
Autoreducibility of NP-Complete Sets under Strong Hypotheses∗

John M. Hitchcock and Hadi Shafei
Department of Computer Science

University of Wyoming

Abstract

We study the polynomial-time autoreducibility of NP-complete sets and obtain separations
under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following:

• For every k ≥ 2, there is a k-T-complete set for NP that is k-T-autoreducible, but is not
k-tt-autoreducible or (k − 1)-T-autoreducible.

• For every k ≥ 3, there is a k-tt-complete set for NP that is k-tt-autoreducible, but is not
(k − 1)-tt-autoreducible or (k − 2)-T-autoreducible.

• There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible.

Under the stronger assumption that there is a p-generic set in NP ∩ coNP, we show:

• For every k ≥ 2, there is a k-tt-complete set for NP that is k-tt-autoreducible, but is not
(k − 1)-T-autoreducible.

Our proofs are based on constructions from separating NP-completeness notions. For example,
the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-T-
autoreducibility from 2-tt-autoreducibility.

1 Introduction

Autoreducibility measures the redundancy of a set. For a reducibility R, a set A is R-autoreducible
if there is an R-reduction from A to A where the instance is never queried [15]. Understanding
the autoreducibility of complete sets is important because of applications to separating complexity
classes [5]. We study the polynomial-time autoreducibility [1] of NP-complete sets.

Natural problems are paddable and easily shown to be m-autoreducible. In fact, Glaßer et al.
[8] showed that all nontrivial m-complete sets for NP and many other complexity classes are m-
autoreducible. Beigel and Feigenbaum [4] showed that T-complete sets for NP and the levels of the
polynomial-time hierarchy are T-autoreducible. We focus on intermediate reducibilities between
many-one and Turing.

Previous work has studied separations of these autoreducibility notions for larger complex-
ity classes. Buhrman et al. [5] showed there is a 3-tt-complete set for EXP that is not btt-
autoreducible. For NEXP, Nguyen and Selman [13] showed there is a 2-T-complete set that is
not 2-tt-autoreducible and a tt-complete set that is not btt-autoreducible. We investigate whether
similar separations hold for NP.

∗This research was supported in part by NSF grant 0917417.

1

Since all NP sets are 1-tt-autoreducible if P = NP, it is necessary to use a hypothesis at least
as strong as P 6= NP to separate autoreducibility notions. We work with the Genericity Hypothesis
that there is a p-generic set in NP [3, 2]. This is stronger than P 6= NP, but weaker than the
Measure Hypothesis [12, 10] that there is a p-random set in NP. Under the Genericity Hypothesis,
we separate many autoreducibility notions for NP-complete sets. Our main results are summarized
in Table 1.1.

Previous work has used the measure and genericity hypotheses to separate completeness notions
for NP. Consider the set

C = G∪̇(G ∩ SAT)∪̇(G ∪ SAT),

where G ∈ NP and ∪̇ is disjoint union. Then C is 2-T-complete for NP, and if G is p-generic, C
is not 2-tt-complete [12, 2]. There is a straightforward 3-T (also 5-tt) autoreduction of C based
on padding SAT.1 However, since C is 2-T-honest-complete, we indirectly obtain a 2-T (also 3-tt)
autoreduction by first reducing through SAT (Lemma 2.1). In Theorem 3.1 we show C is not
2-tt-autoreducible.

It turns out this idea works in general. We show that many sets which separate complete-
ness notions also separate autoreducibility notions. Ambos-Spies and Bentzien [2] also separated
both k-T-completeness and (k + 1)-tt-completeness from both k-tt-completeness and (k − 1)-T-
completeness for every k ≥ 3 under the Genericity Hypothesis. We show that the same sets also
separate k-T-autoreducibility and (k+1)-tt-autoreducibility from k-tt-autoreducibility and (k−1)-
T-autoreducibility (Theorems 3.4 and 3.5). We also obtain that there is a tt-complete set for NP
that is tt-autoreducible and not btt-autoreducible (Theorem 3.6), again using a construction of
Ambos-Spies and Bentzien.

In the aforementioned results, there is a gap – we only separate k-tt-autoreducibility from (k−2)-
T-autoreducibility (for k ≥ 3), where we can hope for a separation from (k− 1)-T-autoreducibility.
The separation of k-tt from (k−1)-T is also open for completeness under the Genericity Hypothesis
(or the Measure Hypothesis). To address this gap, we use a stronger hypothesis on the class
NP ∩ coNP. Pavan and Selman [14] showed that if NP ∩ coNP contains a DTIME(2n

ε
)-bi-immune

set, then 2-tt-completeness is different from 1-tt-completeness for NP. We show that if NP∩ coNP
contains a p-generic set, then k-tt-completeness is different from (k − 1)-T-completeness for all
k ≥ 3 (Theorem 4.2). We then show these constructions also separate autoreducibility: if there
is a p-generic set in NP ∩ coNP, then for every k ≥ 2, there is a k-tt-complete set for NP that is
k-tt-autoreducible, but is not (k − 1)-T-autoreducible (Theorems 4.1 and 4.3).

This paper is organized as follows. Preliminaries are in Section 2. The results using the
Genericity Hypothesis are presented in Section 3. We use the stronger hypothesis on NP ∩ coNP
in Section 4. Section 5 concludes with some open problems.

1Given an instance x of C, pad x to an instance y such that SAT[x] = SAT[y]. We query G[y] and then query
either G∩ SAT[y] if G[y] = 1 or G∪ SAT[y] if G[y] = 0 to learn SAT[y]. Finally, if our instance is G[x] the answer is
obtained by querying G∩SAT[x] if SAT[y] = 1 or by querying G∪SAT[x] if SAT[y] = 0. If our instance is G∪SAT[x]
or G ∩ SAT[x], we query G[x] and combine that answer with SAT[y].

2

C S R notes

NP k-T k-tt Theorem 3.1 (k = 2), Theorem 3.4 (k ≥ 3)

NP k-T (k − 1)-T Theorem 3.1 (k = 2), Theorem 3.5 (k ≥ 3)

NP k-tt (k − 1)-tt Corollary 3.2 (k = 3), Theorem 3.4 (k ≥ 4)

NP k-tt (k − 2)-T Corollary 3.3 (k = 3), Theorem 3.5 (k ≥ 4)

NP tt btt Theorem 3.6

NP ∩ coNP k-tt (k − 1)-T Theorem 4.1 (k = 2), Theorem 4.3 (k ≥ 3)

Table 1.1: If C contains a p-generic set, then there is an S-complete set in NP that is S-autoreducible
but not R-autoreducible.

2 Preliminaries

We use the standard enumeration of binary strings, i.e. s0 = λ, s1 = 0, s2 = 1, s3 = 00, ... as an
order on binary strings. All languages in this paper are subsets of {0, 1}∗ identified with their
characteristic sequences. In other words, every language A ⊆ {0, 1}∗ is identified with χA =
A[s0]A[s1]A[s2].... Note that for any language A and any string x, A[x] is defined to be 1 if x ∈ A,
and 0 otherwise. If X is a set, equivalently a binary sequence, and x ∈ {0, 1}∗ then X � x is the
initial segment of X for all strings before x, i.e. the subset of X that contains every y ∈ X with
y < x and no other elements. For any language A, A=n is the subset of A that only contains strings
of length n.

All reductions in this paper are polynomial-time reductions, therefore, we will not emphasize
this every time we define a reduction. We use standard notions of reducibilities [11].

Given A, B, and R ∈ {m, T, tt, k-T, k-tt, btt}, A is polynomial-time R-honest reducible to
B (A ≤p

R-h B) if A ≤p
R B and there exist a constant c such that for every input x, every query q

asked from B has the property |x|1/c < |q|. In particular, a reduction R is called length-increasing
if on every input the queries asked from the oracle are all longer than the input.

For any reduction R ∈ {m, T, tt, k-T, k-tt, btt} a language A is R-autoreducible if A ≤p
R A

via a reduction where on every instance x, x is not queried.
The following lemma states that any honest-complete set for NP is also autoreducible under

the same type of reduction. This follows because NP has a paddable, length-increasing complete
set.

Lemma 2.1. Let R ∈ {m, T, tt, k-T, k-tt, btt, . . .} be a reducibility. Then every R-honest-
complete set for NP is R-autoreducible.

Proof. Let A ∈ NP be R-honest-complete. Then there is an R-honest reduction M from SAT to

A. There exists m ≥ 1 such that every query q output by M on an instance x satisfies |q| ≥ |x|
1
m .

Since SAT is NP-complete via length-increasing many-one reductions, A ≤p
m SAT via a length-

increasing reduction g. Since SAT is paddable, there is a polynomial-time function h such that for
any y, SAT[h(y)] = SAT[y] and |h(y)| > |y|m.

To obtain our R-autoreduction of A, we combine g, h, and M . On instance x of A, compute
the instance h(g(x)) of SAT and use M to reduce h(g(x)) to A. Since |h(g(x))| > |g(x)|m > |x|m,

every query q of M has |q| > |h(g(x))|
1
m > |x|. Therefore all queries are different than x and this

is an autoreduction.

3

Most of the results in this paper are based on a non-smallness hypothesis for NP called the
Genericity Hypothesis that NP contains a p-generic set [3, 2]. In order to define genericity first
we need to define what a simple extension function is. For any k, a simple nk-extension function
is a partial function from {0, 1}∗ to {0, 1} that is computable in O(nk). Given a set A and an
extension function f we say that f is dense along A if f is defined on infinitely many initial
segments of A. A set A meets a simple extension function f at x if f(A � x) is defined and equal
to A[x]. We say A meets f if A meets f at some x. A set G is called p-generic if it meets
every simple nk-extension function which is dense along G for any k ≥ 1 [2]. A partial function
f : {0, 1}∗ → ({0, 1}∗ × {0, 1})∗ is called a k-bounded extension function if whenever f(A � x) is
defined, f(A � x) = (y0, i0)...(ym, im) for some m < k, and x ≤ y0 < y1 < ... < ym, where yj ’s are
strings and ij ’s are either 0 or 1. A k-bounded extension function f is dense along A if f is defined
on infinitely many initial segments of A. A set A meets f at x if f(A � x) is defined, and A agrees
with f on all yj ’s, i.e. if f(A � x) = (y0, i0)...(ym, im) then A[yj] = ij for all j ≤ m [2]. In this
case we say f forces A[yj] to be ij . By Lemma 2.8 in [2] if A is p-generic and f is a k-bounded
nc-extension function that is dense along A then A meets f . This means that the computation of
f(A � x) = (y0, i0)...(ym, im) must be done in O(2c|x|) steps. We need a stronger version of this
that allows more time for the computation of ij ’s. More precisely, whenever yj is longer than x, ij
can be computed in O(2c|yj |) instead of O(2c|x|) steps. We will use the following routine extension
of Lemma 2.9 in [2].

Lemma 2.2. Let l, c ≥ 1 and let f be an l-bounded extension function. Whenever f is defined on
α = A � x, where A is a set and x is a string of length n, we have

f(α) = (yα,1, iα,1), ..., (yα,lα , iα,lα),

where lα ≤ l, pos(α) = (yα,1, ..., yα,lα) is computable in 2cn steps and the mapping (j, α, yα,j) 7→ iα,j
is computable in 2c|yα,j | steps. Then for every p-generic set G, if f is dense along G then G meets
f .

All extension functions used in the following sections are k-bounded extension functions for
some constant k. We will call them extension functions for convenience.

3 Autoreducibility under the Genericity Hypothesis

We begin by showing the Genericity Hypothesis implies there is a 2-T-complete set that separates
2-T-autoreducibility from 2-tt-autoreducibility. The proof utilizes the construction of [12, 2] of a
set that separates 2-T-completeness from 2-tt-completeness.

Theorem 3.1. If NP contains a p-generic language, then there exists a 2-T-complete set in NP
that is 2-T-autoreducible, but not 2-tt-autoreducible.

Proof. Let G ∈ NP be p-generic and define C = G ∪̇ (G ∩ SAT) ∪̇ (G ∪ SAT), where ∪̇ stands for
disjoint union [12, 2]. Disjoint union can be implemented by adding a unique prefix to each set and
taking their union. To be more clear, let C = 0G ∪ 10(G∩ SAT) ∪ 11(G∪ SAT). It follows from
closure properties of NP that C ∈ NP.

To see that C is 2-T-complete, consider an oracle Turing machine M that on input x first
queries 0x from C. If the answer is positive, i.e. x ∈ G, M queries 10x from C, and outputs the

4

result. Otherwise, M queries 11x from C, and outputs the answer. This Turing machine always
makes two queries from C, runs in polynomial time, and MC(x) = SAT[x]. This completes the
proof that C is also 2-T-complete. Since all queries from SAT to C are length-increasing, it follows
from Lemma 2.1 that C is 2-T-autoreducible.

The more involved part of the proof is to show that C is not 2-tt-autoreducible. To get a contra-
diction assume that C is 2-tt-autoreducible. This means there exist polynomial-time computable
functions h, g1, and g2 such that for every x ∈ {0, 1}∗,

C[x] = h(x,C[g1(x)], C[g2(x)])

and moreover gi(x) 6= x for i = 1, 2. For x = 0z, 10z, or 11z define the value of x to be z. Note
that W.L.O.G. we can assume that the value of g1(x) is less than or equal to the value of g2(x).
Let x = 0z for some string z. We have:

C[x] = G[z] = h(x,C[g1(x)], C[g2(x)])

To get a contradiction, we consider different cases depending on whether some of the queries have
the same value as x or not, and the Boolean function h(x, ., .). For some of these cases we show
they can happen only for finitely many z’s, and for the rest we show that SAT[z] can be decided
in polynomial time. As a result SAT is decidable in polynomial time a.e., which contradicts the
assumption that NP contains a p-generic language.

• The first case is when values of g1(x) and g2(x) are different from z, and also different from
each other. Assume this happens for infinitely many z’s. We define a 3-bounded-extension
function f that is dense along G, so by Lemma 2.2 G has to meet it, but f is defined in a
way that if G meets f , the autoreduction will be refuted. In order to define the value that f
forces to G[z] on the right hand side of the reduction, we define a function αx that assigns 0
or 1 to queries of our autoreduction. The idea behind defining αx is that its value on queries
qi is equal to C[qi] after we forced appropriate values into G, but computation of αx can be
done in at most 22n steps (given access to the partial characteristic sequence of G).

αx(w) =

C[w] if w < x

0 if w > x and w = 0y or 10y for some y

1 if w > x and w = 11y for some y

Note that in the first case, since w < x, the value of C[w] is computable in 22n steps. Let
j = h(x, αx(g1(x)), αx(g2(x))). Now we define an extension function such that the value of
C[x] = G[z] is forced to 1− j, hence refuting the autoreduction.
The 3-bounded-extension function f is defined whenever this case happens. We define f(G �
x) to contain at most three pairs. If gi(x) = 0vi or 10vi for some vi > z, then f(G � x)
forces G[vi] = 0. If gi(x) = 11vi for some string vi > z then f(G � x) forces G[vi] = 1.
Finally, f(G � x) forces G[z] = 1− j. In other words, f(G � x) consists of at most three pairs:
(z, 1− j), (v1, αx(g1(x))) if v1 > z, and (v2, αx(g2(x))) if v2 > z. Since we assumed that this
case happens for infinitely many x’s, f is dense along G. Therefore G must meet f at some
string x = 0z. But by the very definition of f this refutes the autoreduction. Hence this case
can happen only for finitely many x’s.

5

• In this case we consider the situation that g1(x) and g2(x) have the same value, say v, but v 6=
z. If v < z we can compute C[g1(x)] and C[g2(x)] and force G[z] = 1−h(x,C[g1(x)], C[g2(x)]),
which refutes the autoreduction. Therefore this cannot happen i.o. Now based on the prefixes
of g1(x) and g2(x) we consider the following cases:

1. If g1(x) = 0v and g2(x) = 10v we force G[v] = 0 and C[x] = 1− h(x, 0, 0). This refutes
the autoreduction, therefore this case can happen only finitely many times.

2. If g1(x) = 0v and g2(x) = 11v we force G[v] = 1 and C[x] = 1 − h(x, 1, 1). This also
refutes the autoreduction, so it cannot happen i.o.

The only possibility that remains in this case is g1(x) = 10v and g2(x) = 11v. In this case
the autoreduction equality can be stated as:

G[z] = h(x,G ∩ SAT[v], G ∪ SAT[v])

To show that this also cannot happen i.o. we need to look into different cases of the Boolean
function h(x, ., .).

1. If h(x, a, b) = 0, or 1, then force G[z] = 1 or 0 respectively. Therefore this Boolean
function can occur only finitely many times. In other words, there cannot be infinitely
many x’s such that the Boolean function used by the autoreduction on input x is a
constant function, g1(x) = 10v, and g2(x) = 11v for some v > z.

2. If h(x, a, b) = a, in other words G[z] = G ∩ SAT[v], force G[z] = 1 and G[v] = 0. This
refutes the autoreduction, so this Boolean function cannot happen i.o.

3. If h(x, a, b) = ¬a, in other words G[z] = ¬G∩SAT[v], force G[z] = 0 and G[v] = 0. This
refutes the autoreduction, so this Boolean function cannot happen i.o.

4. If h(x, a, b) = b, in other words G[z] = G ∪ SAT[v], force G[z] = 0 and G[v] = 1. This
refutes the autoreduction, so this Boolean function cannot happen i.o.

5. If h(x, a, b) = ¬b, in other words G[z] = ¬G∪SAT[v], force G[z] = 1 and G[v] = 1. This
refutes the autoreduction, so this Boolean function cannot happen i.o.

6. If h(x, a, b) = a∧ b, in other words G[z] = (G∩ SAT[v])∧ (G∪ SAT[v]), but this is equal
to G ∩ SAT[v]. Therefore this case is similar to the second case.

7. If h(x, a, b) = ¬a∧b, in other words G[z] = ¬(G∩SAT[v])∧(G∪SAT[v]). Force G[z] = 1
and G[v] = SAT[v]. This contradicts the autoreduction equality. Therefore this case can
happen only finitely many times.

8. If h(x, a, b) = a ∧ ¬b, in other words G[z] = (G ∩ SAT[v]) ∧ ¬(G ∪ SAT[v]), forcing
G[z] = 1 refutes the autoreduction.

9. If h(x, a, b) = ¬a ∧ ¬b, in other words G[z] = ¬(G ∩ SAT[v]) ∧ ¬(G ∪ SAT[v]), but this
is equal to ¬G ∪ SAT[v]. Therefore this case is similar to the fifth case.

10. If h(x, a, b) = a∨ b, in other words G[z] = (G∩ SAT[v])∨ (G∪ SAT[v]), but this is equal
to G ∪ SAT[v]. Therefore this case is similar to the fourth case.

11. If h(x, a, b) = ¬a ∨ b, in other words G[z] = ¬(G ∩ SAT[v]) ∨ (G ∪ SAT[v]). In this case
forcing G[z] = 0 refutes the autoreduction.

6

12. If h(x, a, b) = a ∨ ¬b, in other words G[z] = (G ∩ SAT[v]) ∨ ¬(G ∪ SAT[v]). In this case
forcing G[z] = 0 and G[v] = SAT[v] refutes the autoreduction.

13. If h(x, a, b) = ¬a ∨ ¬b, in other words G[z] = ¬(G ∩ SAT[v]) ∨ ¬(G ∪ SAT[v]), but this
is equal to ¬(G ∩ SAT[v]). Therefore this case is similar to the third case.

14. If h(x, a, b) = a ↔ b, in other words G[z] = (G ∩ SAT[v]) ↔ (G ∪ SAT[v]). In this case
G[z] = 0 and G[v] = SAT[v] refutes the autoreduction.

15. If h(x, a, b) = ¬a ↔ b, in other words G[z] = ¬(G ∩ SAT[v]) ↔ (G ∪ SAT[v]). In this
case G[z] = 1 and G[v] = SAT[v] refutes the autoreduction.

We exhaustively went through all possible Boolean functions for the case where both queries
have the same value which is different from the value of x, and showed that each one of them
can happen only for finitely many x’s. As a result this case can happen only for finitely many
x’s.

• This is the case when one of the queries has the same value as x, but the other query has a
different value. First assume that g1(x) has the same value as x. We only consider the case
where g1(x) = 10z. The other case, i.e. g1(x) = 11z can be done in a similar way. Again, we
need to look at different possibilities for the Boolean function h(x, ., .).

1. h(x, a, b) = 0 or 1. Forcing G[z] = 1 or 0 respectively refutes the autoreduction.

2. h(x, a, b) = a, i.e. G[z] = G ∩ SAT[z]. If this happens i.o. with SAT[z] = 0 then we can
refute the autoreduction by forcing G[z] = 1. Therefore in this case SAT[z] = 1 a.e.

3. h(x, a, b) = ¬a, i.e. G[z] = ¬(G ∩ SAT[z]). By forcing G[z] = 0 we can refute the
autoreduction. Therefore this case cannot happen i.o.

4. h(x, a, b) = b or ¬b. Similar to previous cases.

5. h(x, a, b) = a ∧ b, i.e. G[z] = (G ∩ SAT[z]) ∧ C[g2(x)]. In this case SAT[z] has to be 1
a.e.

6. h(x, a, b) = ¬a ∧ b, i.e. G[z] = ¬(G ∩ SAT[z]) ∧ C[g2(x)]. If g2(x) = 0y or 10y for some
y, then forcing G[z] = 1 and G[y] = 0 refutes the autoreduction. If g2(x) = 11y then we
have G[z] = ¬(G ∩ SAT[z]) ∧ (G ∪ SAT[y]). Here we force G[z] = 0 and G[y] = 1.

7. h(x, a, b) = a ∧ ¬b, i.e. G[z] = (G ∩ SAT[z]) ∧ ¬C[g2(x)]. In this case SAT[z] = 1 a.e.

8. h(x, a, b) = ¬a∧¬b, i.e. G[z] = ¬(G∩SAT[z])∧¬C[g2(x)]. If g2(x) = 0y or 11y for some
y, then forcing G[z] = 1 and G[y] = 1 refutes the autoreduction. If g2(x) = 10y then we
have G[z] = ¬(G ∩ SAT[z]) ∧ ¬(G ∩ SAT[y]). Here we force G[z] = 0 and G[y] = 0.

9. h(x, a, b) = a ∨ b, i.e. G[z] = (G ∩ SAT[z]) ∨ C[g2(x)]. If g2(x) = 0y or 11y for some y,
then forcing G[z] = 0 and G[y] = 1 refutes the autoreduction. If g2(x) = 10y then we
have G[z] = (G ∩ SAT[z]) ∨ (G ∩ SAT[y]). This implies that SAT[z] must be 1 a.e.

10. h(x, a, b) = ¬a ∨ b, i.e. G[z] = ¬(G ∩ SAT[z]) ∨ C[g2(x)]. In this case forcing G[z] = 0
refutes the autoreduction.

11. h(x, a, b) = a ∨ ¬b, i.e. G[z] = (G ∩ SAT[z]) ∨ ¬C[g2(x)]. If g2(x) = 0y or 10y for some
y, then forcing G[z] = 0 and G[y] = 0 refutes the autoreduction. If g2(x) = 11y then we
have G[z] = (G ∩ SAT[z]) ∨ ¬(G ∪ SAT[y]). This implies that SAT[z] must be 1 a.e.

7

12. h(x, a, b) = ¬a∨¬b, i.e. G[z] = ¬(G∩SAT[z])∨¬C[g2(x)]. In this case forcing G[z] = 0
refutes the autoreduction.

13. h(x, a, b) = a ↔ b, i.e. G[z] = (G ∩ SAT[z]) ↔ C[g2(x)]. If g2(x) = 0y or 10y for some
string y, then by forcing G[z] = 0 and G[y] = 0 we can refute the autoreduction. If
g2(x) = 11y, then we have G[z] = (G ∩ SAT[z]) ↔ (G ∪ SAT[y]). This implies that
SAT[z] = 1 a.e.

14. h(x, a, b) = ¬a ↔ b, i.e. G[z] = ¬(G ∩ SAT[z]) ↔ C[g2(x)]. If g2(x) = 0y or 11y for
some string y, then by forcing G[z] = 0 and G[y] = 1 we can refute the autoreduction.
If g2(x) = 10y, then we have G[z] = ¬(G ∩ SAT[z]) ↔ (G ∪ SAT[y]). This implies that
SAT[z] = 1 a.e.

Now consider the case where g2(x) has the same value as x, but g1(x) has a different value.
We only investigate the case where g2(x) = 10z. The other case where g2(x) = 11z can be
handled similarly. Note that since we assumed the value of g1(x) is less than or equal to the
value of g2(x), and g2(x) has the same value as x, C[g1(x)] can be computed in O(2c|x|). Now
consider different possibilities for the Boolean function h(x, ., .).

1. h(x, a, b) = 0 or 1. Forcing G[z] = 1 or 0 respectively refutes the autoreduction.

2. h(x, a, b) = a, i.e. G[z] = C[g1(x)]. As mentioned above, C[g1(x)] is computable in
O(2c|x|). Therefore we can define an extension function that forces G[z] = 1− C[g1(x)]
which refutes the autoreduction.

3. h(x, a, b) = ¬ a, i.e. G[z] = ¬ C[g1(x)]. Similar to the second case.

4. h(x, a, b) = b, i.e. G[z] = G ∩ SAT[z]. If this happens i.o. with SAT[z] = 0 then we can
refute the autoreduction by forcing G[z] = 1. Therefore in this case SAT[z] = 1 a.e.

5. h(x, a, b) = ¬b, i.e. G[z] = ¬(G ∩ SAT[z]). By forcing G[z] = 0 we can refute the
autoreduction. Therefore this case cannot happen i.o.

6. h(x, a, b) = a ∧ b, i.e. G[z] = C[g1(x)] ∧ (G ∩ SAT[z]). In this case SAT[z] has to be 1
a.e.

7. h(x, a, b) = ¬a ∧ b, i.e. G[z] = ¬C[g1(x)] ∧ (G ∩ SAT[z]). If C[g1(x)] = 1 we can refute
the autoreduction by forcing G[z] = 1. Therefore this cannot happen i.o. On the other
hand, when C[g1(x)] = 0 we will have G[z] = G ∩ SAT[z]. this implies that SAT[z] = 1
a.e.

8. h(x, a, b) = a ∧ ¬b, i.e. G[z] = C[g1(x)] ∧ ¬(G ∩ SAT[z]). Similarly, C[g1(x)] = 0
can only happen finitely many times. On the other hand, if C[g1(x)] = 1 we have
G[z] = ¬(G ∩ SAT[z]). This implies G[z] = 1. So an extension function that forces
G[z] = 0 refutes the autoreduction.

9. h(x, a, b) = ¬a ∧ ¬b, i.e. G[z] = ¬C[g1(x)] ∧ ¬(G ∩ SAT[z]). Similar to previous cases.

10. h(x, a, b) = a ∨ b, ¬a ∨ b, a ∨ ¬b, or ¬a ∨ ¬b is similar to previous cases.

11. h(x, a, b) = a ↔ b, i.e. G[z] = C[g1(x)] ↔ (G ∩ SAT[z]). Depending on whether
C[g1(x)] = 0 or 1 turns into one of the previous cases.

12. h(x, a, b) = ¬a↔ b, similar to the eleventh cases.

8

• In this case we consider the situation where both queries g1(x) and g2(x) have the same value
as x. In other words, in this case we have g1(x) = 10z and g2(x) = 11z. Therefore we have:

G[z] = h(x,G ∩ SAT[z], G ∪ SAT[z])

To investigate this case we need to look at different Boolean functions for h(x, ., .).

1. h(x, a, b) = 0, 1, a, ¬a, b, or ¬b. Each of these cases is similar to one of the cases
discussed previously.

2. h(x, a, b) = a∧ b, i.e. G[z] = G∩ SAT[z]. This is also similar to one of the cases that we
discussed previously.

3. h(x, a, b) = ¬a ∧ b, i.e. G[z] = ¬(G ∩ SAT[z]) ∧ (G ∪ SAT[z]). In this case SAT[z] must
be 0 a.e.

4. h(x, a, b) = a ∧ ¬b, i.e. G[z] = (G ∩ SAT[z]) ∧ ¬(G ∪ SAT[z]). Forcing G[z] = 1 refutes
the autoreduction.

5. h(x, a, b) = ¬a ∧ ¬b, i.e. G[z] = ¬(G ∩ SAT[z]) ∧ ¬(G ∪ SAT[z]). This is equal to
¬(G ∪ SAT[z]). Therefore forcing G[z] = 0 refutes the autoreduction.

6. h(x, a, b) = a∨ b, i.e. G[z] = (G∩ SAT[z])∨ (G∪ SAT[z]), which is equal to G∪ SAT[z].
Therefore SAT[z] must be 0 a.e.

7. h(x, a, b) = ¬a ∨ b, i.e. G[z] = ¬(G ∩ SAT[z]) ∨ (G ∪ SAT[z]). In this case SAT[z] must
be 0 a.e.

8. h(x, a, b) = a ∨ ¬b, i.e. G[z] = (G ∩ SAT[z]) ∨ ¬(G ∪ SAT[z]). This implies that SAT[z]
must be 1 a.e.

9. h(x, a, b) = ¬a ∨ ¬b, i.e. G[z] = ¬(G ∩ SAT[z]) ∨ ¬(G ∪ SAT[z]), which is equal to
¬(G ∩ SAT[z]). Therefore forcing G[z] = 0 refutes the autoreduction.

10. h(x, a, b) = a↔ b, i.e. G[z] = (G ∩ SAT[z])↔ (G ∪ SAT[z]). In this case SAT[z] has to
be 1 a.e.

11. h(x, a, b) = ¬a↔ b, i.e. G[z] = ¬(G∩SAT[z])↔ (G∪SAT[z]). This implies that SAT[z]
has to be 0 a.e.

Corollary 3.2. If NP contains a p-generic language, then there exists a 3-tt-complete set for NP
that is 3-tt-autoreducible, but not 2-tt-autoreducible.

Proof. This follows immediately from Theorem 3.1 and the fact that every 2-T reduction is a 3-tt
reduction.

Corollary 3.3. If NP contains a p-generic language, then there exists a 3-tt-complete set for NP
that is 3-tt-autoreducible, but not 1-T-autoreducible.

Our next theorem separates (k + 1)-tt-autoreducibility from k-tt-autoreducibility and k-T-
autoreducibility from k-tt-autoreducibility under the Genericity Hypothesis. The proof uses the
construction of Ambos-Spies and Bentzien [2] that separates the corresponding completeness no-
tions.

9

Theorem 3.4. If NP contains a p-generic language, then for every k ≥ 3 there exists a set that is

• (k + 1)-tt-complete for NP and (k + 1)-tt-autoreducible,

• k-T-complete for NP and k-T-autoreducible, and

• not k-tt-autoreducible.

Proof. Let G ∈ NP be a p-generic language, and z1, ..., z(k+1) be the first k + 1 strings of length k.
We call v the value of w if w = vzi for some 1 ≤ i ≤ k + 1. For m = 1, ..., k − 1 define

Ĝm = {x | xzm ∈ G} (3.1)

Ĝ =
k−1⋃
m=1

Ĝm (3.2)

A =
k−1⋃
m=1

{xzm | x ∈ Ĝm}
⋃
{xzk | x ∈ Ĝ ∩ SAT}

⋃
{xzk+1 | x ∈ Ĝ ∪ SAT} (3.3)

Here are some properties of the sets defined above:

• For every x, x ∈ Ĝ⇔ ((∃1 ≤ i ≤ k − 1) xzi ∈ G).

• A contains strings in G that end with z1, ..., or z(k−1). As a result, A[xzi] = G[xzi] for every
x and 1 ≤ i ≤ k − 1.

• xzk ∈ A if and only if (x ∈ SAT ∧ ((∃1 ≤ i ≤ k − 1) xzi ∈ G)).

• xzk+1 ∈ A if and only if (x ∈ SAT ∨ ((∃1 ≤ i ≤ k − 1) xzi ∈ G)).

• xzj /∈ A for j > k + 1.

It is easy to show that SAT ≤p
(k+1)−tt A: On input x, make queries xz1, ..., xz(k+1) from A. If

at least one of the answers to the first k − 1 queries is positive, then SAT[x] is equal to the kth
query, i.e. SAT[x] = A[xzk]. Otherwise SAT[x] is equal to A[xz(k+1)]. As a result, A is (k + 1)-
tt-complete for NP. If the queries are allowed to be dependent, we can choose between xzk and
xz(k+1) based on the answers to the first (k− 1) queries. Therefore A is also k-T-complete for NP.
Since all these queries are honest, in fact length-increasing, it follows from Lemma 2.1 that A is
both (k + 1)-tt-autoreducible and k-T-autoreducible.

To get a contradiction, assume A is k-tt-autoreducible via h, g1, ..., gk. In other words, assume
that for every x:

A[x] = h(x,A[g1(x)], ..., A[gk(x)]) (3.4)

and (∀1 ≤ i ≤ k) gi(x) 6= x. In particular, we are interested in the case where x = 0nz1 = 0n+k,
and we have:

A[0n+k] = h(0n+k, A[g1(0
n+k)], ..., A[gk(0

n+k)]) (3.5)

and all gi(0
n+k)’s are different from 0n+k itself.

In the following we will define a bounded extension function f that satisfies the condition in
Lemma 2.2 such that if G meets f at 0n+k then (3.5) will fail. We use the p-genericity of G to show

10

that G has to meet f at 0n+k for some n which completes the proof. In other words, we define a
bounded extension function f such that given n and X � 0n, f(X � 0n) = (y0, i0)...(ym, im) and if

G � 0n = X � 0n and

(∀0 ≤ j ≤ m) G(yj) = ij
(3.6)

then
A[0n+k] 6= h(0n+k, A[g1(0

n+k)], ..., A[gk(0
n+k)]) (3.7)

Moreover, m is bounded by some constant that does not depend on n and X � 0n. Note that we
want f to satisfy the conditions in Lemma 2.2, so yj ’s and ij ’s must be computable in O(2n) and
O(2|yj |) steps respectively. After defining such f , by Lemma 2.2 G must meet f at 0n+k for some n.
This means (3.6) must hold. As a result, (3.7) must happen for some n, which is a contradiction.
f can force values of G[yi]’s for a constant number of yi’s. Because of the dependency between G
and A we can force values for A[w], where w is a query, by using f to force values in G. This is
done based on the strings that have been queried, and their indices as follows.

• If w = vzi for some 1 ≤ i ≤ k − 1 then A[w] = G[w]. Therefore we can force A[w] to 0 or 1
by forcing the same value for G[w].

• If w = vzk then A[w] = SAT[v] ∧ (
∨k−1
l=1 G[vzl]), so by forcing all G[vzl]’s to 0 we can make

A[w] = 0.

• If w = vzk+1 then A[w] = SAT[v] ∨ (
∨k−1
l=1 G[vzl]). In this case by forcing one of the G[vzl]’s

to 1 we can make A[w] = 1.

We will use these facts to force the value of A on queries on input 0n+k on the right hand side of
(3.5), and then force a value for A[0n+k] such that (3.5) fails. The first problem that we encounter
is the case where we have both vzk and vzk+1 among our queries. If this happens for some v then
the strategy described above does not work. To force A[vzk] and A[vzk+1] to 0 and 1 respectively,
we need to compute SAT[v]. If SAT[v] = 0 then A[vzk] = 0, and A[vzk+1] can be forced to 1 by
forcing G[vzl] = 1 for some 1 ≤ l ≤ k − 1. On the other hand, if SAT[v] = 1 then A[vzk+1] = 1,
and forcing all G[vzl]’s to 0 makes A[vzk] = 0. This process depends on the value of SAT[v], and
v can be much longer than 0n+k. Our extension function must satisfy the time bound conditions
in Lemma 2.2. This means that the bit forced for A[0n+k] must be computable in at most 2c(n+k)

steps. As a result, it cannot depend on SAT[v] when |v| > n. But note that we have k queries, and
two of them are vzk and vzk+1. Therefore at least one of the strings vz1, ..., vzk−1 is not among the
queries. We use this string as vzl, and make G[vzl] = 1 when SAT[v] = 0.

Now we define an auxiliary function α from the set of queries, called QUERY, to 0 or 1. The
idea is that α computes the value of A on queries without computing G[v], given that G meets
the extension function. α is defined in two parts based on the length of the queries. For queries
w = vzp that are shorter than 0n+k, i.e. |w| < n+ k, we define:

α(w) =

X[w] if 1 ≤ p ≤ k − 1

1 if p = k ∧ v ∈ SAT ∧ (∃1 ≤ l ≤ k − 1) vzl ∈ X
1 if p = k + 1 ∧ (v ∈ SAT ∨ (∃1 ≤ l ≤ k − 1) vzl ∈ X)

0 otherwise

11

This means that if X � 0n+k = G � 0n+k then α(w) = A[w] for every query w = vzp with |w| < n+k.
Note that α also depends on an initial segment of the sequence X, but for simplicity we do not
include X as an argument in the definition of α.
On the other hand, for queries w = vzp with |w| ≥ n+ k, α is defined as:

α(w) =

1 if v = 0n ∧ p = 2

SAT[v] if v = 0n ∧ p = k

1 if v = 0n ∧ p = k + 1

1 if v 6= 0n ∧ p = k + 1

1 if v 6= 0n ∧ p = k − 1 ∧ (∀l ∈ {1, ..., k − 1, k + 1}) vzl ∈ QUERY

0 otherwise

For this part of α, our definition of the extension function, which is provided below, guarantees
that α(w) = A[w] if (3.6) holds. Note that the first case in the definition above implies that k
must be greater than or equal to 3, and that is the reason this proof does not work for separating
3-tt-autoreducibility from 2-tt-autoreducibility.

Now we are ready to define the extension function f . For any string v which is the value for
some query, i.e. (∃1 ≤ p ≤ k + 1) vzp ∈ QUERY, we define pairs of strings and 0 or 1’s. These
pairs will be part of our extension function. Fix some value v, and let r be the smallest index that
vzr /∈ QUERY, or k − 1 if such index does not exist, i.e.

r = min{s ≥ 1|vzs /∈ QUERY ∨ s = k − 1} (3.8)

Note that r depends on v. We will have one of the following cases:

1. If v = 0n then pairs (vz2, 1), (vz3, 0), ..., (vzk−1, 0) must be added to f .

2. If v 6= 0n and vzk+1 /∈ QUERY then add pairs (vz1, 0),...,(vzk−1, 0) to f .

3. If v 6= 0n, vzk+1 ∈ QUERY and vzk /∈ QUERY add pairs (vzi, j) for 1 ≤ i ≤ k − 1 where
j = 0 for all i’s except i = r where j = 1.

4. If v 6= 0n, vzk+1 ∈ QUERY and vzk ∈ QUERY add pairs (vzi, j) for 1 ≤ i ≤ k − 1 where
j = 0 for all i’s except i = r where j = 1− SAT[v].

This process must be repeated for every v that is the value of some query. Finally, we add
(0n+k, 1 − h(0n+k, α(g1(0

n+k)), ..., α(gk(0
n+k))) to f in order to refute the autoreduction. It is

worth mentioning that in the fourth case above, since both vzk and vzk+1 are among queries, at
least one of the strings vz1,...,vzk−1is not queried. Therefore by definition of r, vzr /∈ QUERY.
This is important, as we describe in more detail later, because we forced G[vzr] = 1− SAT[v], and
if vzr ∈ QUERY then α(vzr) = G[vzr] = 1 − SAT[v]. But α must be computable in O(2n) steps,
which is not possible if v is much longer than 0n+k.

Now that the extension function is defined completely, we need to show that it has the desired
properties. First, we will show that if G meets f at 0n+k and X � 0n+k = G � 0n+k then α and A
agree on every query w with |w| ≥ n+ k, i.e. α(w) = A[w].
Let w = vzp, and |w| ≥ n+ k.

• If v = 0n and p = 2 then α(w) = 1 and A[w] = G[w] = 1.

12

• If v = 0n and p = k then α(w) = SAT[v] and A[w] = SAT[v]∧(
∨k−1
l=1 G[vzl]). Since G[vz2] = 1

is forced, A[w] = SAT[v].

• If v = 0n and p = k + 1 then α(w) = 1 and A[w] = SAT[v] ∨ (
∨k−1
l=1 G[vzl]) = 1 since

G[vz2] = 1.

• If v = 0n and p 6= 2, k, k + 1 then α(w) = A[w] = 0.

• If v 6= 0n and p < k−1 then α(w) = 0. Since p < k−1, and vzp ∈ QUERY, by definition of r,
r 6= p. Therefore G[vzp] is forced to 0 by f . As a result, A[w] = A[vzp] = G[vzp] = 0 = α(w).

• If v 6= 0n, p = k−1, and vz1,...,vzk−1,vzk+1 ∈ QUERY then α(w) = 1. In this case r = k−1, so
it follows from definition of f that G[vzk−1] = 1. As a result, A[w] = A[vzk−1] = G[vzk−1] =
1 = α(w).

• If v 6= 0n, p = k− 1, and at least one of the strings vz1,...,vzk−1,vzk+1 is not queried then we
consider two cases. If vzk+1 /∈ QUERY then f forces G[vzk−1] to 0. On the other hand, if
vzk+1 ∈ QUERY, then at least one of vz1,...,vzk−1 is not a query. Therefore by definition of
r, r 6= k − 1. This implies that G[vzk−1] = 0 by f .

• If v 6= 0n, p = k then α(w) = 0. Consider two cases. If vzk+1 /∈ QUERY then G[vzi] = 0 for
every 1 ≤ i ≤ k− 1. Therefore A[w] = SAT[v]∧ (

∨k−1
l=1 G[vzl]) = 0. Otherwise, when vzk+1 ∈

QUERY, since we know that vzk also belongs to QUERY, f forces G[vzr] = 1 − SAT[v],
and G[vzi] = 0 for every other 1 ≤ i ≤ k − 1. Therefore A[w] = SAT[v] ∧ (

∨k−1
l=1 G[vzl]) =

SAT[v] ∧ (1− SAT[v]) = 0.

• If v 6= 0n, p = k + 1 then α(w) = 1. If vzk /∈ QUERY then G[vzr] = 1 by f . Therefore
A[w] = SAT[v] ∨ (

∨k−1
l=1 G[vzl]) = 1. On the other hand, if vzk ∈ QUERY then f forces

G[vzr] = 1− SAT[v]. As a result, A[w] = SAT[v] ∨ (
∨k−1
l=1 G[vzl]) = 1.

This shows that in any case, α(w) = A[w] for w ∈ QUERY, given that (3.6) holds, i.e. G meets f .
By combining this with (3.5) we have

A[0n+k] =h(0n+k, A[g1(0
n+k)], ..., A[gk(0

n+k)])

=h(0n+k, α(g1(0
n+k)), ..., α(gk(0

n+k)))

On the other hand, we forced A[0n+k] = 1 − h(0n+k, α(g1(0
n+k)), ..., α(gk(0

n+k))) which gives us
the desired contradiction.

The last part of our proof is to show that f satisfies the conditions in Lemma 2.2. For every
value v which is the value of some query we added k− 1 pairs to f , and there are k queries, which
means at most k different values. Therefore, the number of pairs in f is bounded by k2, i.e. f is a
bounded extension function.

If f(X � 0n+k) = (y0, j0), ..., (ym, jm) then yi’s are computable in polynomial time in n, and ji’s
are computable in O(2|yi|) because the most time consuming situation is when we need to compute
SAT[v] which is doable in O(2|v|). For the condition forced to the left hand side of (3.5), i.e.
G[0n+k] = 1 − h(0n+k, α(g1(0

n+k)), ..., α(gk(0
n+k))), note that α(w) can be computed in at most

O(2n) steps for w ∈ QUERY, and h is computable in polynomial time.

13

Next we separate (k + 1)-tt-autoreducibility and k-T-autoreducibility from
(k − 1)-T-autoreducibility. The proof uses the same construction as the previous theorem.

Theorem 3.5. If NP contains a p-generic language, then for every k ≥ 3 there exists a set that is

• (k + 1)-tt-complete for NP and (k + 1)-tt-autoreducible,

• k-T-complete for NP and k-T-autoreducible, and

• not (k − 1)-T-autoreducible.

Proof. We use the same sets G and A as defined in the proof of Theorem 3.4. We proved that A is
(k+ 1)-tt-complete, k-T-complete, (k+ 1)-tt-autoreducible, and k-T-autoreducible. What remains
is to show that it is not (k − 1)-T-autoreducible. The proof is very similar to what we did in the
previous theorem, so we will not go through every detail here. Assume A is (k−1)-T-autoreducible
via an oracle Turing machine M . In other words,

(∀x) A[x] = MA(x) (3.9)

and we assume that on input x, M will not query x itself. By using p-genericity of G we will show
that there exists some n such that 3.9 fails for x = 0n+k. In other words,

(∃n) A[0n+k] 6= MA(0n+k) (3.10)

Similar to what we did in the previous theorem, we define a bounded extension function f such
that given n and an initial segment X � 0n, f returns a set of pairs (yi, ji) for 0 ≤ i ≤ m. yi’s
are the positions, and must be computable in O(2n) steps, and ji’s are the values that f forces to
yi’s. Each ji must be computable in O(2|yi|). Then we will show that if G meets f at 0n+k, i.e. if
3.6 holds, then 3.9 fails for x = 0n+k. We will define a function α that under the right conditions
simulates A on queries. We use α instead of A, as the oracle, in the computation of M on input
0n+k. Similar to the previous theorem, α must be computable in O(2n) steps. Since in a Turing
reduction each query may depend on the answers to the previous queries, we cannot know which
queries will be asked in the computation of MA(0n+k) in O(2n) steps. Therefore we define α on
every string rather than just on the set of queries.

Let w = vzp be some string. If |w| < n+ k, then α is defined as:

α(w) =

X[w] if 1 ≤ p ≤ k − 1

1 if p = k ∧ v ∈ SAT ∧ (∃1 ≤ l ≤ k − 1) vzl ∈ X
1 if p = k + 1 ∧ (v ∈ SAT ∨ (∃1 ≤ l ≤ k − 1) vzl ∈ X)

0 otherwise

and if |w| ≥ n+ k then:

α(w) =

1 if v = 0n ∧ p = 2

SAT[v] if v = 0n ∧ p = k

1 if p = k + 1

0 otherwise

14

Now we run the same oracle Turing machine M , but we use α as the oracle instead of A. Let
QUERY be the set of queries asked in this process. f will be defined in a similar fashion, except
that the final pair which completes the diagonalization would be (0n+k, 1−Mα(0n+k)).

Similar to the previous theorem, it can be verified that α and A agree on all queries, i.e.
MA(0n+k) = Mα(0n+k), if 3.6 holds. It is also easy to prove that α is computable in O(2n) steps,
therefore f satisfies the time bounds in Lemma 2.2.

We now separate unbounded truth-table autoreducibility from bounded truth-table
autoreducibility under the Genericity Hypothesis. This is based on the technique of Ambos-Spies
and Bentzien [2] separating the corresponding completeness notions.

Theorem 3.6. If NP has a p-generic language, then there exists a tt-complete set for NP that is
tt-autoreducible, but not btt-autoreducible.

Before proving Theorem 3.6, we need a few definitions and two lemmas.
A complexity class C is computably presentable if there is a computable function f : N→ N such

that C = {L(Mf(i)) | i ∈ N}. A sequence of classes C0, C1, . . . is uniformly computably presentable
if there is a computable function f : N× N→ N such that Cj = {L(Mf(j,i)) | i ∈ N} for all j ∈ N.
A reducibility R is computably presentable if there is a computable function f : N → N such that
Mf(1),Mf(2), . . . is an enumeration of all R-reductions.

Lemma 3.7. If C is a computably presentable class which is closed under finite variants and R
is a computably presentable reducibility, then CR-auto = {B ∈ C | B is R-autoreducible} is also
computably presentable.

Proof. We prove the lemma for polynomial-time Turing autoreducibility, but similar proofs can be
constructed for any kind of autoreduction that is computably presentable. For simplicity, we use
Cauto for Cpoly-T -auto in the rest of the proof. If Cauto = ∅ then it is computably presentable by
convention. Assume Cauto 6= ∅, and fix some set A ∈ Cauto. Since C is closed under finite variants,
any finite variation of A must also belong to Cauto.

LetN1,N2,... be a presentation of C, and T1,T2,... be an enumeration of deterministic polynomial-
time oracle Turing machines. For every pair n = 〈i, j〉 where i, j ≥ 1 we define a Turing machine
Mn as follows:

Mn

input x
for each y with y < x do

test that y ∈ L[Ni]⇔ y ∈ L(Tj , L(Ni)),
and y itself has not been queried by Tj

if tests are true then
accept x iff x ∈ L(Ni)

else
accept x iff x ∈ A

Let L be an arbitrary language in Cauto. There must be some i, j ≥ 1 such that L = L(Ni) and
Tj computes an R-autoreduction on L. Therefore Mn computes L when n = 〈i, j〉. This means
that every language in Cauto is accepted by some Turing machine Mn. On the other hand, for every
n = 〈i, j〉, if Tj does not compute an R-autoreduction on L(Ni), then L(Mn) is a finite variant of
A. Since C is assumed to be closed under finite variants, L(Mn) ∈ Cauto.

15

Lemma 3.8. (Ambos-Spies and Bentzien [2]) Let C0, C1, . . . be classes such that,
(1). C0, C1, . . . is uniformly computably presentable.
(2). Each Ci is closed under finite variants.
(3). There is a decidable set D such that D ⊆ {0}∗ × Σ∗ ,
and D[n] = {x | 〈0n, x〉 ∈ D} /∈ Cn.
(4). f : N→ N is a non-decreasing unbounded computable function.
Then there exists a set A and a function g : N→ N such that:
(5). A /∈

⋃∞
n=0Cn.

(6). (∀n) A=n = D
[g(n)]
=n .

(7). g is polynomial-time computable with respect to the unary representation of numbers.
(8). (∀n) g(n) ≤ f(n).

Proof of Theorem 3.6. Let S̃AT = {0n1x | n ≥ 0 and x ∈ SAT}. It is easy to see that S̃AT is

NP-complete, and S̃AT ∈ DTIME(2n). Fix a p-generic set G ∈ NP for the rest of the proof. For

every k ≥ 0, let Ak be a (k + 3)-tt-complete set constructed as before, by using S̃AT instead of
SAT. Note that Ak is also (k + 3)-tt-autoreducible, but not (k + 2)-tt-complete [2] or (k + 2)-tt-
autoreducible. Define D = {〈0k, x〉 | k ≥ 0 and x ∈ Ak}. Then D ∈ NP because deciding x ∈ Ak
involves solving O(k) instances of SAT and G. Let Ck = {B ∈ NP | B is k-tt-autoreducible} for
k ≥ 1 and C0 = C1. NP is computably presentable and closed under finite variants, therefore by
Lemma 3.7, Ck’s are computably presentable. In fact, they are uniformly computably presentable
by applying the proof of Lemma 3.7 uniformly. It is also easy to see that each Ck is closed under
finite variants. Therefore Ck’s satisfy the conditions of Lemma 3.8. It follows from the definition
of D that D[k] = Ak, and we know that Ak /∈ Ck by construction of Ak. Therefore, if we take
f(n) = min{m | 2m+ 3 ≥ n}, by Lemma 3.8 there exist A and g such that properties (5)-(8) from
the lemma hold.
It follows from (6) and (7) that (∀n) A=n = D

[g(n)]
=n , and g is polynomial time computable with

respect to unary representation of numbers. This implies that A ≤p
m D, therefore A ∈ NP.

Moreover, by (5) from the lemma, A /∈
⋃
n≥0Cn, which means for every k ≥ 1, A is not k-tt-

autoreducible. In other words A is not btt-autoreducible.
To show that A is tt-autoreducible, we will show that SAT ≤p

tt A via honest reductions, and
then it follows from Lemma 2.1 that A is tt-autoreducible. To define the truth-table reduction from
SAT to A, fix x with |x| = n. For every k,m ≥ 0 we have SAT[x] = S̃AT[0m1x], and S̃AT[0m1x]
can be computed by making (k+3) independent queries from (Ak)=m+1+n+k+2 in polynomial time,
uniformly in x, k, and m. In other words, there is a single polynomial time algorithm that for every
x,k, and m outputs the right queries. (This follows from (k + 3)-tt-completeness of Ak, and the

way Ak is defined using S̃AT.) Property (6) from Lemma 3.8 implies that:

A=2n+3 = (D[g(2n+3)])=2n+3 = (Ag(2n+3))=2n+3 (3.11)

We also know that g(2n+ 3) ≤ f(2n+ 3) ≤ n for all n. Using all these facts, here is the truth-table
reduction from SAT to A:
For x with |x| = n, compute g(2n+ 3), and let k = g(2n+ 3) and m = n− k. Therefore:

(Ak)=m+1+n+k+2 = (Ag(2n+3))=2n+3 = A=2n+3 (3.12)

We know that SAT[x] = S̃AT[0m1x] can be computed by making (k+ 3) independent queries from

(Ak)=m+1+n+k+2. This means SAT[x] = S̃AT[0m1x] can be recovered by making g(2n+ 3) queries

16

from A=2n+3.
Note that all these queries are longer than x. Therefore, by Lemma 2.1, A is tt-autoreducible.

4 Stronger Separations Under a Stronger Hypothesis

Our results so far only separate k-tt-autoreducibility from (k − 2)-T-autoreducibility for k ≥ 3
under the genericity hypothesis. In this section we show that a stronger hypothesis separates
k-tt-autoreducibility from (k− 1)-T-autoreducibility, for all k ≥ 2. We note that separating k non-
adaptive queries from k−1 adaptive queries is an optimal separation of bounded query reducibilities.

First we consider 2-tt-autoreducibility versus 1-tt-autoreducibility (equivalently,
1-T-autoreducibility). Pavan and Selman [14] showed that if NP∩coNP contains a DTIME(2n

ε
)-bi-

immune set, then 2-tt-completeness is different from 1-tt-completeness for NP. We show under the
stronger hypothesis that NP ∩ coNP contains a p-generic set, we can separate the autoreducibility
notions.

Theorem 4.1. If NP ∩ coNP has a p-generic language, then there exists a 2-tt-complete set for
NP that is 2-tt-autoreducible, but neither 1-tt-complete nor 1-tt-autoreducible.

Proof. Assume G ∈ NP ∩ coNP is p-generic, and let A = (G ∩ SAT)∪̇(G ∩ SAT), where G is G’s
complement, and ∪̇ stands for disjoint union. We implement disjoint union as A = (G ∩ SAT)0 ∪
(G ∩ SAT)1. It follows from closure properties of NP and the fact that G ∈ NP ∩ coNP that
A ∈ NP. It follows from definition of A that for every x, x ∈ SAT ↔ (x0 ∈ A ∨ x1 ∈ A). This
means SAT ≤p

2tt A. Therefore A is 2-tt-complete for NP. Since both queries in the above reduction
are honest, in fact length increasing, it follows from Lemma 2.1 that A is 2-tt-autoreducible. To
get a contradiction assume that A is 1-tt-autoreducible via polynomial-time computable functions
h and g. In other words,

(∀x) A[x] = h(x,A[g(x)]) (4.1)

and g(x) 6= x. Let x = y0 for some string y, then (4.1) turns into

(∀y) G ∩ SAT[y] = h(y0, A[g(y0)]) (4.2)

and g(y0) 6= y0. In the case where SAT[y] = 0 our bounded extension function f will not be defined
at x. On the other hand, when SAT[y] = 1, we define f at x as follows:

• Consider the case where g(y0) = z0 or z1 and z > y. If g(y0) = z0 then f forces G[z] = 0,
and if g(y0) = z1 then f forces G[z] = 1. f also forces G[y] = 1− h(y0, 0). Since g and h are
computable in polynomial time, so is f .

• On the other hand, if g(y0) = z0 or z1 and z < y then define f such that it forces G[y] =
1 − h(y0, A[g(y0)]). Then f is polynomial-time computable in this case as well because A
may be computed on g(y0) by looking up G[z] from the partial characteristic sequence and
deciding SAT[z] in 2O(|z|) time.

• If g(y0) = y1 and h(y0, .) = c is a constant function, then define f such that it forces
G[y] = 1− c.

17

If g(y0) 6= y1 ∧ SAT[y] = 1 for infinitely many y, it follows from the p-genericity of G that G has
to meet f , but this refutes the autoreduction. Similarly, g(y0) = y1∧h(y0, .) = const∧SAT[y] = 1
cannot happen for infinitely many y’s. As a result, (g(y0) = y1 ∨ SAT[y] = 0) or h(y0, .) is not
constant for all but finitely many y’s. If g(y0) = y1 then h says either G ∩ SAT[y] = G ∩ SAT[y]
or G∩ SAT[y] = ¬(G∩ SAT[y]). It is easy to see this implies SAT[y] has to be 0 or 1, respectively.
Based on the facts above, we define Algorithm 4.1 that decides a finite variant of SAT in polynomial
time. This contradicts the assumption that NP ∩ coNP has a p-generic language.

input y;
if g(y0) 6= y1 ∨ h(y0, .) is constant then

Output NO;
else

if h(y0, .) is the identity function then
Output NO;

else
Output YES;

end

end
Algorithm 4.1: A polynomial-time algorithm for SAT

It is proved in [8] that every nontrivial 1-tt-complete set for NP is 1-tt-autoreducible, so it
follows that A is not 1-tt-complete.

We will show the same hypothesis on NP ∩ coNP separates k-tt-autoreducibility from (k − 1)-
T-autoreducibility for all k ≥ 3. First, we show the corresponding separation of completeness
notions.

Theorem 4.2. If NP ∩ coNP contains a p-generic set, then for every k ≥ 3 there exists a k-tt-
complete set for NP that is not (k − 1)-T-complete.

Proof. Assume G ∈ NP ∩ coNP is p-generic, and let Gm = {x | xzm ∈ G} for 1 ≤ m ≤ k where
z1, ..., zk are the first k strings of length k as before. Define

A =
[k−1⋃
m=1

{xzm | x ∈ Gm ∩ SAT}
]
∪ {xzk | x ∈

[
∩k−1m=1 Gm

]
∩ SAT} (4.3)

It is easy to check that x ∈ SAT ⇔
∨k
m=1(xzm ∈ A), therefore SAT ≤pk−tt A. It also follows from

the fact that G ∈ NP∩ coNP and the closure properties of NP that A ∈ NP, so A is k-tt-complete
for NP. In fact it is complete via truth table reductions that make at most k queries and use
disjunction as their truth table, i.e. k-dtt-complete.

We claim that A is not (k−1)-T-hard for NP. For a contradiction, assume that Gk ≤p(k−1)−T A.
In other words, assume that there exists an oracle Turing machine M such that

(∀x) Gk[x] = MA[x] (4.4)

where M runs in polynomial time, and makes at most (k− 1) queries on every input. Given n and
X � 0n, we define a function α as follows.

18

If w = vzp and |w| < n+ k then

α(w) =

X[w] ∧ SAT[v] if 1 ≤ p ≤ k − 1[∧k−1

l=1 (1−X[vzl])
]
∧ SAT[v] if p = k

0 otherwise

It is easy to see that α is defined in a way that if X � 0n = G � 0n then α(w) = A[w].
On the other hand, if |w| ≥ n+ k then α(w) = 0 all the time. Later when we define the extension
function we guarantee that A[w] = 0 for all long queries, by forcing the right values into G, which
implies A[w] = α(w) for all queries. But before doing that, we run M on input 0n with α as the
oracle, and define QUERY to be the set of all queries made in this computation. We know that
|QUERY| ≤ k − 1. Therefore one of the following cases must happen:

1. xzk /∈ QUERY.

2. xzk ∈ QUERY, and (∃1 ≤ l ≤ k − 1) xzl /∈ QUERY.

Define a bounded extension function f based on the above cases. Given n and X � 0n, f(X � 0n)
contains the pairs described below. For every v which is the value of some element of QUERY,

1. If vzk /∈ QUERY, then put (vz1, 0),...,(vz(k−1), 0) into f . In other words, f forces G[vzl] to 0
for every 1 ≤ l ≤ k − 1.

2. If vzk ∈ QUERY then there must be some 1 ≤ l ≤ k − 1 such that vzl /∈ QUERY. In this
case f forces G[vzi] = 0 for every 1 ≤ i ≤ k − 1 except for i = l for which G[vzl] = 1.

It can be shown that if G meets f at 0n, i.e. if (3.6) holds, then α(w) = A[w] for every w ∈ QUERY.
As a result,

Mα(0n) = MA(0n) (4.5)

To complete the diagonalization, we add one more pair to f that forces the value ofGk[0
n] = G[0n+k]

to 1−Mα(0n), i.e. (0n+k, 1−Mα(0n)). Then it follows from (4.5) that the reduction from Gk to A
fails. The last part of the proof, is to show that G has to meet f at 0n for some n. α is computable
in O(2n) steps for short queries, and polynomial time for long queries, and M is a polynomial time
Turing machine, which implies f can be computed in at most O(22n) steps. It is also easy to see
that the number of pairs in f is bounded by k2, which means f is a bounded extension function.
As a result f satisfies the conditions of Lemma 2.2, hence G has to meet f at 0n for some n, which
completes the proof.

Now we show the same sets separate k-tt-autoreducibility from (k − 1)-T-autoreducibility.

Theorem 4.3. If NP ∩ coNP contains a p-generic set, then for every k ≥ 3 there exists a k-tt-
complete set for NP that is k-tt-autoreducible, but is not (k − 1)-T-autoreducible.

Proof. Assume G ∈ NP ∩ coNP is p-generic, and let Gm = {x | xzm ∈ G} for 1 ≤ m ≤ k where
z1, ..., zk are the first k strings of length k as before. Define

A =
[k−1⋃
m=1

{xzm | x ∈ Gm ∩ SAT}
]
∪ {xzk | x ∈

[
∩k−1m=1 Gm

]
∩ SAT} (4.6)

19

We showed that SAT ≤p
k−tt A via length-increasing queries, therefore by Lemma 2.1 A is k-tt-

autoreducible. For a contradiction, assume that A is (k − 1)-T-autoreducible. This means there
exists an oracle Turing machine M such that

(∀x) A[x] = MA(x) (4.7)

M runs in polynomial time, and on every input x it makes at most k − 1 queries, none of which is
x. Given n and X � 0n, we define a function α as follows.
If w = vzp and |w| < n+ k then

α(w) =

X[w] ∧ SAT[v] if 1 ≤ p ≤ k − 1[∧k−1

l=1 (1−X[vzl])
]
∧ SAT[v] if p = k

0 otherwise

It is easy to see that if X � 0n = G � 0n then α(w) = A[w].
If w = vzp and |w| ≥ n+ k, α is defined as:

α(w) =

1 if v = 0n ∧ 2 ≤ p ≤ k − 1

0 if v = 0n ∧ p = k

0 otherwise

Later we will define the extension function f in a way that if G meets f at 0n then α(w) = A[w]
for all queries.
Before defining f , we run M on input 0n+k with α as the oracle instead of A, and define QUERY to
be the set of all queries made in this computation. We know that M makes at most k − 1 queries,
therefore |QUERY| ≤ k− 1. This implies that for every v 6= 0n which is the value of some element
of QUERY one of the following cases must happen:

1. vzk /∈ QUERY

2. vzk ∈ QUERY and (∃1 ≤ l ≤ k − 1) vzl /∈ QUERY

Given n and X � 0n, f(X � 0n) is defined as follows if SAT[0n] = 1.
For every v which is the value of some element of QUERY,

1. If v = 0n, then add (vz2, 1), ..., (vzk−1, 1) to f . In other words, f forces G[0nzi] = 1 for
2 ≤ i ≤ k − 1.

2. If v 6= 0n and vzk /∈ QUERY, then add (vz1, 0), ..., (vzk−1, 0) to f .

3. If v 6= 0n and vzk ∈ QUERY, then there must be some 1 ≤ l ≤ k−1 such that vzl /∈ QUERY.
In this case f forces G[vzi] = 0 for every 1 ≤ i ≤ k − 1 except when i = l for which we force
G[vzl] = 1.

To complete the diagonalization we add one more pair to f which is (0n+k, 1 −Mα(0n)). It is
straightforward, and similar to what has been done in the previous theorem, to show that if G meets
f at 0n for some n then α and A agree on every element of QUERY. Therefore Mα(0n) = MA(0n),
which results in a contradiction. It only remains to show that G meets f at 0n for some n. This

20

depends on the details of the encoding used for SAT. If SAT[0n] = 1 for infinitely many n’s, then
f satisfies the conditions in Lemma 2.2. Therefore G has to meet f at 0n for some n. On the other
hand, if SAT[0n] = 0 for almost all n, then we redefine A as:

A =
[k−1⋃
m=1

{xzm | x ∈ Gm ∪ SAT}
]
∪ {xzk | x ∈

[
∪k−1m=1 Gm

]
∪ SAT} (4.8)

It can be proved, in a similar way and by using the assumption that SAT[0n] = 0 for almost all n,
that A is k-tt-complete, k-tt-autoreducible, but not (k − 1)-T-autoreducible.

5 Conclusion

We conclude with a few open questions.
For some k, is there a k-tt-complete set for NP that is not btt-autoreducible? We know this is

true for EXP [5], so it may be possible to show under a strong hypothesis on NP. We note that
by Lemma 2.1 any construction of a k-tt-complete set that is not k-tt-autoreducible must not be
honest k-tt-complete. In fact, the set must be complete under reductions that infinitely often have
both “long” and “short” queries. 2 On the other hand, for any k ≥ 3, proving that all k-tt-complete
sets for NP are btt-autoreducible would separate NP and EXP.

Are the 2-tt-complete sets for NP 2-tt-autoreducible? The answer to this question is yes for
EXP [7], so in this case a negative answer for NP would imply NP 6= EXP. We believe that it may
be possible to show the 2-tt-complete sets are nonuniformly 2-tt-autoreducible under the Measure
Hypothesis – first show they are nonuniformly 2-tt-honest complete as an extension of [9, 6].

Nguyen and Selman [13] showed there is a T-complete set for NEXP that is not tt-autoreducible.
Can we do this for NP as well? Note that Hitchcock and Pavan [9] showed there is a T-complete
set for NP that is not tt-complete.

Acknowledgment. We thank A. Pavan for extremely helpful discussions.

References

[1] K. Ambos-Spies. P-mitotic sets. In Logic and Machines: Decision Problems and Complexity,
Proceedings of the Symposium ”Rekursive Kombinatorik” held from May 23-28, 1983 at the In-
stitut für Mathematische Logik und Grundlagenforschung der Universität Münster/Westfalen,
pages 1–23, 1983.

[2] K. Ambos-Spies and L. Bentzien. Separating NP-completeness notions under strong hypothe-
ses. Journal of Computer and System Sciences, 61(3):335–361, 2000.

[3] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial time com-
putable sets. Theoretical Computer Science, 51:177–204, 1987.

[4] R. Beigel and J. Feigenbaum. On being incoherent without being very hard. Computational
Complexity, 2:1–17, 1992.

2More formally: ((∃ε)(∃∞x) |f(x)| > |x|ε) ∧ ((∀ε)(∃∞x) |f(x)| < |x|ε).

21

[5] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Separating complexity classes
using autoreducibility. SIAM Journal on Computing, 29(5):1497–1520, 2000.

[6] H. Buhrman, B. Hescott, S. Homer, and L. Torenvliet. Non-uniform reductions. Theory of
Computing Systems, 47(2):317–341, 2010.

[7] H. Buhrman and L. Torenvliet. A Post’s program for complexity theory. Bulletin of the
EATCS, 85:41–51, 2005.

[8] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility, mitoticity,
and immunity. J. Comput. Syst. Sci., 73(5):735–754, 2007.

[9] J. M. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets. Information and
Computation, 205(5):694–706, 2007.

[10] J. M. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit complexity.
Computational Complexity, 17(1):119–146, 2008.

[11] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial-time reducibilities.
Theoretical Computer Science, 1(2):103–123, 1975.

[12] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if
NP is not small. Theoretical Computer Science, 164(1–2):141–163, 1996.

[13] D. T. Nguyen and A. L. Selman. Non-autoreducible sets for NEXP. In 31st International
Symposium on Theoretical Aspects of Computer Science, pages 590–601, 2014.

[14] A. Pavan and A. L. Selman. Bi-immunity separates strong NP-completeness notions. Infor-
mation and Computation, 188(1):116–126, 2004.

[15] B. Trakhtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192(6):1224–1227, 1970. Trans-
lation in Soviet Math. Dokl. 11(3): 814817, 1970.

22

