

Cosc 2030 Program 2

Due: Mar 18 100 points

In this assignment, you will implement your second spell checker. For this version, you are going to

implement the spell checking with a tree data structure. You can NOT use any STL data structures for

the dictionary, instead you are going to write the tree code and then use it in the spell checking.

You will be given a dictionary, in which the words are in random order. The words in the dictionary are

unique, but some may have capital letters. The dictionary is large, having over 125,000 words in it.

Reading the file in word by word is easy. The dictionary will be entered into the tree data structure

you wrote.

The book has almost a million words in it! This will be a bit more complicated, since the words read in

may contain ASCII characters that are not in the dictionary. So, you will have read each word and then

send it to a “clean word” method. When reading the book, a word will be defined as between two

spaces (or end of line). I suggest you read using >> instead of getline, since it will read based on

spaces. You will need to write a “clean word” function that will any unnecessary ASCII characters

from the word, see specs below. You will need to use the clean word method to sanitize books’ words

and the dictionary words (before adding them to the dictionary data structure). You will also be timing

this as well.

“Clean word” method:

• This must be implemented as a separate method and in the same file as the main method, so it

can be called for either a dictionary word or book word.

• The function will remove any non-letters, except an apostrophe (‘) and numbers from the word.

• All letters will be changed to lower case.

• It will then return the updated word. The word could now be blank. The calling method will

need to deal with this correctly.

Program requirements:

1. You must write a tree data structure class and it must be a template class, as described in the

Advanced Data Type (ADT) lecture. It MUST be in its own file (not the main cpp file). You

cannot use the STL map, order, pair, or hash data structures to hold the dictionary. You can

however use other STL methods and functions in other places.

2. “Clean word” method must be implemented as described above.

1. Any word that starts with as a non-letter (after returning from the clean word function) will

be skipped for spell checking. It's not in the dictionary.

2. Any word that comes back blank is not checked nor counted as skipped.

3. You will use the time code provided to time the spell checking. The time to initialize the

dictionary IS NOT part of the timing. It starts at the point you open the book file.

4. Output the following information. See the next page for required format of the output.

1. Time to spell check

2. Number of words spell correctly

3. And the Number of compares, and average number of compares for spelled correctly.

4. Number of words not spelled correctly

5. And the Number of compares, and average number of compares for misspelled

6. Number of words skipped.

5. You must write out a file of all the misspelled words (every instance of the misspelled word too)

to a file called misspelled.txt Print each word on a separate line. This should be done after the

timer has been stopped, otherwise if will affect your runtime.

6. The insert/find/remove/getSize/isEmpty functions must be in the tree class and must use these

names. You can NOT use an insert/find/remove/getSize/isEmpty functions that are out of the

class.

7. Your code must be commented and have good coding style (variable naming, indention, etc)

and structure. Points will be taken for poor structure and bad code style.

8. No matter what else you do, the must be a string.compare operation to determine that the word

matches a word in the dictionary. You can’t skip the compare.

Specifically forbidden items:

1. You may not preload the book into any data structure. You are to read ONE word at a time and

check it against the dictionary data structure.

2. You may not add any other dictionaries or dictionary files and must use the dictionary provided.

Your program may not use any external information about the dictionary, other information

provided in the dictionary itself.

3. You may not even include the following STL libraries in any of your code: map, pair, hash,

unordered_map, and unordered_set

4. The dictionary data structure must be ONE complete data structure class; you cannot, as an

example, declare 5 separate data structures for the dictionary in the main code. This would be

done inside the dictionary data structure class itself.

5. The Clean word method MUST be a separate method and may NOT be part of the dictionary

data structure class.

6. You may not have any ASCII based numbers in your code or check based on an ASCII number.

• While you can use the ASCII table, nowhere can you hard code any ASCII table numbers

into your code.

7. Comparing strings with the == anywhere in your code is strictly forbidden, this includes !=, <=,

and all the rest.

8. It should take no more than a couple of minutes to insert the entire dictionary into the tree.

Output section: No other output, besides what is below, number is RED are expected to be different,

but use the same formatting. Removing ALL of your debugging lines, this is the only output your code

will produce in the version you turn in.

dictionary size 133168

Done checking and these are the results
finished in time: 5.02

There are 950068 words found in the dictionary
 15186771 compares. Average: 15

There are 27075 words NOT found in the dictionary
 441201 compares. Average: 16

There are 2544 words not checked.

Run time for extra credit.

 To compete for extra credit, first the program must run correctly and meet all the specifications

above. The extra credit will be applied to Exam 2.

• 2 extra credit points for finishing in under 6 seconds on the Pi device.

o Roughly 1 second or less on the Linux systems, but all timings will be on the Pis

• Finally, 3 addition extra points if you can beat my time. Which is listed in the format section.

On the Linux system, it ran in .8 seconds.

Turn in:

Hard copy: (THIS MUST BE TYPED)

 A cover page with the following information

Cosc 2030

Program #2

your Name

Repo name

Competing: YES or NO

in large font at the top of the page. At the bottom of the page, include a non-empty statement of help

delivered and help received. It is OK to state that no help was given or received. It is NOT ok to omit

the statement of help.

Soft Copy:

1. Copy ONLY any .cpp and .h files to the repo. Use this link to create the repo:

https://classroom.github.com/a/qzPxswKP

2. Edit readme.md file, add the following:

• Name

• Competing: YES or NO

o Also list your best run time

• How to compile it on the linux systems if not competing or Pi systems if competing

• List anything that doesn’t work (that you know of)

3. Lastly, verify all the necessary files are on the github website. If the files are missing, then

you DID NOT turn it in.

https://classroom.github.com/a/qzPxswKP

