
Cosc 5/4735 Program 3

Due: March 6 50 points

1. Write the following program phone application. Adding to the TicTakToe program.

You can use NearBy or Bluetooth to make the connection between the two phones.

Note for the rest of the assignment it will say NearBy, but you may be using Bluetooth. I

will suggest that NearBy maybe easier, but the choice is yours

For Nearby the ServiceID will be "edu.cs4730.nearbyconnectiondemo" and use the

Strategy P2P_STAR. As found in the nearbyConnectionDemo. This way everyone using

nearby can play against each other's code.

For Bluetooth the UUID will be fa87c0d0-afac-11de-8a39-0800200c9a66 as found in the

Bluetooth demo code. Again, so any Bluetooth players can play against each other code.

Tic-tac-toe program revisited again:

 Using the Tic-Tac-Toe code from previous class (with any corrections needed), add in

NearBy code to it. If you do not have the code, then write a new version. You should be

able to play again any other student’s and instructor’s version. For grading purposes,

your code will be played against the instructor/grader’s code.

Protocol:

NearBy uses Advertise and Discovery. While Bluetooth uses Server and Client. For

clarity, I will be using the term server and client. Nearby Advertise is the server and

Discovery is the client. Whichever you choose, your game will need to handle both the

client and server side of the game. The user only has to enter the number (touch, or

click, or whatever) for the position to place an X or O. The application will then

determine winner/tie conditions.

The board will look like this and the numbers refer to the position. So position 5 is the

center square:

After the server and client connect, the first thing they need to do is agree on who is the X

player (ie who goes first). The User on the Server always gets to choose.

The server app will then send one of two messages

player X Meaning the server is playing X (going first)

player O Meaning the server is playing O (going second)

The client application then sends back either (not user input)

agree Meaning the client agrees

disagree Meaning the client does not agree (a server error in the message!).

Example sequence to determine X and O player

Protocol messages

(send/received)

Description

player X Server has decided to be X

agree Client agrees

If disagree, then there is a program error. Game ends.

player O Server has decided to be player O

agree client is player X

Playing the game. Messages are passed back and forth between the two.

Player X would send the position that X was placed.

Example player X picks 5. The message 5 is sent. The other side will now agree or

disagree. Then a message is sent either "nowinner", "winner", "tie", the other side will

now agree or disagree. If either disagrees, there is likely a coding problem or one player

is cheating and the game ends. Next Player O picks the position on the board, and then

the application(s) do the rest. This sequence continues until winner or tie, and then the

game is over.

Example protocol sequence of the game

Protocol messages

(send/received)

Description

5 X chooses position 5. User specifies there want to place an x at 5.

agree O agrees application agrees (no user input)

nowinner X says no winner app sends nowinner (no user input)

agree O agrees (same application agrees, no user input)

3 O chooses position 3

agree X agrees that it is valid.

nowinner O says no winner (no user input)

agree X agrees (again no user input needed)

… 7 of moves later

tie X player claims tie

agree O player agrees there is a tie, the game is over

Once a game is over, the players need to decide if they want to play again. If either

player say no, then the application is done. If both agree to play again, then the Server

chooses to be X or O and the game starts again. The server starts the message with

either

playagain //yes play again

exit //no we are done

The client can then agree or disagree to playagain. If exit, the client must agree, since the

server is closing the connection anyway and if the client disagrees to playagain, the game

is over.

Example sequences for Player again:

Both agree to play again Server plays, but not client Server is done.

Sever: playagain Server: playagain Server: exit

Client: agree Client: disagree Client: agree

Clear board and Choose X

player

Program ends Program ends

TURN IN and GRADING:

Hard copy:

1. A copy page with Name, program #3, cosc 5735 or 4735

Soft copy:

1. Use this link to create your repo https://classroom.github.com/a/u3x6YTel

2. Upload the project to your repo

3. Create/Edit the readme.md file, add the following:

o Course number 5735 or 4735

o Name

o how to run the program,

o Bluetooth or NearBy

o Which phone to run on including special information like android version

(ie v4.4) and screen size. You won't be able to use an emulator for this

program.

 Or if you are using the borrowed phones.

4. Lastly ensure everything has uploaded to the github website and not just the local

repo.

Code will be graded on correctness, comments, and coding style. Remember the program

will be graded by using the instructor's version playing against your app. Follow the

protocol or your program will fail.

https://classroom.github.com/a/u3x6YTel

