Area: Computer Theory

Three questions each from three parts

Answer five of the nine questions
Part 1. Foundations of Computing
Let f be the function recursively defined on the nonnegative integers by

$$f(k, n) \overset{\text{def}}{=} \begin{cases} n + 1 & \text{if } k = 0 \\ f(k - 1, 1) & \text{else if } n = 0 \\ f(k - 1, f(k, n - 1)) & \text{else} \end{cases}$$

It is clear that for every nonnegative integer n, $f(0, n) = n + 1$. Use mathematical induction to prove for every nonnegative integer n, $f(1, n) = n + 2$.
Show that if the following function for computing $n!$ halts, then it is correct. Clearly state and prove the conditional theorems required to show (partial) correctness.

function fac(n:nonneg int):positive int
 f:positive int
 i:positive int

 f := 1
 i := 2

 \{(f = (i-1)! \text{ and } i \leq n+1) \text{ or } (f = 1 \text{ and } i > n+1 \text{ and } n = 0)\}

 while i \leq n do
 f := f * i

 i := i + 1
 end while

 return(f)
Let L be the set of all nonempty strings over \{a, b\} where the a's and b's alternate. Assume the strings a and b are in L,

- Give an inductive definition for L. You may use the string operations \texttt{append on the left, head, tail, and } \texttt{=} \texttt{(either to test for the empty string or to compare string elements). Be sure to apply head and tail only to nonempty strings.}

- Give a regular expression that matches exactly the elements of L.
Part 2. Theory of Computation
Let f be the function recursively defined on the nonnegative integers by

$$f(k, n) \overset{\text{def}}{=} \begin{cases} n + 1 & \text{if } k = 0 \\ f(k - 1, 1) & \text{if } n = 0 \\ f(k - 1, f(k, n - 1)) & \text{else} \end{cases}$$

Use the *Universality, Parameter, and Fixed Point Theorems* (see Davis, Sigal, and Weyuker, chapter 4) to prove there is a partially computable function f satisfying the given recursive definition.
Let F and G be the functions recursively defined on the nonnegative integers by

$$
F(0) = 1 \\
G(0) = 1 \\
F(n + 1) = F(n) + G(n) \\
G(n + 1) = F(n) \cdot G(n)
$$

Prove F and G are primitive recursive functions.
Use Rice’s Theorem (see Davis, Sigal, and Weyuker, chapter 4) to show none of the following sets is recursive.

\[A = \{ n \in N \mid (\forall x \in N) [\Phi(x, n) \uparrow] \} \]
\[B = \{ n \in N \mid (\exists x \in N) [\Phi(x, n) > x^2] \} \]
\[C = \{ n \in N \mid \Phi(x, n) \text{ is defined for all but finitely many } x \} \]

Here \(N \) is the set of all nonnegative integers.