A Mechanical Proof of the Cook-Levin Theorem

Ruben Gamboa and John Cowles

University of Wyoming
Department of Computer Science
Laramie, WY 82071

Abstract. As is the case with many theorems in complexity theory,
typical proofs of the celebrated Cook-Levin theorem showing the NP-
completeness of satisfiability are based on a clever construction. The
Cook-Levin theorem is proved by carefully translating a possible com-
putation of a Turing machine into a boolean expression. As the boolean
expression is built, it is “obvious” that it can be satisfied if and only if
the computation corresponds to a valid and accepting computation of the
Turing machine. The details of the argument that the translation works
as advertised are usually glossed over; it is the translation itself that is
discussed. In this paper, we present a formal proof of the correctness of
the translation. The proof is verified with the theorem prover ACL2.

1 Introduction

This paper presents a mechanical proof of the Cook-Levin theorem. A number
of reasons led us to this investigation. The Cook-Levin theorem is the central
theorem in NP-completeness theory, as it was the first to demonstrate the exis-
tence of an NP-complete problem, namely satisfiability [3,7]. Moreover, having
taught several undergraduate and introductory graduate courses on the theory
of computer science, one of the authors has always been uncomfortable with the
format of most proofs in the field. Many such proofs hinge on an algorithm that
translates an instance of a problem from one domain to another. The trans-
formation can be quite intricate, but seldom is its correctness actually proved.
More often the correctness of the transformation is left as being obvious. Since
the correctness proof is almost certainly tedious, we see it as an opportunity for
formal approaches to proof. Other efforts have used the Boyer-Moore theorem
prover to prove similar results, such as [1,2,8,9].

We chose to use the theorem prover ACL2 for our formalization. ACL2 is a
theorem prover over a first-order logic of total functions, with minimal support
for quantifiers. The logic of ACL2 is based on the applicative subset of Common
Lisp. Its basic structure and inference mechanisms are taken from its predecessor,
the Boyer-Moore theorem prover. In fact, ACL2 arose out of a desire to enhance
the Boyer-Moore prover to make it more suitable for industrial use, and in that
respect it has succeeded marvelously. For example, it has been used to verify
aspects of the floating-point units of microprocessors at AMD and IBM, and it

is also in use in the simulation and verification of microprocessors at Rockwell-
Collins. ACL2 has also been used in many other verification projects, ranging
from the algebra of polynomials to properties of the Java virtual machine [5, 6].

This paper does not assume familiarity with ACL2. However, we will use
regular ACL2 syntax to introduce ACL2 definitions and theorems. We assume,
therefore, that the reader is comfortable with Lisp notation.

The remainder of the paper is organized as follows. In Sect. 2 we present
an informal proof of the Cook-Levin theorem, such as the one found in many
introductory texts. We formalize this proof in Sect. 3. The formalization in ACL2
will follow the constructive parts of the informal proof quite closely. In Sect. 4
we present some final thoughts and some directions for further research.

2 An Informal Proof

We assume the reader is familiar with Turing machines and the NP-completeness
of satisfiability. In this section we present an informal proof of this fact, merely
to fix the terminology and lay the foundation for the formal proof to come later.
Our exposition follows [4] quite closely. There are other proofs of the Cook-
Levin theorem, some more recent and easier to follow. We chose this particular
exposition because we considered it to be the most amenable to mechanization.

Informally, a Turing machine consists of a single tape that is divided into
an infinite number of cells. The tape has a leftmost cell but no rightmost cell.
The machine has a read/write head that can process a single cell at a time. The
head can also move to the left or the right one step at a time. The behavior of
the machine is governed by a finite control, with transitions based on its current
state and the tape symbol being scanned. More formally a Turing machine M =
(@, X,9,q0,q5) where @ is a finite set of states including ¢go and ¢y, X' is the
finite alphabet of the tape not including the special blank symbol B, and § is a
relation mapping a state and a symbol into a possible move. The states go and
gy are called the initial and accepting states of M, respectively.

The Cook-Levin theorem shows the relationship between Turing machines
and satisfiability:

Theorem 1 (Cook, Levin). Let M be a Turing Machine that is guaranteed to
halt on an arbitrary input x after p(n) steps, where p is a (fixed) polynomial and
n is the length of . L(M), the set of strings x accepted by M, is polynomially
reducible to satisfiability.

Consider the behavior of machine M on input x. Initially, the tape contains
the input z followed by blanks, the head is scanning the first symbol of z, and
the machine M is in its initial state gg. The machine goes through a sequence
of steps, each of which is characterized by the contents of the tape, the position
of the head, and the internal state of the machine. After at most p(n) steps,
the machine halts. If it halts while in state ¢; the machine accepts input x, and
otherwise it rejects x.

So a computation of the machine can be formalized as the sequence of steps
So, 51, -+, Spm), where Sy corresponds to the initial configuration of the ma-
chine with input z, and each S;y; follows from S; according to the rules of the
machine M. As a matter of convenience, if the machine halts before p(n) steps,
we let the last step repeat so that we always end up with p(n) + 1 steps.

The step S; can be represented by its tape, the location of the head, and the
internal state of the machine M. It is also helpful to store explicitly the move
taken by M from state S; to S;y1. The tape can hold at most p(n) characters,
because it takes at least one step to write a character. We may assume that all
tapes have exactly p(n) characters, simply by padding the tapes with blanks on
the right. Thus the tapes in the computation can be represented by the two-
dimensional array T'(i,) where ¢ € [0,p(n)] is the step of the computation and
J € [1,p(n)] is the position of the character in the tape. We will use the notation
T(i, %) to refer to all the cells in a single step of the computation.

To complete the representation of a computation, we need only represent the
position of the head and the machine state at each step of the computation, as
well as the moves taken between steps of the computation. A convenient way
to do this is to encode this information in the array 7. The value of T'(3, j) is
normally a symbol in the tape. But if the head is at position j at step .S;, then
T(i,j) is the composite symbol {(c, g, m), where c is the character in position j
of the tape, ¢ is the state of the machine at step .5;, and m is the move taken by
the Turing machine from step S; to step S;1.

The transformation to satisfiability is carried out using this data structure.
It is clear that the value of T'(i,5) isin I' = X U{B} U (X U{B}) x Q x img(J).
For each i € [0,p(n)], j € [1,p(n)], and X € I' we define the proposition C; ; x
with informal meaning T'(¢,j) = X. The expression F, over these variables is
the conjunction of the following four subexpressions:

— The truth assignment really does represent a unique array 7'(i,j). That is,
for each ¢ and j precisely one of the Cj ; x is true.

The values in T'(0, %) correspond to the initial configuration of the machine
with z in the input tape.

— The machine is in its final accepting state g5 in T'(p(n), *).

For each ¢ € [1,p(n)], the configuration represented by T'(i, *) follows from
the configuration at T'(i — 1, *).

Taken together, these expressions are satisfiable if and only if there is some valid
computation of M that starts with the input x and ends in an accepting state.

3 A Formal Proof

3.1 The Turing Machine Models

As there are many variants of Turing machines, it is important to specify pre-
cisely which variant we are using. Our Turing machines have a semi-infinite tape
that is allowed to grow without bounds but only to the right. The input is placed

at the beginning of this tape. The machine has a single initial and a final state.
Once the machine enters the final state, it is constrained to stay there.

We encode a specific Turing machine in a data structure that contains the
machine’s alphabet, its set of states, the initial and final states, and the transi-
tions specifying how the machine changes state. The transitions are encoded
as a list mapping state/symbol pairs into a list of possible moves. We use
the functions ndtm-alphabet, ndtm-states, ndtm-initial, ndtm-final, and
ndtm-transition to select individual components from a Turing machine.

A configuration stores the information about a single step in the computation:
The current contents of the tape, the position of the read/write head, and the
current internal state of the machine. To make traversals of the tape easier,
we split the tape into two halves. The right half of the tape begins with the
symbol currently being scanned by the head; its remaining elements contain all
the symbols to the right of the head in increasing order. The left half of the tape
contains all the symbols to the left of the head in reverse order. The functions
config-1hs, config-rhs, and config-state will be used to access the members
of this structure.

The basic mechanics of the Turing machine are modeled by the function
ndtm-step, which takes in a Turing machine and a configuration and returns all
the possible configurations that may follow it:

(defun ndtm-step (machine config)
(let ((moves (ndtm-moves (config-state config)
(first (config-rhs config))
(ndtm-transition machine))))
(ndtm-step-with-move-list config moves)))

The function ndtm-moves returns all the valid transitions that the Turing ma-
chine can make when it is at the given state and looking at the given symbol on
the tape. The function ndtm-step-with-move-1list applies the selected moves
to the configuration, returning a list containing all the resulting configurations.

We can not allow a machine to move the read /write head to the left when it is
in the first cell position. This is enforced in the function ndtm-step-with-move
(called by ndtm-step-with-move-list). When the head attempts to move past
the beginning of the tape, we leave the head scanning the first cell of the tape.

We use a breadth-first strategy to model the non-determinism of the Turing
machine. Using this search strategy allows us to decouple the search from the
acceptance check. The function ndtm-step-n returns all the possible configura-
tions that can occur after stepping through an initial configuration n times. We
test acceptance with the function ndtm-accept which takes a list of configura-
tions and checks to see if any of them are in the accepting state. The function
ndtm-accepts-p takes a machine, input, and number of steps, and returns true
if the machine accepts the given input in that number of steps.

We place some restrictions on the Turing machines: We insist that once a
machine enters its final state it should stay there; we require that a machine have
some transition for every possible combination of internal state and tape symbol

read; and we require some syntactic conditions, such as the initial and final states
being listed in the possible states, and that each transition write a valid character
in the tape and move to a valid state. These properties are encapsulated in the
predicate valid-machine. We chose to write this as restrictions on the possible
Turing machines, rather than to enforce them in the function ndtm-step, to
simplify the Turing machine model.

The functions ndtm-step-n and ndtm-accept faithfully model traditional
Turing machines. But the proof of the Cook-Levin theorem makes use of compu-
tations, i.e., paths through the tree explored by ndtm-step-n. In contrast these
functions only store the frontier of the tree, since Turing machines do not keep
a “memory” of their previous states. To bridge this gap, we introduced another
model of Turing machines, one based on computations instead of configurations.

A computation consists of a sequence of configurations and the Turing ma-
chine transitions or moves that link them together. Consider the sequence S, Ss,
..., Sy of configurations, and further let m; be the move that transforms S;_;
into S;. Then we represent this with the list ((S, . my,) (Sh,_1 . Mn_1)
...(S1, nil)). Notice that the list contains the last (or current) configura-
tion in the front, making it easier to extend recursively.

The functions ndtm-comp-step-n and ndtm-comp-accept are direct analogs
of ndtm-step-n and ndtm-accept. In particular, we use the exact same search
strategy in the ndtm-comp-* functions as we do in the ndtm-* functions. This
simplifies the proof of the equivalence between the two Turing machine models.

3.2 The Model of Satisfiability

Boolean expressions are considerably simpler than Turing machines. We must
make clear that by “boolean expression” we mean any expression made up of
propositional variables and the connectives “and,” “or,” and “not.” In particular,
we do not restrict ourselves to clausal representation.

What we need to model boolean expressions is an interpreter that can input
arbitrary expression trees over and, or, and not as well as a list associating
variables with values, and return the value of the expression. We defined the
interpreter booleval that fits this description. For example, the expression

(booleval ’(and (or p q) (mot r)) ’((r . nil) (p . t) (q . t)))

returns true, i.e., t. In addition, we proved a number of simple theorems about
booleval, such as the following:

(defthm booleval-and
(implies (equal (first x) ’and)
(equal (booleval x a)
(and (booleval (second x) a)
(booleval (third x) a)))))

For the remainder of the proof, the actual definition of booleval was irrelevant
and in fact disabled. Only properties such as the above were used in the proof.

3.3 The Translation

In this section, we describe the formal translation from a Turing machine instance
into satisfiability. Rather than presenting the complete translation, we will focus
only on the functions that will be needed in the formal proofs to follow.

Recall that the boolean expression F, consists of the conjunction of four
parts, with rough semantics equal to “the assignment consistently represents an
array,” “the first configuration is the initial configuration for the input,” “the
final configuration is an accepting configuration,” and “successive configurations
follow each other legally, according to the rules of the machine.” Formally we
build this expression as follows:

(defun ndtm2sat (machine input nsteps ncells)
(let ((alphabet (ndtm2sat-alphabet machine)))

(fold-and (is-a-2d-array 1 nsteps ncells alphabet)
(first-string-is-input ncells input machine)
(last-string-accepts nsteps ncells machine)
(valid-computation nsteps ncells machine))))

The function ndtm2sat-alphabet builds the alphabet of the array T'(i, 7). This
includes not just the alphabet of the Turing machine, but also all the composite
symbols (x,¢q,d) encoding a tape symbol, a state, and a legal move. Note: The
function fold-and returns an expression corresponding to the conjunction of its
arguments.

We will now consider each subexpression, starting with is-a-2d-array. This
function loops over all steps making sure each one is a valid string:

(defun is-a-2d-array (step nsteps ncells alphabet)

(declare (xargs :measure (nfix (1+ (- nsteps step)))))

(if (or (not (integerp nsteps)) (not (integerp step))
(> step nsteps))

t
(list ’and

(is-a-string step 1 ncells alphabet)
(is-a-2d-array (1+ step) nsteps ncells alphabet))))

The :measure is used to justify the termination of this function. All ACL2
functions are total, so ACL2 tries to prove a function terminates before accepting
it. When the termination argument is non-obvious, it is necessary to provide an
explicit :measure that ACL2 can use in the termination proof.

The definition of is-a-string is just like that of is-a-2d-array, except that
it iterates over the function is-a-character, which returns a boolean expression
that is sasisfiable precisely when there is exactly one character at position T'(4, j):

(defun is-a-character (step cell alphabet)
(list ’and
(is-one-of-the-characters step cell alphabet)
(is-not-two-characters step cell alphabet)))

Checking that the symbol is one of the characters is straightforward. We need
only iterate over the alphabet and take the disjunction of all terms (prop step
cell X) where X is one of the members of alphabet. Similarly, to make sure
there are not two different characters at this position, we consider each member
of alphabet against each of the remaining elements of alphabet:

(defun is-not-2nd-character (step cell char alphabet)
(if (endp alphabet)
t
(list ’and
(list ’not
(list ’and

(prop step cell char)
(prop step cell (first alphabet))))

(is-not-2nd-character step cell char (rest alphabet)))))

(defun is-not-two-characters (step cell alphabet)
(if (or (endp alphabet) (endp (rest alphabet)))
t
(1ist ’and
(is-not-2nd-character step cell (first alphabet)
(rest alphabet))
(is-not-two-characters step cell (rest alphabet)))))

A similar story explains first-string-is-input. We already know what
the input should be, so we need only check that the appropriate propositions are
true. The function string-holds-values performs such a check. Given a step,
a beginning and end tape position, and a list, it creates a conjunction specifying
that the tape holds the characters in the given list. The only complication is that
the first character is actually a composite symbol, so we do not know exactly
which proposition will be true. This forces us to iterate over all legal moves when
the machine is in its initial state and scanning the first character of the input.

The function last-string-accepts is also quite simple. It iterates over all
the cells in a given step, checking to see if that cell is one of the elements of the
final alphabet.

Not surprisingly, valid-computation is the hardest part of the translation.
The function iterates over successive steps checking that the second follows from
the first. We do this by looping over each of the cells in the second tape, making
sure that it is correct. The difficulty lies with validating a single cell.

We use the function valid-cell to perform this check. A minor difficulty
has to do with boundary conditions. The cell T'(i,j) depends on the values of
T(i—1,7—1),T(i—1,7), and T'(i+1, j), which we call the neighbors of T(4, 7).
But when the cell j is at the beginning or end of the tape, we must drop the
neighbors that lie outside the edges. This also prevents the read/write head
from scanning past the left edge of the tape. So valid-cell performs a case
split to check the position of the cell. We will avoid this complication in this
presentation, since it only splits the proof into four very similar cases.

For a cell in the “middle” of the tape, there are four ways in which T'(,)
can follow from T'(i — 1, x). First, it is possible that T'(i — 1, j — 1) is a composite
symbol corresponding to a move of the read/write head towards the right, in
which case T'(i,j) will become a composite symbol. A similar story holds if
T(i—1,7+1) represents a move to the left. When T'(i — 1, j) is composite, then
T(i,7) will change as the machine will write a (possibly new) symbol on cell j.
In all other cases, T'(i,7) will retain the old value of T'(i — 1, 5).

The functions valid-moves-left, -right, -middle, and -rest check for
these cases. The first three functions scan the valid composite symbols to find the
ones that may affect the symbol T'(4, j). These functions return two values. The
first value is the boolean expression that will be true if and only if T'(: —1,5") is a
composite symbol resulting in T'(4, j). The second value is a list of the composite
symbols examined. This list is needed by valid-moves-rest, so it can perform
the “else” case. To make this clear, consider the definition of valid-moves-left:

(defun valid-moves-left (prevstep curstep curcell machine)
(let* ((alphabet (cons nil (ndtm-alphabet machine)))
(composites (strip-right
(composite-symbols
alphabet (ndtm-states machine)
(ndtm-transition machine)))))
(cons (make-valid-moves prevstep (1- curcell)
curstep curcell
composites alphabet machine)
(prop-list prevstep (1- curcell) composites))))

This function handles the case where T'(i—1, j—1) is a composite affecting T'(, j).
The alphabet consists of the alphabet of the Turing machine and the designated
blank symbol, which is represented by nil. The auxiliary function strip-right
returns all the relevant moves, i.e., those that move to the right. The function
prop-list stores the propositions representing the fact that T(i — 1,5 — 1) is
a relevant composite symbol. The function make-valid-moves loops over the
relevant composite symbols in T'(¢ —1, j — 1) and possible tape symbols in T'(z,)
and calls make-valid-move to generate the given constraint. The definition of
make-valid-move is given below:

(defun make-valid-move (prevstep prevcell curstep curcell
composite symbol machine)
(let* ((newstate (move-nextstate (symb-move composite)))
(moves (ndtm-moves newstate symbol
(ndtm-transition machine))))
(1ist ’and
(prop prevstep prevcell composite)
(prop prevstep curcell symbol)
(make-valid-move-list curstep curcell
newstate symbol moves))))

This function depends on make-valid-move-1list which loops over the given
moves and generates the appropriate composite symbol:

(defun make-valid-move-list (curstep curcell state symbol moves)
(if (endp moves)
nil
(list ’or
(prop curstep curcell (symb symbol state (first moves)))
(make-valid-move-list curstep curcell state
symbol (rest moves)))))

The function valid-moves-right is completely symmetrical; in fact, it uses
many of the same auxiliary functions. The function valid-moves-middle is also
very similar, but it is slightly more complicated because it takes into account
the new symbol written by the machine. That leaves valid-moves-rest which
handles the else case. That is, if a given cell is not affected by a neighboring
composite symbol, then it retains its previous value:

(defun valid-moves-rest (prevstep curstep curcell machine cases)
(list ’and
(list ’not (fold-or cases))
(remains-unchanged prevstep curstep curcell
(cons nil (ndtm-alphabet machine)))))

The list cases contains all of the propositions encoding neighboring composite
symbols. This is compiled from the second value of the other valid-moves-x*
functions. The function remains-unchanged iterates over the given alphabet
making sure that T(i — 1,5) = T(4,j) and is a member of the alphabet.

Note in particular that remains-unchanged is called only for characters that
are part of the real alphabet of the tape, i.e., the machine alphabet and the
special blank character. No composite symbols are ever passed through this
function, since the composite symbols always change according to the rules of
the valid-moves—-* functions.

All of these constraints come together in valid-cell, which ties these func-
tions while taking care of the special cases. The following excerpt will suffice to
show how this function operates:

(defun valid-cell (prevstep curstep curcell ncells machine)
(if (> curcell 1)
(if (< curcell ncells)
(let ((left (valid-moves-left prevstep curstep
curcell machine))
(middle (valid-moves-middle prevstep curstep
curcell machine))
(right (valid-moves-right prevstep curstep
curcell machine)))
(fold-or (first left) (first middle) (first right)
(valid-moves-rest

prevstep curstep curcell machine
(append (rest left) (rest middle)
(rest right)))))))

3.4 Case I: The Turing Machine Accepts

In this section we will show that the boolean expression generated in Sect. 3.3
is satisfied when the Turing machine accepts the input. The expression consists
of the conjunction of four main subexpressions which we can consider in turn.
Before delving into the details, it is worth a moment to look at the basic
structure of the proofs. Suppose we have a valid computation of the machine
accepting . We want to show that a term (booleval expr alist) is true,
where expr is F, and alist is a truth assignment generated from the accepting
computation. The expr is constructed by piecing together a large number of
local terms. For example, the subexpression for valid-cell will only examine
propositions that correspond to neighboring cells. The alist is also constructed
in this manner. We will process the computation and translate pieces of it into
truth assignments which are then joined together. So the essence of the proof
will be to dive into both expr and alist, such that we can show a particular
subexpression expr1l is true under the truth assignment alistl. Then we will
“lift” this result to the complete truth assignment, so that expr1i is satisfied by
alist. Finally, we put together all the subexpressions to complete the proof.
We begin our study of the proof with the extraction of a truth assignment
from a computation. A computation is a list of configurations and the moves that
link them together, and a configuration consists of a tape and a state. The most
basic extraction function, therefore, converts a tape into a truth assignment:

(defun convert-tape-to-assignment (tape step cell ncells)
(declare (xargs :measure (nfix (1+ (- ncells cell)))))
(if (or (not (integerp ncells)) (not (integerp cell))
(> cell ncells))
nil
(cons (cons (prop step cell (first tape)) t)
(convert-tape-to-assignment (rest tape) step (1+ cell)
ncells))))

This is the only place where we will assign a value to a proposition; notice
in particular that the only propositions assigned are given a true value. The
following routine is used to extract an assignment from a configuration:

(defun convert-config-move-to-assignment (config move step ncells)
(convert-tape-to-assignment
(append (reverse (config-lhs config))
(cons (symb (first (config-rhs config))
(config-state config)
move)

10

(rest (config-rhs config))))
step 1 ncells))

To finish the conversion of a computation to a truth assignment, it is only nec-
essary to step over all the configurations in the computation and append the
resulting assignments. However, there is a slight complication. The computa-
tions associate a configuration with the move that results in that configuration,
while the composite symbols associate a state and symbol with the move that
is possible from that configuration. So we must stagger the moves as we process
them. In addition, we must explicitly find a possible (e.g., the first) move ex-
tending the last configuration, since this is needed to form the composite symbol
but it is not present in the computation.

Now that the truth assignment is constructed, let us consider the proof that
it represents a 2D array. We break the boolean expression down into its smallest
terms and find the corresponding local section of the truth assignment. Recall
how is-a-2d-array is defined in terms of is-a-string, all the way down to
is-one-of-the-characters. So we begin by considering the latter function:

(defthm tape-to-assignment-is-one-of-the-characters-aux
(implies (member symbol alphabet)
(booleval (is-one-of-the-characters step cell alphabet)
(cons (cons (prop step cell symbol) t)
alist))))

As the theorem shows, the simplest truth assignment that makes this expression
true is one that begins with a boolean proposition corresponding to this partic-
ular cell. As it turns out, the function convert-tape-to-assignment has just
this property, so it is easy to show the following:

(defthm tape-to-assignment-is-one-of-the-characters
(implies (and (member (first tape) alphabet)
(integerp ncells) (integerp cell)
(<= cell ncells))
(booleval (is-one-of-the-characters step cell alphabet)
(convert-tape-to-assignment tape step cell
ncells))))

The satisfiability of is-not-two-characters is easy to establish in the same
way. So now we are ready to lift the result higher in the truth assignment.

But this is not as simple as it would appear at first. The problem is that the
instance of convert-tape-to-assignment used in the theorem above hardcodes
the value of cell. We need to generalize this theorem to allow other cell values,
such as the ones in the call from convert-config-move-to-assignment. This
assignment has some values in front of, not just behind, the one we need.

This is not straightforward. It is possible that one of the assignments in front
gives a different value to a proposition. Even if the assignments are disjoint; i.e.,
if they assign values to different propositions, it is possible for the combination
to provide unexpected results. The reason for this is that booleval implicitly

11

assigns a value of false to any proposition that is not explicitly assigned, which
is a valuable property of booleval because it allows truth assignments to be
built incrementally. Compatibility of truth assignments depends not only on the
assignments themselves, but on the variables used in the term being evaluated.

To continue the proof, therefore, we have to consider the propositions that
are assigned values by a truth assignment, as well as the propositions used in
an expression. We defined the functions assigned-vars and vars-in-term for
this purpose. Typical theorems about these include the following:

(defthm vars-in-term-one-of-the-characters
(implies (member prop (vars-in-term
(is-one-of-the-characters step cell
alphabet)))
(and (equal (prop-step prop) step)
(equal (prop-cell prop) cell))))

(defthm assigned-vars-convert-tape-to-assignment
(implies (member prop (assigned-vars
(convert-tape-to-assignment
tape step cell ncells)))
(and (equal (prop-step prop) step)
(<= cell (prop-cell prop))
(<= (prop-cell prop) ncells))))

Now it is possible to lift the theorem to bigger truth assignments. We only need
lemmas specifying how booleval composes the truth assignment. The following
lemma is the one we need for this specific case:

(defthm booleval-append-alist-left
(implies (and (not (intersectp-equal (vars-in-term x)
(assigned-vars a)))
(alistp a))
(equal (booleval x (append a b))
(booleval x b))))

This suffices to lift the theorem so that we know the truth assignment generated
by convert-config-move-to-assignment satisfies is-a-string:

(defthm move-to-assignment-is-a-string
(implies (and (no-duplicates alphabet)
(subsetp (config-lhs config) alphabet)
(subsetp (config-rhs config) alphabet)
(member (symb (first (config-rhs config))
(config-state config)
move)
alphabet)
(member nil alphabet)
(not (zp ncells)))

12

(booleval (is-a-string step 1 ncells alphabet)
(convert-config-move-to-assignment
config move step ncells))))

Notice the requirements that the move appear in the alphabet, and that the tape
is a subset of the alphabet. This is needed because is-a-string tests not only
that the truth assignment is a consistent representation of a string, but also that
the string is over a particular alphabet.

To complete the satisfiability of is-a-string, we need to apply the theorem
move-to-assignment-is-a-string to all the configurations in the computa-
tion. In particular, we need to show that the hypothesis of this lemma will be
satisfied by all the configurations in the computation. But this follows when the
initial tape uses symbols only from the alphabet, since subsequent tapes will
also satisfy the requirement as long as the transitions in the machine are valid.
So we have completed the proof of the satisfiability of is-a-2d-array.

The proof of the other three major subexpressions follows the same pattern.
The proofs of first-string-is-input and last-string-accepts do not bring
anything new to the table, so we will omit them. It is only worth noting that the
proof of last-string-accepts depends on the fact that the last configuration
has a composite symbol. In particular, the left tape is not allowed to grow by
more than the number of steps, which is straightforward to show.

That leaves the proof that the assignment satisfies valid-computation. Our
plan is to split the tape into three parts. In the middle are the cells around the
read /write head, which could possibly be affected by a move. The remaining
cells are considered to be either to the left or to the right.

So our first task is to see what happens to a character that is (far enough) to
the left of the head. Consider what happens to the actual tape. Suppose configl
and config?2 are valid configurations. We explore every possible way in which
config? can follow configl. The following theorem is representative:

(defthm cdr-lhs-tape-does-not-change-left-move-possible
(implies (and (equal (move-direction move) ’left)
(consp (config-lhs configl))
(valid-step machine configl move config2))
(equal (rest (config-lhs configl))
(config-lhs config2))))

Using this lemma, it is possible to show that if a cell has a given value and the
cell is (far enough) to the left of the read/write head, the cell has the same value
at the next iteration. Since propositions explicitly in the truth assignments are
assigned true, truth is equivalent to membership in the assignment. This results
in the following theorem, which is representative of the various cases to consider:

(defthm early-cell-in-convert-config-left-move-possible
(implies (and (consp (config-lhs configl))
(not (zp ncells))
(<= (len (config-lhs configl)) ncells)

13

(member prop (assigned-vars
(convert-config-move-to-assignment
configl move step ncells)))

(< (prop-cell prop) (len (config-lhs configl)))

(equal (move-direction move) ’left)

(valid-step machine configl move config2))

(member (prop (1+ step) (prop-cell prop)

(prop-char prop))
(assigned-vars
(convert-config-move-to-assignment
config2 move2 (1+ step) ncells)))))

Naturally, the next step is to lift this result to the larger truth assignments.

Theorems such as the one above show precisely what happens to all the cells
in a tape, except for two cells around the read/write head, the one which the
head is scanning and the one to which the head will move. We have to handle
these cases separately. Although these results are more interesting, in the sense
that this is where the machine is performing some action, they are easier to
prove than the ones above because we know precisely which cells are involved.

That means we can prove an exact theorem, such as the following;:

(defthm middle-cell-in-convert-config-move-left-move-possible-1

(implies (and

(and

(consp computation)
(consp (rest computation))
(equal (first (first computation)) config?2)
(equal (rest (first computation)) move)
(equal (first (first (rest computation))) configl)
(consp (config-lhs configl))
(not (zp ncells))
(<= (len (config-lhs configl)) ncells)
(equal step (len computation))
(equal (move-direction move) ’left)
(valid-computation machine computation))
(member (prop (1- step)
(len (config-lhs configl))
(first (config-lhs configl)))
(assigned-vars
(convert-config-move-to-assignment
configl move (1- step) ncells)))
(member (prop step
(len (config-lhs configl))
(symb (first (config-lhs configl))
(config-state config2)
prevmove))
(assigned-vars
(convert-config-move-to-assignment
config2 prevmove step ncells))))))

14

This theorem covers the cell position to which the head moves. A similar theorem
takes care of the cell position originally containing the read/write head.

These lemmas are almost ready to be stitched together into the final theorem.
The missing piece is the fact that the “else” case in the definition of valid-cell,
which allows a cell in the tape that is away from the head to retain its value,
requires the cell not to have a relevant neighbor. So we must prove that when a
cell is (far enough) away from the head, the cells around it are not composite.

Combining all the theorems proved so far shows that valid-computation is
satisfied by the generated truth assignment. Then combining that with the other
parts of the condition, we get the final result:

(defthm valid-transformation-computation-best
(implies (and (integerp n) (< 1 n)

(valid-machine machine)

(alphabet-symbol-list-p (ndtm-alphabet machine))

(no-duplicates (ndtm2sat-alphabet machine))

(ndtm-accepts-p machine input (1- n))

(subsetp input (ndtm-alphabet machine)))

(booleval (ndtm2sat machine input n n)

(convert-computation-to-assignment
machine
(accepting-witness machine input (1- n))

n))))

Note: The function accepting-witness searches for a valid, accepting compu-
tation.

3.5 Case II: The Expression is Satisfiable

In this section we explore the other half of the proof. We wish to show that
when the expression F, is satisfiable, the input x is accepted by the machine.
To do this, we will extract a computation from a truth assignment that satisfies
E, by looking at all the propositional formulas Cj ; x for each ¢ and j, and
selecting the one X that makes it true. So the most fundamental function is
extract-char-alist, which finds the X that makes C; ; x true:

(defun extract-char-alist (step cell alphabet alist)
(if (endp alphabet)
nil
(if (booleval (prop step cell (first alphabet)) alist)
(first alphabet)
(extract-char-alist step cell (rest alphabet) alist))))

Notice that we must know the relevant alphabet a priori.

With this function we can define extract-1lhs-tape and extract-rhs-tape,
which extract the left and right halves of the tape, respectively. It is only neces-
sary to know where to split the tape. We do this by iterating over all the cells in

15

the tape until we find a composite cell. We wrote different functions for the left
and right halves of the tape since the former is stored in reversed order. Once
these functions are defined, it is a simple matter to write extract-config,
which extracts a configuration, and use that to define extract-computation
which extracts the candidate valid, accepting computation.

At this point, we have a situation similar to the one we faced in trying to
prove F, is satisfiable if there is a valid computation. It would appear that the
remaining part of the proof is as difficult as what has gone before, since in both
cases we are considering an expression of the form (booleval expr alist).
But there is a key difference. Previously, we had a valid computation and we
used that to extract an alist. The extraction process was localized, so it was
necessary to dig into portions of the alist to find the part that made a particular
expression true. But in this case, the alist is known a priori, so we need only
split expr into its subexpressions, leaving the alist unchanged.

The key point is that we break up the structure of expr, not of alist. Since
the function booleval is defined precisely in this way, this leads to much simpler
lemmas, without worrying about issues such as inconsistent truth assignments.
This came as a very pleasant discovery for us. We noticed that the proof in
this direction was much easier partly because so much more of the proof was
discovered automatically by ACL2. It was in trying to understand why we were
so lucky that we discovered the delicious asymmetry of booleval. Since the
proof is much more mechanical in this direction, we will only present an outline.

Notice that the function extract-computation is guaranteed to extract only
one computation. However, it is possible that more computations can be ex-
tracted from the truth assignment. Of course this is not the case, and at first we
thought there was no real need to prove this, but it turns out that this unique-
ness property is crucial in the other proofs. Many times it will not be enough to
know that C; ; x is true; we must also know that C; ;y is false for all Y # X.

As before, the strategy is to isolate what happens around the read/write
head. This corresponds to the composite symbol, so it is necessary to know that
there is only one composite symbol at any step in the truth assignment. We do
this by counting the number of composite symbols in a given step. If we know
that this number is equal to 1 and we find a composite symbol at some cell, then
we are guaranteed that none of the symbols in other cells are composite.

Next we show that if a cell changes from one step to the next, then one
of its neighbors must be a composite symbol. Moreover, the composite symbol
is restricted based on its relationship to the cell that changed. For example, if
T(i,j) ZT(i—1,7)and T(i—1,j—1) is a composite, then it must be a composite
symbol corresponding to a right move of the tape.

To complete the proof we observe that every step in the computation has
exactly one composite symbol. It is easy to show that if one configuration has
only one composite symbol, the next one can have at most one such symbol,
and if a configuration has no composite symbols neither does the next. Since the
initial and final configurations have one composite symbol, so must all the other

16

ones in the computation, and this is the one found when we split the left and
right tapes in the transformation.

Essentially the proof is now complete. The cells that are sufficiently to the
left of the composite symbol in a step are unchanged, as are the ones that
are sufficiently to the right. The behavior of the cells immediately around the
composite symbol is also known. This is enough to show that two successive
configurations extracted from the truth assignment legally follow according to
the rules of the Turing machine.

The only remaining complication is that the computation that is extracted
is not the computation that ndtm-comp-step-n will enumerate. But the only
difference is that the extracted computations pads the right tape with blanks to
make p(n) cells. It is easy to show that such starting configurations are equiv-
alent, in the sense that if one of them ends in an accepting state so does the
other.

3.6 Timing Analysis

Thus far we have ignored the issue of timing. But it is an important aspect of
the Cook-Levin theorem that the transformation take only polynomial time, so
we would like to address this as well.

Unlike higher-order theorem provers, ACL2 does not provide any introspec-
tion mechanisms that can be used for cost measurement. It does provide a mech-
anism for defining an interpreter over certain functions, but this interpreter is
unsuitable for measuring costs, since it uses the functions directly to evaluate
results without opening up their definitions.

Curiously, ACL2’s prececessor, the Boyer-Moore theorem prover, did have
a facility that would be useful in this context. In that theorem prover, every
function definition extended a set of built-in interpreters, including v&c$ which
computed the value and the cost of an expression.

Without such an interpreter, however, we are forced to proceed differently.
What we did was to define a cost—* version of each function used in the transla-
tion. This function returns a pair, the first element being the normal value of the
function, and the second a measure of the cost used to compute this value. For
each such function, we also proved two theorems about it. The first states that
the cost-* function accurately computes the function it emulates. The second
gives an upper bound for the cost.

4 Conclusions

In this paper we described a formal proof in ACL2 of the Cook-Levin theorem.
The formal proof fills in the gaps typically left by higher-level proofs. In partic-
ular, we showed that the transformation mapping instances of Turing machines
to satisfiability really does work.

We attempted to use this proof while teaching a one-hour graduate course
introducing students to ACL2. The format of the course requires each student

17

to make a presentation during at least one class period. One of the challenges
in teaching a course like this is keeping students interested in each other’s pre-
sentations. By having each student make a small contribution to a larger re-
search project, we hoped to establish a continuity between the presentations
that would involve them throughout the semester. Unfortunately this did not
work as planned. The students did gain experience with ACL2, and some of them
are becaming proficient in it, but they found the Cook-Levin theorem too diffi-
cult to formalize. Not having had a course that covered this theorem in detail,
many found even the informal proof too difficult to follow.

This is a shame because the proof does follow many classic patterns of formal
proofs: It builds a formal model of the entities involved, namely Turing machines
and boolean expressions; it constructs mappings between them; and it shows that
the mappings are connected in important ways. Moreover, in doing the proof we
discovered that the asymmetry in the definition of booleval led to one half of the
proof being much easier than the other. This is a beautiful example of the deep
connection between recursion and induction. One direction is easier because its
natural induction scheme mirrors the recursive structure of the function, making
everything work smoothly.

The major weakness in the formalization lies in the analysis of the time
complexity of the translation. It is an important aspect of the proof that the
translation can be performed in polynomial time. But this is not the sort of
reasoning that comes naturally in ACL2. Currently we are investigating a way
to extend ACL2 to introduce interpreters that can compute the cost of evaluating
an expression as well as its value. There are some very interesting challenges,
such as the termination proof for the interpreter.

References

1. R. S. Boyer and J Moore. A mechanical proof of the turing completeness of pure
Lisp. In W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem Proving:
After 25 Years. American Mathematical Society, 1984.

2. R. S. Boyer and J Moore. A mechanical proof of the unsolvability of the halting
problem. Journal of the ACM, 1984.

3. S. Cook. The complexity of theorem proving procedures. In Proceedings of the 3rd
ACM Symposium on Theory of Computing, 1971.

4. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, 1979.

5. M. Kaufmann, P. Manolios, and J S. Moore. Computer Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, 2000.

6. M. Kaufmann and J S. Moore. The ACL2 home page.
http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html.

7. L. A. Levin. Universal sorting problems. Problemi Peredachi Informatsii, 1973.

8. N. Shankar. Proof Checking Metamathematics. PhD thesis, University of Texas,
1984.

9. N. Shankar. Towards mechanical metamathematics. Journal of Automated Reason-
ing, 1985.

18

