using a semi-naive fixpoint operation, after rewriting for magic sets,
etc, has taken place. Thus, the efficient execution of recursion depends on
the efficient implementation of the semi-naive operation. Therefore, the fact
manager supports this operation directly by partitioning recursive relations
into delta and cumulative components, and returning tuples only from the
delta component when a semi-naive scan is desired. Since tuples are inserted
sequentially, the delta component is implemented easily by maintaining a
“high-water” mark. Similarly, the fact manager provides efficient support
of grouping by converting a relation into a set, given a pattern describing
the specific “group-by” operation desired.

4 Experience

4.1 Experience in Using the Language

Since LDL was designed to be both a query language and a rule-based appli-
cation language we need to evaluate its functionality and usability starting
from these two domains.

An independent comparison of LDL as a database query language, sug-
gested that all but the simplest queries are easier to express in LDL than
SQL. This hardly represents an endorsement of LDL, since the inordinate
difficulty of expressing sophisticated queries in SQL is well-known. Yet, our
experience suggests that even the most complex of queries can be readily
expressed as short LDL programs. This is consistent with our experience
that in LDL, any distinction between complex queries and simple applica-
tions is arbitrary and blurred. We found it easy to develop rapidly complex
database applications, including the ”Computer Science Genealogy” [NaTs]
and programs for parts explosion, inventory control, shop scheduling and

The other side of the coin involves comparing LDL with other rule-based
systems. As our reader may have noticed, a coarse description of the LDL
compiler is that it maps the functionality of a backward chaining system
(top-down) into the mechanisms of forward chaining (bottom-up). Indeed,
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we felt that the former is conducive to more expressive and powerful lan-
guages while the the second is conducive to more efficient implementations
in the database context. Thus, programming in LDL is more similar to pro-
gramming in Prolog than in OPS5. Yet, the differences between LDL and
Prolog are significant, and often baffling to experienced Prolog programmers.

Prolog is more powerful than LDL in many respects, such as built-in
predicates, including metapredicates. Moreover, Prolog variables can be
instantiated in a dynamic fashion—e.g., different goals instantiate variables
in a complex term. LDL is more restrictive since, although goals can be
reordered at compile time, the execution of a goal is assumed to bind all
its variables. Also, the fact that Prolog streams through one answer at the
time provides the programmer with more opportunities for fine control than
in LDL.

On the other hand, LDL provides a more structured programming para-
digm, a cleaner syntax and semantics, and an optimizer that excuses the user
from thinking too hard about an execution sequence. The benefits become
apparent in challenging areas such as non-determinism and recursion. For
instance, a recursive procedure, to generate all integers between zero and a
given integer K, can be expressed as follows in LDL:

int(K, 0) ← K >= 0.
int(K, J) ← int(K, I), I<K, J= I+1 .

This represents a very natural rendering of Peano’s inductive definition
of integers, augmented with a condition on K in the second rule to ensure
termination, and one in the first rule to ensure that no answer is returned
for a negative K. A second formulation is also possible in LDL, as follows:

int(K,J) ← K>0, K1 = K-1, int(K1, J).
int(K,K) ← K >= 0.

This is a less clear and intuitive definition, but it is the only one that can
be handled by Prolog (the equal signs would also have to be replaced by ‘is’).
Also, when writing a recursive predicate to traverse a graph with possible
cycles, the Prolog programmer must make provisions for termination (e.g.,
carrying around in a bag all answers produced so far). Cycles can be easily
handled by the LDL compiler through a specific option.

Finally, the ability of storing efficiently partial results that can be re-
trieved by later computations is a major plus for LDL, and so is the ease of
dealing with externals and modules.
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Therefore, a plausible argument can be made for the ease-of-use of LDL
over Prolog; but this is hardly a reason for jubilation. Much more work
is needed to bring the system to a level of usability and ease-of-use that
will entice non-professional programmers to develop complex applications,
in analogy to what many 4GL users now do with simple applications. We
are currently working on two major extensions directed toward enhancing
the ease of use. One is a debugger that, given the nature of the system,
is tantamount to an answer justification capability. A traditional debugger
that retraces the execution of the program would be of little help to the
unsophisticated user, since the compiler and optimizer completely transform
the original program. What is instead planned, is an answer justification
capability capable of carrying out a dialogue with a user asking questions
such as, “Why did you (or did you not) return this answer?” and through
this dialogue directing the user to the incorrect rule or missing fact that was
the source of the problem. We also plan to add visual interfaces both for
data entry and display and for program visualization. While in procedural
languages, the focus of visualization is on the changes to the program state,
for a declarative language such as LDL the focus is on displaying the static
relationships defined by the rules.

We now briefly describe some aspects that affect the performance of
the current implementation of LDL. One important feature of LDL is the
elimination of duplicate results in the processing of recursion—that is, an
“all answers” as opposed to “all proofs” approach. The duplicates need
to be eliminated in certain cases to guarantee termination, such as when
traversing a cyclic graph. Moreover, the elimination of duplicates can speed
up the execution in many cases. For example, in the computation of the
same generation query, it was discovered that removing duplicates resulted
in a major performance improvement, since for most siblings in the database,
there are two ways to prove their relation (through the father or mother), and
this becomes even more significant as more distant relations (e.g., through
great-grandparents) are explored. A timing comparison using a database of
500 tuples showed that the system computed same generation in roughly 4
seconds, whereas Quintus Prolog needed over 2 minutes, resulting in a ratio
of over 1:30.

On the other hand, there are also recursive queries where no duplicates
are ever generated, for example, when appending two lists. In these queries,
the overhead of duplicate elimination is wasted, hence the LDL implemen-
tation does not compare favorably with, say, Prolog. In particular, for list
append, we found a ratio of between 6:1 and 10:1 in favor of Prolog. An-
other factor contributing to this result is the uniqueness check performed at
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the creation of each new object, i.e., temporary list. When this check was
removed, the ratio was reduced to 2:1.

4.2 LDL Applications

In this section we will report on the experience that we have gained with the
LDL system so far. We recognized that the only way in which the utility of
this new technology can be assessed is by application development. In this
process it is useful to distinguish between two classes of applications:

• “Old” applications such as database ones that have traditionally been
implemented by a procedural application program with embedded
query calls to the underlying database.

• “New” applications. Applications, that thus far were never imple-
mented at all or, if they were implemented, then this was accomplished
without any use of database technology.

As described in the previous section, the experience with traditional
database applications has been positive. Here we will concentrate on two
new promising application area; these are data dredging and harnessing
software.

4.2.1 Data Dredging

This is a class of applications in which the source of data is typically (but
not exclusively) a very large set of empirical observations or measurements,
organized into one or more base relations. Additional data may be added
over time but existing data are seldom updated. In fact, they are only
updated when found to be erroneous. Typical sources are measurement
data of empirical processes or data, recorded during simulation experiments.
The problem is to interpret this data, i.e., to use it for the verification of
certain hypotheses or, to use it for the formulation of new concepts. In both
cases the hypotheses or concepts may be conceptually far removed from the
level of the recorded data and their crystalization or definition entails an
interactive human/system process as follows:

1. Formulate hypothesis or concept;

2. Translate (1) into an LDL rule-set and query;

3. Execute query against the given data and observe the results;
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4. If the results do not verify or deny (1) then, reformulate and goto (2);
otherwise exit.

Obviously, the decision to exit the process is entirely subjective and is de-
cided by the programmer. At this stage he/she may have either decided that
the concept is now properly defined or, that the data does not support this
concept and that it should be abandoned or tried out with different data.
While this process could be carried out using any programming language,
the use of LDL has the advantage that the formulation can be done at an
abstract level and hence, the “iteration time” through this process is signifi-
cantly shortened as compared to the traditional way, in which each iteration
involves the usual programming/compile/debug cycle.

We experimented with data dredging in two different application do-
mains: computer system performance evaluation and scientific data analy-
sis in the area of Microbiology. The first application [NaTs] involved the
formulation of the “convoy” concept in a distributed computing system. In-
tuitively, a convoy is a subset of the system entities (processes, tasks) that
move together for some time from one node to the other in the network of
processors and queues. The recorded data is low-level and consists of ar-
rival/departure records of individual entities at certain nodes. The concept
was defined in LDL using a small set of rules, and actual instances were
detected in the simulation data that were used. The second instance of data
dredging involves the identification of DNA sequences from (very) low-level,
digitized autoradiographs, that record the results of the experiments that
are performed in the sequencing of the E.Coli bacteria [GENE88]. Again,
the task is to extract the definitions for the four DNA bases A,C,G,T from
this low-level, noisy and often imperfect data. A large number of heuristics
need to be applied in this case and the use of LDL has the additional advan-
tage that it is simple to add special definitions, that need to be used within
narrow contexts, to the general definitions. It is thus relatively simple to
add “smarts” to the system as the experience with its use increases.

4.2.2 Harnessing Software

We mentioned that external C procedures can be used in the definition
of LDL programs. In the LDL context, these are regarded as evaluable
predicates. While normally, we expect the use of external code to be the
exception rather than the rule, reserved for special purposes e.g., graphical
routines, we can think of situations that lay at the other extreme: the bulk
of the software is written in standard, procedural code and only a small
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fraction of it is rule-based and encoded in LDL. In this situation the rule-
set forms the “harness” around which the bulk of the code is implemented.
The rule portion forms a knowledge base that contains:

1. The definition of each of the C-module types used in the system.

2. A rule set that defines the various ways in which modules can be
combined: export/import relationships between modules, constraints
on their combinations etc.

The advantage of this organization is that the knowledge base can be
used in decisions that pertain to the reuse of software. Subsets of instances
of the existing module types can now be recombined, subject to the rule-
restrictions, to support different task-specifications. An added advantage is
that each of the individual module-types can be verified using any of the
existing verification methods and their global behavior is controlled by the
rule-set.

We are currently experimenting with this application type in the domain
of Banking software.

5 Conclusion

Perhaps, the most significant result of the LDL experience is proving the
technical feasibility of building a logic-based application language as an ex-
tension of relational databases technology. The realization of this objective
has required solving technical challenges on many fronts—language design
and formal definition, compilation, optimization and system implementa-
tion. In the five years since the beginning of the project, problems have
been solved trough the combined efforts of a group of six to eight people.
Perhaps the most encouraging aspect of the whole experience is that while
a wide spectrum of interests and backgrounds—from a very theoretical one
to a very applied one—was represented in the group the effort remained
foucused and generated a remarkable degree of synergism. The result is a
system that supports the theoretical declarative semantics of the language
completely and efficiently.

Our experience suggests that it is reasonably easy to develop applica-
tions using the LDL programming paradigm. But this conclusion is based
on a small sample of forward-looking programmers who are leaning toward
to declarative languages and logic programming. Whether the language
incorporating concepts such as recursion can attract large throngs of main-
stream practitioners is still to be seen. But it also clear that LDL has much
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more to offer than current SQL-based 4GLs that are widely used for rapid
prototyping [DM89]. Thus, LDL shows some real potential as a powerful
rule-based language for the rapid development of data intensive applications
and applications in the C environment. A main thrust of our current efforts
is to improve the usability of the system by supporting interfaces for visual
programming and answer justification.
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