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Abstract

It is shown that the existence of an unique total function satisfying
a tail recursive definitional axiom ensures the recursion always halts.
This is in contrast to the general case, when the adjective tail need
not apply to the recursion: The existence of an unique total function
satisfying a (general) recursive definitional axiom need not force the
recursion to always terminate.

A similar result is shown to have application to Tail Recursive
Interpreters.

The result reported in [1] about Knuth’s generalization of Mc-
Carthy’s 91 Function is obtained in a different way, as a corollary of
more general results about reflexive tail recursive functions.

Introduction

Tail recursive definitional axioms have desirable properties not enjoyed by
arbitrary recursive definitional axioms. Foremost among these properties is
consistency of the axiom. To ensure consistency, ACL2’s definitional prin-
ciple requires that the recursion in a proposed definitional axiom satisfy an
appropriate measure conjecture. In [5], P. Manolios and J S. Moore show it
is always consistent to add a tail recursive definitional axiom (even when the
recursion does not satisfy any appropriate measure conjecture).
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ACL2’s definitional principle ensures more than consistency. Satisfaction
of an appropriate measure conjecture means that the recursion always halts
and that implies there is one and only one total function satisfying the defini-
tional axiom. The converse implication, in general, does not hold. That is,
the existence of an unique total function satisfying a recursive definitional
axiom does not force the recursion to always terminate.

However, the afore mentioned converse implication does hold for tail re-
cursive definitional axioms:The existence of an unique total function satisfying
a tail recursive definitional axiom does mean the recursion always halts.

Tail Recursion

What is tail recursion? A function is said to be tail recursive if its definition
is tail recursive. The definition of a function f is tail recursive provided there
is at least one recursive call to f in the body of the definition and each such
recursive call to f is tail recursive.

Here is what it means for a recursive call to be tail recursive in a definition
such as this one:

(defun f (x1 . . . xn)
body)

Assume body contains no macros or lambda applications. That is, expand all
macros in body and reduce the lambda applications by β-reduction. Think
of the expanded body as an expression tree. A recursive call of f in body is
tail recursive just in case these two conditions are met.

1. The call to f is not on the test branch of any if.

2. On any branch containing the call to f, only if may appear above the
call to f.

Examples.

• (defun f (x)

(if (f x)

x

x))

The call to f in this body violates
the first condition above, so the
call is not tail recursive.
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• (defun f (x)

(if (zp x)

1

(* x

(f (- x 1)))))

The call to f in this body violates
the second condition above (* ap-
pears above f in the expression
tree), so the call is not tail recur-
sive.

• (defun A (x y)

(declare

(xargs :guard

(and (natp x)

(natp y))))

(if (zp x)

(+ y 1)

(if (zp y)

(A (- x 1) 1)

(A (- x 1)

(A x

(- y 1))))))

There are three calls to A in this
body. The call (A (- x 1) 1) and
the outer call in (A (- x 1)(A x

(- y 1))) are both tail recursive.
The inner call (A x (- y 1)) is
not tail recursive because the outer
call to A appears above this inner
call in the expression tree.

• (defun M91 (x)

(declare

(xargs :guard

(integerp x)))

(if (> x 100)

(- x 10)

(M91

(M91 (+ x 11)))))

There are two recursive calls to M91
in this body. The outer call in (M91

(M91 (+ x 11))) is tail recursive.
The inner call (M91 (+ x 11)) is
not tail recursive because the outer
call to M91 appears above this inner
call in the expression tree.

• (defun 3x+1 (x)

(declare

(xargs :guard (natp x)))

(if (<= x 1)

x

(if (evenp x)

(3x+1 (/ x 2))

(3x+1

(+ (* 3 x) 1)))))

The two calls to 3x+1 in this body
are both tail recursive calls.
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Tail Recursive Functions

Let test, base, and step be unary functions. Consider the following pro-
posed tail recursive definition.

(defun f (x)

(if (test x)

(base x)

(f (step x))))

Since this recursive call to f is simple and explicitly given, it is possible to
be explicit and very precise about the meanings of the following with respect
to this proposed definition:

• A total function satisfies the defining tail recursion axiom for this def-
inition.

• The tail recursion in this definition terminates for a given input.

• The tail recursion in this definition satisfies a measure conjecture.

It possible to state these concepts in ACL2. Therefore proofs of the theorems
(but not the propositions nor the corollaries) given below were mechanically
verified using ACL2.

A total ACL2 function f is said to satisfy the defining tail recursion axiom
for the proposed definition provided the following is true about every x.

(equal (f x)

(if (test x)

(base x)

(f (step x))))

P. Manolios and J S. Moore’s defpun paper [5] shows that there is always
at least one total ACL2 function that satisfies the defining tail recursion axiom
for any such proposed tail recursive definition.

The tail recursion in the above proposed definition is said to terminate for a
given x provided the following holds ∃n(test(stepn x)). The tail recursion in
the above proposed definition is said to always halt provided the tail recursion
terminates for all x.

The tail recursion in the above proposed definition is said to satisfy a
measure conjecture provided there is a well-founded binary relation rel, on
the set of objects recognized by some predicate mp, and a measure m satisfying
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(and (mp (m x))

(implies (not (test x))

(rel (m (step x))

(m x))))

The binary relation rel is well-founded on the set of objects recognized by mp

just in case there is a rel-order-preserving function fn that embeds objects
recognized by mp into ACL2’s ordinals:

(and (implies (mp x)(O-p (fn x)))

(implies (and (mp x)

(mp y)

(rel x y))

(O< (fn x)(fn y))))

In ACL2 Version 2.9, O-p recognizes the ordinals up to epsilon-0 and O< is
the well-founded less-than relation on those ordinals.

Theorem 1 The following are equivalent for any function with a tail recur-
sive definition like that for f.

1. The recursion satisfies a nonnegative-integer-valued measure conjec-
ture.

2. The recursion satisfies a measure conjecture.

3. The recursive defining axiom is satisfied by an unique total function.

4. The recursion always halts.

Proof. Clearly 1 ⇒ 2 .

2 ⇒ 3 . Assume the recursion in the definition of f satisfies a measure
conjecture. Show that any two functions, say f and g, that satisfy
the defining tail recursive axiom for f are equal:

Assume f and g satisfy these equations.

(equal (f x) (equal (g x)

(if (test x) (if (test x)

(base x) (base x)

(f (step x)))) (g (step x))))
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[The equation involving g is what is meant by “g satisfies the
defining tail recursive axiom for f.”]

Use the induction suggested by the definition of f to prove (equal
(f x)(g x)). The base case is (test x) ⇒ (equal (f x)(g

x)). The induction step, (not (test x)) ⇒ (equal (f x)(g

x)), follows from the induction hypothesis, (not (test x)) ⇒
(equal (f (step x))(g (step x))).

3 ⇒ 4 . Assume the recursive defining axiom for f is satisfied by an
unique total function. Now closely follow the construction in
Manolios and Moore’s defpun paper [5]: Define a “clocked” ver-
sion of f.

(defun

f_n (x n)

(declare (xargs :measure (nfix n)))

(if (or (zp n) (test x))

(base x)

(f_n (step x)(- n 1))))

Manolios and Moore use f_n to construct a total function that
satisfies the recursive defining axiom for f. Slightly modify their
construction to define two apparently different functions that sat-
isfy the recursive defining axiom for f.

Use defchoose to let (n_ch x) be an n such that (test(stepnx)),
if such an n exists. The value of n_ch is not specified otherwise.

(defun g (x) (defun h (x)

(if (test (step(n ch x) x)) (if (test (step(n ch x) x))

(f_n x (n_ch x)) (f_n x (n_ch x))

nil)) t))

It should be fairly obvious that both g and h satisfy the defining
axiom for f. Since there is exactly one function satisfying the
defining axiom for f, it must be the case that g = h, which means
that ∀x(test(step(n ch x)x)).

4 ⇒ 1 . Assume ∀x∃n(test(stepn x)). Let m(x) be the least nonneg-
ative integer n such that (test(stepn x)). Then whenever (not

(test x)), it is the case that (< (m (step x))(m x)).
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This theorem suggests one way to show that the famous “3x+1” function
always terminates on all natural number inputs: It is sufficient to show the
defining axiom

(equal (3x+1 x)

(if (<= x 1)

x

(3x+1 (if (evenp x)

(/ x 2)

(+ (* 3 x) 1)))))

is satisfied by only one total function on the nonnegative integers. The
termination of this function on all nonnegative integer inputs remains an
open problem.

The following propositions show how much of Theorem 1 holds for re-
cursive definitions that may not be tail recursive.

Proposition 1 The following are equivalent for any function with a recur-
sive definition.

1. The recursion satisfies a nonnegative-integer-valued measure conjec-
ture.

2. The recursion satisfies a measure conjecture.

4. The recursion always halts.

Proof. Clearly 1 ⇒ 2 .
Since all descending chains, of elements related by a well-founded rela-
tion, are finite; 2 ⇒ 4 .

4 ⇒ 1 . Assume the recursion always halts. Then the Canonical Mea-
sure (essentially the minimal stack depth required for computing
the value of the function on a given input, using the body of the
recursive definition.) described by M. Kaufmann and J S. Moore,
in [2], is a nonnegative-integer-valued measure.

Proposition 2 The following implications hold for any function with a re-
cursive definition.
Each of these
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1. The recursion satisfies a nonnegative-integer-valued measure conjec-
ture.

2. The recursion satisfies a measure conjecture.

4. The recursion always halts.

implies

3. The recursive defining axiom is satisfied by an unique total function.

Proposition 3 The following implications could fail for any function with
a recursive definition.

3. The recursive defining axiom is satisfied by an unique total function.

implies each of these

1. The recursion satisfies a nonnegative-integer-valued measure conjec-
ture.

2. The recursion satisfies a measure conjecture.

4. The recursion always halts.

Proof. The equation

(equal (f x)

(if (f x)

x

x))

is satisfied by only one total function, namely the identity function, but
the recursion suggested by the equation does not terminate nor satisfy
any measure conjecture.

Theorem 2 Let a and b be constants. Suppose that the only constraint on
the function f that mentions f is the defining tail recursive axiom for f.
If ACL2 can prove (equal (f a) b), then ACL2 can also prove, that the
recursion for f terminates on input a.
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Proof. Assume (equal (f a) b) is a theorem.

Once more the construction in Manolios and Moore’s defpun paper [5]
is closely followed: Define a “clocked” version, such as f_n from above,
of f. Choose any constant c such that c 6= b.

Use f_n and c to construct a total function that satisfies the recursive
defining axiom for f.

(defun fc (x)

(if (test (step(n ch x) x))

(f_n x (n_ch x))

c))

Once again, it should be fairly obvious that fc satisfies the defining
axiom for f. That is, the following holds.

(equal (fc x)

(if (test x)

(base x)

(fc (step x))))

By functional instantiation, (equal (fc a) b) is a theorem. Since c 6=
b, it follows from the definition of fc that (test(step(n ch a)a)).

Tail Recursive Interpreters

This section starts by closely following a similar section in Manolios and
Moore’s defpun paper [5].

An important class of tail recursive functions consists of the “state ma-
chine interpreters” traditionally used in ACL2 to give operational semantics.
We consider one such interpreter, called WyoM1. WyoM1 was used at the
University of Wyoming while teaching a class, inspired by a similar class at
the University of Texas, on formalizing the Java Virtual Machine in ACL2.
WyoM1 is very similar to an interpreter known as M2 at UT.

A WyoM1 state is a pair consisting of a call stack and a list of function
definitions. The call stack is a stack of frames, each frame corresponding to
an activation of some defined function. A frame contains a program counter,
the code for the function, bindings for the formal and local variables of the
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function, and an operand stack. Each function definition contains the name,
list of formal arguments, and list of instructions for some function.

Here is the definition for a recursive function fact implementing factorial.

(defconst *fact-def*

’(fact (n)

(load n) ;; 0

(ifgt 3) ;; 1

(push 1) ;; 2

(ret) ;; 3

(load n) ;; 4

(load n) ;; 5

(push 1) ;; 6

(sub) ;; 7

(call fact) ;; 8

(mul) ;; 9

(ret))) ;; 10

Let step be the single-step state transition function for WyoM1. So
(step s) is the state produced by executing the instruction indicated by
the program counter in the top frame of the call stack of state s.

The “clocked” interpreter for WyoM1 is

(defun run (s n)

(if (zp n)

s

(run (step s)(- n 1))))

An interpreter without a clock for WyoM1 is given below by run-w. (Run-w s)

runs WyoM1, starting with state s, to termination, if a halted state can be
reached by repeated steps. The value of (run-w s) on states that do not
terminate is not specified.

(defun haltedp (s)

(equal s (step s)))

(defpun run-w (s)

(if (haltedp s)

s

(run-w (step s))))
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The interpreter without a clock for WyoM1, run-w, can be used to state
and prove, in ACL2, the following WyoM1 program correctness result.

First WyoM1 function definitions are given for sq which squares its input
and max which returns the maximum of its two inputs.

(defconst *sq-def* (defconst *max-def*

’(sq (n) ’(max (x y)

(load n) (load x)

(dup) (load y)

(mul) (sub)

(ret))) (ifle 3)

(load x)

(ret)

(load y)

(ret)))

Let s be the following state described by specifying its top (and only) frame
and list of function definitions.

(modify nil

:pc 0

:locals local-vars

:stack s0

:program ’((load x) ;; 0

(call sq) ;; 1

(call fact) ;; 2

(load x) ;; 3

(call fact) ;; 4

(call sq) ;; 5

(call max) ;; 6

(store y) ;; 7

(halt)) ;; 8

:defs (list *sq-def*

*max-def*

*fact-def*)).

Let x be the value of the variable ’x in (locals s). If x is a nonnegative
integer and s is run to termination, then WyoM1 ends in the following state
described by indicating how the state s is modified.
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(modify s

:pc 8

:locals (bind ’y (MAX (! (SQ x))

(SQ (! x)))

(locals s)))

Here MAX, SQ, and ! are ACL2 functions implementing the usual maximum,
squaring, and factorial functions. Here is the formal correctness result in
ACL2.

(defthm prog-is-correct-with-run-w

(let* ((s (modify nil

:pc 0

:locals local-vars

:stack s0

:program ’((load x) ;; 0

(call sq) ;; 1

(call fact) ;; 2

(load x) ;; 3

(call fact) ;; 4

(call sq) ;; 5

(call max) ;; 6

(store y) ;; 7

(halt)) ;; 8

:defs (list *sq-def*

*max-def*

*fact-def*)))

(x (binding ’x (locals s))))

(implies (and (integerp x)

(>= x 0))

(equal (run-w s)

(modify s

:pc 8

:locals (bind ’y (MAX (! (SQ x))

(SQ (! x)))

(locals s))))))

:hints . . .)

Remember that (run-w s) is not specified for those states s for which
WyoM1 does not terminate. So for example, how do we know that for the
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state s initially given in the above defthm that WyoM1 actually halts and
produces the modified state? Could it be that WyoM1 does not halt on s

and the unspecified value of (run-w s) just happens to be the modified state
given in the defthm?

The meta-theorem, Theorem 2, says that if ACL2 can prove prog-is-

correct-with-run-w, then ACL2 can also prove there is a nonnegative inte-
ger n such that the statement of this theorem remains true when (run-w s)

is replaced by (run s n). The proof of Theorem 2 is carefully followed
using haltedp for test, identity, ie., (identity x) = x for base, step for
step, run for stepn, the initial state s in the defthm for a, and the modified
state for b.

(defthm prog-is-correct-with-run

(let* ((s (modify nil

:pc 0

:locals local-vars

:stack s0

:program ’((load x) ;; 0

(call sq) ;; 1

(call fact) ;; 2

(load x) ;; 3

(call fact) ;; 4

(call sq) ;; 5

(call max) ;; 6

(store y) ;; 7

(halt)) ;; 8

:defs (list *sq-def*

*max-def*

*fact-def*)))

(x (binding ’x (locals s)))

(n (nfix (nbr-steps-to-halt s))))

(implies (and (integerp x)

(>= x 0))

(equal (run s n)

(modify s

:pc 8

:locals (bind ’y (MAX (! (SQ x))

(SQ (! x)))
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(locals s))))))

:hints . . .)

where nbr-steps-to-halt is the choice function

(defchoose

nbr-steps-to-halt (n)(s)

(haltedp (run s n)))

Reflexive Tail Recursion

If test, base, and step are already defined, then the defpun construction
shows that the equation

(equal (f x)

(if (test x)

(base x)

(f (step x))))

is satisfiable by some total function. Manolios and Moore also consider the
case when (step x) mentions f. Equations with nested recursive calls are
sometimes called reflexive. Manolios and Moore show [5] that the problem
of deciding if a reflexive tail recursive equation is satisfiable by some total
function is undecidable. Since the problem is undecidable, there must be cases
when no total function satisfies the given reflexive tail recursive equation.

ACL2 can verify the following two theorems.

Theorem 3 Let c be a positive integer and let test, base, and step be total
functions such that

• (implies (test (base x))

(test x))

• base and step commute:

(equal (base (step x))

(step (base x)))
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• either the recursion with respect to base(−c 1) ◦ step and test always
halts OR it never halts when x satisfies (not (test x)):

[∀x∃n(test([base(−c 1) ◦ step]n x))]
∨ [∀x∀n((not(test x)) ⇒ (not(test([base(−c 1) ◦ step]n x))))]

Then there is a total function f that satisfies both the reflexive tail recursive
equation

(equal (f x)

(if (test x)

(base x)

(fc (step x))))

and the simpler tail recursive equation

(equal (f x)

(if (test x)

(base x)

(f (base(−c 1) (step x))))

Theorem 4 Let c be a positive integer and let f, test, base, and step be
total functions such that

• f is reflexive tail recursive:

(equal (f x)

(if (test x)

(base x)

(fc (step x))))

• (implies (test (base x))

(test x))

• base and step commute:

(equal (base (step x))

(step (base x)))
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• recursion with respect to step and test always halts:
∀x∃n(test(stepn x))

Then f also satisfies the simpler tail recursive equation

(equal (f x)

(if (test x)

(base x)

(f (base(−c 1) (step x))))

Corollary 1 (Knuth [1, 3, 4]) Let c be a positive integer and let a, b >
0, d be real numbers.

1. There is a total function on the reals satisfying the reflexive tail recur-
sive equation

(equal (K x)

(if (> x a)

(- x b)

(Kc (+ x d))))

2. If (< (* (- c 1) b) d) then there is an unique function on the reals
satisfying the above reflexive tail recursive equation for K..

Proof. Let (test x) be (> x a), (base x) be (- x b), and (step x) be
(+ x d). Then ([base(−c 1) ◦ step] x) is (+ x d (-(* (- c 1) b)))

and ([base(−c 1)◦step]n x) is (+ x (* n (+ d (-(* (- c 1) b))))).
If (< (* (- c 1) b) d), then the recursion with respect to base(−c 1)◦
step and test always halts; otherwise the recursion never halts when x

satisfies (not (test x)). So by Theorem 3, there is a total function
satisfying the reflexive tail recursive equation for K.

If (< (* (- c 1) b) d), then (> d 0), so the recursion with respect
to step and test always halts. Then by Theorem 4, K must also sat-
isfy that theorem’s simpler recursive equation. Since (< (* (- c 1)b)

d), the recursion specified in simpler recursive equation always halts, so
by Theorem 1, the simpler equation is satisfied by an unique function.

Corollary 2 There is an unique function on the reals satisfying the reflexive
tail recursive equation for McCarthy’s 91 function,
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(equal (M91 x)

(if (> x 100)

(- x 10)

(M91 (M91 (+ x 11)))))

Proof. By the previous Corollary.
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