

COSC 4740

Final Project

Due date: Dec 02

I hear and I forget, I see and I remember, I do and I understand. – Chinese

proverb

Goal: To design and implement a subset of the Unix file system.

Grade: 30% of your total grade is allocated for this project. All the files

you will need are in the repo, so your group must create the repo first. READ

EVER FILE, there is lots of information in the code and other files included.

Failure to read everything is your failure and likely lot of time and points.

The filesystem consists of five classes:

1. Disk: Simulates the behavior of a disk that is used to store files and
other filesystem information.

2. DiskManager: Partitions and manages access to a disk.
3. PartitionManager: Manages partitions in a disk.
4. FileSystem: Implements various filesystem operations.
5. Client: Uses a filesystem.

Disk

Simulates the behavior of a disk using a Unix file. It exports the following

functions:

int initDisk()

int readDiskBlock(int blknum, char *blkdata)

int writeDiskBlock(int blknum, char *blkdata)

int getBlockSize()

int getBlockCount()

The first function creates a Unix file to simulate a disk. If such a file

already exists, it returns 0, otherwise it creates the file of specified size

and returns 1. The second function reads the disk block numbered blknum into

the buffer pointed to by blkdata. The third function copies the buffer pointed

to by blkdata to the disk block numbered blknum. Both of these functions return

0 if successful and a negative number otherwise. Every Disk object is managed

by a DiskManager object.

DiskManager

Partitions and manages access to a disk. There is one DiskManager object

associated with each Disk object. A DiskManager object partitions a disk into

multiple partitions, and provides some of the basic functions needed by a

filesystem to store its information. These functions are:

int readDiskBlock(char partitionname, int blknum, char *blkdata)

int writeDiskBlock(char partitionname, int blknum, char *blkdata)

int getBlockSize()

int getPartitionSize(char partitionname)

readDiskBlock reads the partition block numbered blknum into the buffer pointed

to by blkdata. writeDiskBlock copies the buffer pointed to by blkdata to the

partition block numbered blknum. getBlockSize return the size of a disk block

in bytes. getPartitionSize returns the total number of blocks available in this

partition.

PartitionManager

A PartitionManager object manages partitions in a disk. A PartitionManager

object is created by a FileSystem object (described next) and has a partition

name associated with it. Each PartitionManager object is associated with a

DiskManager object. Each PartitionManager has a bitmap that keeps track of

free and allocated blocks. The bitmap is written out block 0 of the partition.

It exports the following operations:

int readDiskBlock(int blknum, char *blkdata)

readDiskBlock reads the block numbered blknum in a disk partition into the

buffer pointed to by blkdata.

int writeDiskBlock(int blknum, char *blkdata)

This operation copies the buffer pointed to by blkdata to the block numbered

blknum in a disk partition.

int getBlockSize()

This operation returns the size of a disk block in bytes.

int getFreeDiskBlock()

This operation allocates a free disk block in a partition. It returns -1 if

there is no block available (ie the partition is full) or the block number

allocated.

int returnDiskBlock(int blknum)

This operation deallocates a disk block in a partition. It will also write a

blank (all #’s) to the block that is returned. It returns 0 if successful or -

1 for any other reason.

FileSystem

 A FileSystem object implements a Unix file system. Each FileSystem object

is associated with a DiskManager object, which it uses for all disk I/O.

Multiple FileSystem objects may be associated with a single DiskManager object,

which implies that multiple file systems can share a disk. This is equivalent

to partitioning of a single disk drive into multiple directories in modern

systems. Each partition is managed by a PartitionManager object, which is

created by a FileSystem object.

 Files and directories are implemented using a structure similar to the

Unix i-nodes. There are three i-nodes: File i-node, directory i-node, and

indirect inode. Every file in the file system has a file i-node associated

with it. A file i-node will contain the following information: file name (1

byte), a 1 byte variable to indicate whether it is a file or a directory, file

size (4 bytes), three disk block addresses (4 bytes each), and one single

indirect block address (4 bytes). Use the remaining bytes in the block to store

some other file attributes of your choice. An indirect block is 64 bytes (same

as block size), with 16 spots for disk block addresses (4 bytes each). A

directory i-node has the following structure, 64 bytes, with 10 slots

containing: name (1 byte), block pointer (4 bytes), type file/directory (1

byte) and the last 4 bytes a pointer to the next block with the directory

information will continue if needed. A FileSystem object exports the following

operations:

int createFile(char *filename, int fname_len)

This operation creates a new file whose name is pointed to by filename of size

fname_len characters. File names and directory names start with '/' character

and consist of a sequence of alternating '/' and alphabet ('A' to 'Z' and 'a'

to 'z') characters ending with an alphabet character. The CreateFile function

returns -1 if the file already exists, -2 if there is not enough disk space, -3

if invalid filename, -4 if the file cannot be created for some other reason,

and 0 if the file is created successfully.

int createDirectory(char *dirname, int dnameLen)

This operation creates a new directory whose name is pointed to by dirname.

This function returns -1 if the directory already exists, -2 if there is not

enough disk space, -3 if invalid directory name, -4 if the directory cannot be

created for some other reason, and 0 if the directory is created successfully.

int lockFile(char *filename, int fname_len)

This operation locks a file. A file cannot be locked if (1) it doesn't exist,

or (2) it is already locked, or (3) it is currently opened. It returns a number

greater than 0 (lock id), if the file is successfully locked, -1 if the file is

already locked, -2 if the file does not exist, -3 if it is currently opened,

and -4 if the file cannot be locked for any other reason. A note, once a file

is locked, it may only be opened with the lock id and the file cannot be

deleted or renamed until the file is unlocked.

int unlockFile(char *filename, int fname_len, int lock_id)

This operation unlocks a file. The lock_id is the lock id returned by the

LockFile function when the file was locked. The UnlockFile function returns 0

if successful, -1 if lock id is invalid, -2 for any other reason.

int deleteFile(char *filename, int fname_len)

This operation deletes the file whose name is pointed to by filename. A file

that is currently in use (opened or locked by a client) cannot be deleted. It

returns -1 if the file does not exist, -2 if the file is in use or locked, -3

if the file cannot be deleted for any other reason, and 0 if the file is

deleted successfully.

int deleteDirectory(char *dirname, int dnameLen)

This operation deletes the directory whose name is pointed to by dirname. Only

an empty directory can be deleted. This function returns -1 if the directory

does not exist, -2 if the directory is not empty, -3 if the directory cannot be

deleted for any other reason, and 0 if the directory is deleted successfully.

int openFile(char *filename, int fname_len, char mode, int lock_id)

This operation opens a file whose name is pointed to by filename. If mode =

'r', the file is opened for read only, If mode = 'w', the file is opened for

write only, and if mode = 'm', the file is opened for read and write. An

existing file cannot be opened if (1) the file is locked and lock_id doesn't

match with lock_id returned by the lockFile function when the file was locked,

or (2) the file is not locked and lock id  -1. This operation returns -1 if the
file does not exist, -2 if mode is invalid, -3 if the file cannot be opened

because of locking restrictions, -4 for any other reason, and a unique positive

integer (file descriptor) if the file is opened successfully. If the file is

opened successfully, an rw pointer (read-write pointer) is associated with this

file descriptor. This rw pointer is used by some of the operations described

later for determining the access point in a file. The initial value of an rw

pointer is 0 (beginning of the file).

int closeFile(int filedesc)

This operation closes the file with file descriptor filedesc. It returns -1 if

the file descriptor is invalid, -2 for any other reason, and 0 if successful.

int readFile(int filedesc, char *data, int length)

int writeFile(int filedesc, char *data, int length)

int appendFile(int filedesc, char *data, int length)

These operations perform read/write/append operations on a file whose file

descriptor is filedesc. length is the number of bytes to be read from / written

into / appended into the buffer pointed to by data. These operations return -1

if the file descriptor is invalid, -2 if length is negative, -3 if the

operation is not permitted, and number of bytes read/written/appended if

successful. The read and write operations operate from the byte pointed to by

the rw pointer. The write operation overwrites the existing data in the file

and may increase the size of the file. The append operation appends the data at

the end of the file. The read operation may read less number of bytes than

length if end of file is reached earlier. After the read/write/append is done,

the rw pointer is updated to point to the byte following the last byte

read/written/appended.

int seekFile(int filedesc, int offset, int flag)

This operation modifies the rw pointer of the file whose file descriptor is

filedesc. The rw pointer is moved offset bytes forward if flag = 0. Otherwise,

it is set to byte number offset in the file. This operation returns -1 if the

file descriptor, offset or flag is invalid, -2 if an attempt to go outside the

file bounds is made (end of file or beginning of file), and 0 if successful. A

negative offset is valid only when flag is zero.

int truncFile(int filedesc, int offset, int flag)

This operation will delete the file contents from the point of the rw pointer

of the file whose file descriptor is filedesc. The rw pointer is moved offset

bytes forward if flag = 0. Otherwise, it is set to byte number offset in the

file. A negative offset is valid only when flag is zero. This operation

returns -1 if the file descriptor, offset or flag is invalid, -2 if an offset

moves the rw pointer outside the file bounds (end of file or beginning of

file), -3 if the mode is read. Otherwise, the return value is number of bytes

deleted.

int renameFile(char *fname1, int fname1_len, char *fname2, int fname2_len)

This operation changes the name of the file whose name is pointed to by fname1

to the name pointed to by fname2. It returns -1 invalid filename, -2 if the

file does not exist, -3 if there already exists a file whose name is the same

as the name pointed to by fname2, -4 if file is opened or locked, -5 for any

other reason, and 0 if successful.

int renameDirectory(char *dname1, int dname1_len, char *dname2, int dname2_len)

This operation changes the name of the file whose name is pointed to by dname1

to the name pointed to by dname2. It returns -1 invalid directory name, -2 if

the directory does not exist, -3 if there already exists a directory whose name

is the same as the name pointed to by dname2, -4 for any other reason, and 0 if

successful.

int getAttributes(char *filename, ...)

int setAttributes(char *filename, ...)

These operations get/set the attributes of a file whose name is pointed to by

filename. Work out the details of these operations based on the file attributes

you choose. You must choose a minimum of two attributes for your filesystem.

Client

This class is used to create client objects that invoke file system operations.

Each Client object is associated with a FileSystem object.

Implementation Guidelines

1. Implement your file system using C++.
2. Unix file system commands are used to implement the Disk. No other

functions should be used in any Unix file system functions.

3. Use bitmaps to keep track of free disk blocks. The bitvector code is
provided and is to be used to implement the bitmaps.

4. Some support files are provided for you to get started. These include
bitvector.h and bitvector.cpp that implement a BitVector class, disk.h

and disk.cpp that implement a Disk class. The rest of the code is in

.cpp and .h files. Some methods may be filled out already, others are

just blank methods. In addition, an outline of a driver program to test

the file system is provided in file driver.cpp. Driver1.cpp through

driver8.cpp are used when turning in the project. All these files are

available via your github project repo.

5. Remember that your file system should survive the termination of clients
that are using it.

6. Don't code until you understand what you are doing. Design, design,
design first. While weeks of programming can save you hours of planning,

I don’t advise it.

7. Start working on this project now. First complete the implementation of
DiskManager class.

8. Make sure you read everything, first! There is a lot of information in
the cpp and header files and in other files provided.

Project Submission Notes:

1. You will do this project in teams of up to three students. Groups will be

chosen at random.

• You will turn in a separate evaluation of each member of your group,

which is worth 5 points each (of 100) for the project. See the hard copy

section.

• As note, you are responsible for submitting the final project

irrespective of how your team partner’s work.

2. You are expected to make at least one update a week before the project is

due. Even if it only to update the readme, to add WE DID NOTHING THIS WEEK.

3. You are expected to use github. Each group member must make at least one

commit. I suggest you use the issue system as well, but it’s not required.

4. Update the README.md file in the root directory.

• Include all the names of the group at the top of the readme.

• Include what is working and not working. This details how much of

the project is completed and working. Say for example you only get to

driver4 completed and working, then you should state that.

• Including any information about the file attributes you choose for

driver8 as well.

5. You will use the makefile to compile your code in the project directory. If

you change/add something, then it MUST be reflected in the makefile as well.

If the makefile doesn’t work/compile the project, then your project doesn’t

compile, and you will lose half the points (which is 15% of your final grade

too). Only the main branch will be used. All warnings are to be cleaned up as

well.

6. Lastly, the project will be graded by looking at DISK1 after each driverX

run. And then at the code itself. It is highly suggested you spend a lot of

time with a hex editor looking at the disk to ensure it is correct.

Hard copy:

There will be two separate things turned in.

First

 Cover Page Designate one person for this, if your group cannot agree, then

everyone does it.

1. A cover page with Names of all Group members, Final Project, cosc 4740 a
repo name (see github and below for your repo name).

2. Hardcopy of all the driver output (of the working drivers).
 3. Attach the output of the drivers (well only the working drivers)

Second

 Each person will fill out and submit an evaluation document for each

group member. The evaluation document is provided in the repo. It will list

what you did and what the rest of the group members did as well. This doesn’t

have to be very long. Describe how the project was broken up and who did what.

DO NOT COMMIT OR PUSH THIS DOCUMENT TO GITHUB. Only print the evaluation pages,

not the rubric pages.

Soft copy:

1. Use this link to create your (group) https://classroom.github.com/a/2o-

aK2_D

2. Upload the project to your repo (and to correct directories).

3. See submission issue #3 commits and #4 to fill out the readme file.

4. Lastly ensure everything has been uploaded to the github website and not

just the local repo. Remember only the main branch will be pulled.

Code will be graded on correctness, comments, and coding style.

https://classroom.github.com/a/2o-aK2_D
https://classroom.github.com/a/2o-aK2_D

