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Abstract

We show that the classical Hausdorff and constructive dimensions of any union of
Π0

1-definable sets of binary sequences are equal. If the union is effective, that is, the set
of sequences is Σ0

2-definable, then the computable dimension also equals the Hausdorff
dimension. This second result is implicit in the work of Staiger (1998).

Staiger also proved related results using entropy rates of decidable languages. We
show that Staiger’s computable entropy rate provides an equivalent definition of com-
putable dimension. We also prove that a constructive version of Staiger’s entropy rate
coincides with constructive dimension.

1 Introduction

Lutz has recently effectivized classical Hausdorff dimension to define the constructive and
computable dimensions of sets of infinite binary sequences [2, 3]. In early lectures on these
effective dimensions [4], Lutz conjectured that there should be a correspondence principle
stating that the constructive dimension of every sufficiently simple set X coincides with its
classical Hausdorff dimension. In this paper we provide such a principle, along with an
analogous correspondence principle for computable dimension. Specifically, given a set X
of infinite binary sequences, let dimH(X) be the Hausdorff dimension of X, cdim(X) be
the constructive dimension of X, and dimcomp(X) be the computable dimension of X. Our
correspondence principle for constructive dimension says that for every set X that is an
arbitrary union of Π0

1-definable sets of sequences, cdim(X) = dimH(X). The correspondence
principle for computable dimension says that for every Σ0

2-definable set X of sequences,
dimcomp(X) = dimH(X). We show that these results are optimal in the arithmetical hierar-
chy.
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1



Staiger [7] has proven closely related results in his investigations of Kolmogorov com-
plexity and Hausdorff dimension. The correspondence principle for computable dimension
is implicit in his results on martingale exponents of increase. In addition, for each set X of
sequences he defined a kind of entropy rate that coincides with classical Hausdorff dimen-
sion. Staiger proved that a computable version of this entropy rate is equal to the classical
Hausdorff dimension for Σ0

2-definable sets. We show here that for every set X, Staiger’s
computable entropy rate of X coincides with the computable dimension of X. This provides
a second proof of the correspondence principle for computable dimension. We also show that
a constructive version of Staiger’s entropy rate coincides with constructive dimension.

This paper is organized as follows. Section 2 contains the necessary preliminaries. In
section 3 we review the Hausdorff, computable, and constructive dimensions. The corre-
spondence principles are presented in section 4. The comparison of effective dimensions with
effective entropy rates is given in section 5.

2 Preliminaries

We write {0, 1}∗ for the set of all finite binary strings and C for the Cantor space of all
infinite binary sequences. For ω ∈ {0, 1}∗ ∪C and i, j ∈ N, ω[i..j] is the string consisting of
bits i through j of ω. For w, v ∈ {0, 1}∗, we write w v v if w is a prefix of v. A prefix set
is a language A ⊆ {0, 1}∗ such that no element of A is a prefix of any other element of A.
The sets of strings of length n and of length less than n are {0, 1}n and {0, 1}<n. For any
A ⊆ {0, 1}∗, A=n = A ∩ {0, 1}n and A<n = A ∩ {0, 1}<n.

We write DEC for the class of decidable languages and CE for the class of computably
enumerable languages.

We will define the first two levels of the arithmetical hierarchy of subsets of C. For each
w ∈ {0, 1}∗, the basic open set Cw is the set of all sequences in C that begin with prefix w.
We let C> = ∅.

Definition. Let X ⊆ C.

• X ∈ Σ0
1 if there is a computable function h : N → {0, 1}∗ ∪ {>} such that

X =
∞⋃
i=0

Ch(i).

• X ∈ Π0
1 if Xc ∈ Σ0

1.

• X ∈ Σ0
2 if there is a computable function h : N× N → {0, 1}∗ ∪ {>} such that

X =
∞⋃
i=0

∞⋂
j=0

Cc
h(i,j).

• X ∈ Π0
2 if Xc ∈ Σ0

2.

2



Note that every X ∈ Σ0
1 is open and every X ∈ Π0

1 is closed in the standard (product)
topology on C. In fact, Σ0

1 and Π0
1 are the computably open and computably closed subsets of

C, respectively. Recall that C is compact. This implies that for any closed set X ⊆ C and
any collection of strings A ⊆ {0, 1}∗ such that X ⊆

⋃
w∈A Cw, there is a finite subcollection

A′ ⊆ A such that X ⊆
⋃

w∈A′ Cw.
We say that a real-valued function f : {0, 1}∗ → [0,∞) is computable if there is a com-

putable function f̂ : N × {0, 1}∗ → [0,∞) ∩ Q such that for all n ∈ N and w ∈ {0, 1}∗,
|f(w) − f̂(n,w)| ≤ 2−n. A rational-valued function f : {0, 1}∗ → [0,∞) ∩ Q that is itself
computable is called exactly computable. We say that f : {0, 1}∗ → [0,∞) is lower semi-
computable if there is a computable function g : N× {0, 1}∗ → [0,∞) ∩Q such that for any
w ∈ {0, 1}∗, g(n,w) ≤ g(n + 1, w) < f(w) for all n ∈ N and f(w) = limn→∞ g(n,w).

3 Hausdorff, Constructive, and Computable Dimen-

sions

In this section we briefly review classical Hausdorff dimension, constructive dimension, and
computable dimension.

For each k ∈ N, let Ak be the set of all prefix sets A ⊆ {0, 1}∗ such that A<k = ∅. For
each X ⊆ C, s ∈ [0,∞), and k ∈ N, we define

Hs
k(X) = inf

{∑
w∈A

2−s|w|

∣∣∣∣∣ A ∈ Ak and X ⊆
⋃
w∈A

Cw

}

and
Hs(X) = lim

k→∞
Hs

k(X).

Definition. The Hausdorff dimension of a set X ⊆ C is

dimH(X) = inf {s ∈ [0,∞) |Hs(X) = 0} .

For more information on Hausdorff dimension we refer to the book by Falconer [1].
Lutz [2] proved an alternative characterization of Hausdorff dimension using functions

called gales and supergales. Gales and supergales are generalizations of martingales and
supermartingales.

Definition. Let s ∈ [0,∞). A function d : {0, 1}∗ → [0,∞) is an s-supergale if for all
w ∈ {0, 1}∗,

d(w) ≥ d(w0) + d(w1)

2s
. (3.1)

If equality holds in (3.1) for all w ∈ {0, 1}∗, then d is an s-gale. A martingale is a 1-gale and
a supermartingale is a 1-supergale.
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Intuitively, a supergale is viewed as a function betting on an unknown binary sequence. If
w is a prefix of the sequence, then the capital of the supergale after placing its first |w| bets
is given by d(w). Assuming that w is a prefix of the sequence, the supergale places bets on
w0 and w1 also being prefixes. The parameter s determines the fairness of the betting; as s
decreases less capital is returned to the bettor. The goal of a supergale is to bet successfully
on sequences.

Definition. Let s ∈ [0,∞) and let d be an s-supergale.

1. We say d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S[0..n− 1]) = ∞.

2. The success set of d is

S∞[d] = {S ∈ C | d succeeds on S}.

Theorem 3.1. (Lutz [2]) For any X ⊆ C,

dimH(X) = inf

{
s

∣∣∣∣ there exists a s-gale d
for which X ⊆ S∞[d]

}
.

This characterization of Hausdorff dimension motivates the following definitions of com-
putable dimension [2] and constructive dimension [3]. We say that an s-supergale d is
constructive if it is lower-semicomputable.

Definition. Let X ⊆ C.

1. The computable dimension of X is

dimcomp(X) = inf

{
s

∣∣∣∣ there exists a computable
s-gale d for which X ⊆ S∞[d]

}
.

2. The constructive dimension of X is

cdim(X) = inf

{
s

∣∣∣∣ there exists a constructive
s-supergale d for which X ⊆ S∞[d]

}
.

3. The dimension of a sequence S ∈ C is dim(S) = cdim({S}).

Observe that for any set X ⊆ C,

0 ≤ dimH(X) ≤ cdim(X) ≤ dimcomp(X) ≤ 1.

An important property of constructive dimension is the following pointwise stability property.
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Lemma 3.2. (Lutz [3]) For all X ⊆ C,

cdim(X) = sup
S∈X

dim(S).

The following exact computation lemma shows that computable dimension can be equiv-
alently defined using exactly computable gales in place of computable gales.

Lemma 3.3. (Lutz [2]) For any computable s-supergale d where 2s is rational, there is an
exactly computable s-gale d′ such that S∞[d] ⊆ S∞[d′].

Corollary 3.4. For all X ⊆ C, if s > dimcomp(X) and 2s is rational, then there is an
exactly computable s-gale d such that X ⊆ S∞[d].

Proof. Let X ⊆ C and assume the hypothesis. Then for some r < s there is a computable
r-gale d0 with X ⊆ S∞[d0]. Since d0 is an s-supergale, it follows from Lemma 3.3 that there
is an exactly computable s-gale d with X ⊆ S∞[d0] ⊆ S∞[d].

4 Correspondence Principles

In this section we will prove that cdim(X) = dimH(X) for any X that is an arbitrary union
of Π0

1-definable sets. We will also show that dimcomp(X) = dimH(X) if X is Σ0
2-definable.

Lemma 4.1. If X ∈ Π0
1, then dimH(X) = dimcomp(X).

Proof. Let X ∈ Π0
1. Since dimcomp(X) ≥ dimH(X), it is enough to prove that dimcomp(X) ≤

dimH(X). For this, let t > dimH(X) be arbitrary; it suffices to show that dimcomp(X) ≤ t.
Choose an s so that dimH(X) < s < t and 2s is rational.

Since s > dimH(X), for each r ∈ N, there is a prefix set Ar ⊆ {0, 1}∗ such that∑
w∈Ar

2−s|w| ≤ 2−r and X ⊆
⋃

w∈Ar

Cw.

Because C is compact and X is closed, X is compact. Therefore each Ar may be taken
finite.

Because X ∈ Π0
1, there is a computable function h : N → {0, 1}∗ ∪ {>} such that

X =
∞⋂
i=0

Cc
h(i).

For each k ∈ N, let

Xk =
k⋂

i=0

Cc
h(i).

Then for each k ∈ N, it is easy to compute a finite prefix set Bk such that∑
w∈Bk

2−s|w| is minimal and Xk ⊆
⋃

w∈Bk

Cw.
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For each r ∈ N, let

kr = min

{
k

∣∣∣∣∣ ∑
w∈Bk

2−s|w| ≤ 2−r

}
.

We know that each kr exists because of the existence of the finite prefix sets Ar that satisfy
the condition. Also, each kr can be computed by computing the finite sets Bk until the
condition is satisfied.

The rest of the proof is based on a construction used in characterizing Hausdorff dimen-
sion in terms of gales [2]. There the prefix sets Ar mentioned above are used to give an s-gale
that succeeds on X. Here we use the finite, computable prefix sets Bkr in the same manner
to give a computable s-gale that succeeds on X.

Define for each r ∈ N a function dr : {0, 1}∗ → [0,∞) by

dr(w) =


2(s−1)(|w|−|v|) if (∃v v w)v ∈ Bkr∑
u∈{0,1}∗
wu∈Bkr

2−s|u| otherwise.

Notice that dr(λ) ≤ 2−r and dr(w) = 1 for all w ∈ Bkr . For any string w, if w has a prefix
v ∈ Bkr (which must be unique), then

dr(w0) + dr(w1) = 2(s−1)(|w0|−|v|) + 2(s−1)(|w1|−|v|)

= 2s · 2(s−1)(|w|−|v|)

= 2sdr(w).

Otherwise,

dr(w0) + dr(w1) =
∑

u∈{0,1}∗
w0u∈Bkr

2−s|u| +
∑

u∈{0,1}∗
w1u∈Bkr

2−s|u|

=
∑

b∈{0,1}
u∈{0,1}∗
wbu∈Bkr

2−s|u|

= 2s
∑

u∈{0,1}∗
wu∈Bkr

2−s|u|

= 2sdr(w),

with the first equality holding even if wb has a prefix in Bkr for b = 0 or b = 1 because then
wb ∈ Bkr and

dr(wb) = 1 =
∑

u∈{0,1}∗
wbu∈Bkr

2−s|u|.
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Therefore each dr is an s-gale. Next define a function d on {0, 1}∗ by d =
∑∞

r=0 2rd2r. Then

d(λ) =
∞∑

r=0

2rd2r(λ) ≤
∞∑

r=0

2r2−2r = 2,

so by induction it follows that d(w) < ∞ for all strings w. Therefore, by linearity, d is an
s-gale.

Let S ∈ X. For all r ∈ N, we have S ∈ Xk2r , so S has some prefix S[0..nr − 1] ∈ Bk2r .
Then

d(S[0..nr − 1]) ≥ 2rd2r(S[0..nr − 1]) = 2r

for all r ∈ N. Therefore d succeeds on S, so X ⊆ S∞[d].
To see that d is computable, define d̂ : N× {0, 1}∗ → [0,∞) by

d̂(i, w) =

ds|w|e+i∑
r=0

2rd2r(w).

We can exactly compute d̂ by using the function h to uniformly compute the sets Bkr . Then∣∣∣d(w)− d̂(i, w)
∣∣∣ =

∞∑
r=ds|w|e+i+1

2rd2r(w)

≤
∞∑

r=ds|w|e+i+1

2r2s|w|d2r(λ)

≤
∞∑

r=ds|w|e+i+1

2r+s|w|2−2r

= 2s|w|
∞∑

r=ds|w|e+i+1

2−r

= 2s|w|2−ds|w|e−i

≤ 2−i,

so d̂ is a computable approximation of d. Therefore d is computable, so it witnesses that
dimcomp(X) ≤ s < t.

We now use the preceding lemma to give our correspondence principle for constructive
dimension.

Theorem 4.2. If X ⊆ C is a union of Π0
1 sets, then dimH(X) = cdim(X).

Proof. Let I be an arbitrary index set, Xα ∈ Π0
1 for each α ∈ I, and X =

⋃
α∈I Xα. By

definition, dimH(X) ≤ cdim(X). Using Lemma 3.2 (the pointwise stability of constructive
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dimension), Lemma 4.1, and the monotonicity of Hausdorff dimension, we have

cdim(X) = sup
α∈I

cdim(Xα)

= sup
α∈I

dimH(Xα)

≤ dimH(X).

Theorem 4.2 yields a pointwise characterization of the classical Hausdorff dimension of
unions of Π0

1 sets.

Corollary 4.3. If X ⊆ C is a union of Π0
1 sets, then

dimH(X) = sup
S∈X

dim(S).

Proof. This follows immediately from Theorem 4.2 and Lemma 3.2.

If we require that the union in Theorem 4.2 be effective, we arrive at the following
correspondence principle for computable dimension. This result also follows implicitly from
Staiger’s work on martingale exponents of increase [7].

Theorem 4.4. If X ∈ Σ0
2, then dimH(X) = dimcomp(X).

Proof. Let X ∈ Σ0
2. Since dimcomp(X) ≥ dimH(X), it is enough to prove that dimcomp(X) ≤

dimH(X). For this, let s > dimH(X) be such that 2s is rational. As in the proof of Lemma
4.1, it suffices to give a computable s-gale d that succeeds on X.

Since X ∈ Σ0
2, there is a computable function h : N× N → {0, 1}∗ ∪ {>} such that

X =
∞⋃

j=0

∞⋂
i=0

Cc
h(i,j).

For each j ∈ N, let

Xj =
∞⋂
i=0

Cc
h(i,j).

Since each Xj ⊆ X, dimH(Xj) ≤ dimH(X) < s. Each Xj ∈ Π0
1, so from the proof of

Lemma 4.1, for each j ∈ N, there is a computable s-gale dj with dj(λ) ≤ 2 that succeeds
on Xj. Let d =

∑∞
j=0 2−jdj. Then d is an s-gale, d is computable by using h to uniformly

compute the dj, and X ⊆ S∞[d].

We note that Theorems 4.2 and 4.4 cannot be extended to higher levels of the arithmetical
hierarchy.

Observation 4.5. There is a set X ∈ Π0
2 such that dimH(X) 6= cdim(X).

Proof. It is well known that there exists a Martin-Löf random sequence S ∈ ∆0
2. (A sequence

S is in ∆0
2 if S is decidable relative to an oracle for the halting problem.) Let X = {S}.

Since S ∈ ∆0
2, we have X ∈ Π0

2. Lutz [3] observed that all random sequences have dimension
1, so cdim(X) = 1. But any singleton has Hausdorff dimension 0, so dimH(X) = 0.
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5 Dimension and Entropy Rates

In this section we compare our correspondence principles to related work of Staiger [7] on
entropy rates. This comparison yields a new characterization of constructive dimension.

Definition. Let A ⊆ {0, 1}∗. The entropy rate of A is

HA = lim sup
n→∞

log |A=n|
n

.

(Here the logarithm is base 2 and we use the convention that log 0 = 0.) Staiger observed
that this entropy rate has a useful alternate characterization.

Lemma 5.1. (Staiger [6]) For any A ⊆ {0, 1}∗,

HA = inf

{
s

∣∣∣∣∣∑
w∈A

2−s|w| < ∞

}
.

Definition. Let A ⊆ {0, 1}∗. The δ-limit of A is

Aδ = {S ∈ C | (∃∞n)S[0..n− 1] ∈ A}.

That is, Aδ is the class of all sequences that have infinitely many prefixes in A.
For any X ⊆ C, define

H(X) = {HA | A ⊆ {0, 1}∗ and X ⊆ Aδ},

HDEC(X) = {HA | A ∈ DEC and X ⊆ Aδ},
and

HCE(X) = {HA | A ∈ CE and X ⊆ Aδ}.
We call the infima of H(X),HDEC(X), and HCE(X) the entropy rate of X, the computable
entropy rate of X, and the constructive entropy rate of X, respectively.

Classical Hausdorff dimension may be characterized in terms of entropy rates.

Theorem 5.2. For any X ⊆ C, dimH(X) = infH(X).

A proof of Theorem 5.2 can be found in [6]; it also follows from Theorem 32 of [5].
Staiger proved the following relationship between computable entropy rates and Hausdorff

dimension.

Theorem 5.3. (Staiger [7]) For any X ∈ Σ0
2, dimH(X) = infHDEC(X).

Putting Theorems 4.4, 5.2, and 5.3 together, for any X ∈ Σ0
2 we have

dimH(X) = cdim(X) = dimcomp(X)

= = =

infH(X) = infHCE(X) = infHDEC(X).

We will extend this to show that cdim(X) = infHCE(X) and dimcomp(X) = infHDEC(X)
hold for arbitrary X ⊆ C. Note that the latter together with Theorem 5.3 provides a second
proof of Theorem 4.4.

First we show that the dimensions are lower bounds of the entropy rates.
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Lemma 5.4. For any X ⊆ C,

cdim(X) ≤ infHCE(X)

and
dimcomp(X) ≤ infHDEC(X).

Proof. We begin with a general construction that will be used to prove both inequalities.
Let A ⊆ {0, 1}∗ and let t > s > HA. For each n ∈ N, define a function dn : {0, 1}∗ → [0,∞)
by

dn(w) =

{
2−t(n−|w|) ·

∣∣{v ∈ A=n|w v v}
∣∣ if |w| ≤ n

2(t−1)(|w|−n)dn(w[0..n− 1]) if |w| > n.

Then each dn is a t-gale. Define a function d on {0, 1}∗ by d =
∑∞

n=0 2(t−s)ndn. Then

d(λ) =
∞∑

n=0

2(t−s)n2−tn|A=n| =
∑
w∈A

2−s|w| < ∞

because s > HA. By induction, d(w) < ∞ for all strings w, so d : {0, 1}∗ → [0,∞). By
linearity, d is also a t-gale. For any w ∈ A, we have

d(w) ≥ 2(t−s)|w|d|w|(w) = 2(t−s)|w|,

so it follows that Aδ ⊆ S∞[d].
Let r > infHCE(X) be arbitrary. Then there is a computably enumerable A with X ⊆ Aδ

and HA < r. We can also choose 2t and 2s rational so that HA < s < t < r. Because A is
computably enumerable, the t-gale d defined above is constructive. Since X ⊆ Aδ ⊆ S∞[d],
we have cdim(X) ≤ t < r. As this holds for all r > infHCE(X), we have cdim(X) ≤
infHCE(X).

If infHDEC(X) = 1, then the inequality dimcomp(X) ≤ infHDEC(X) is trivial, so assume
infHDEC(X) < 1. Let 1 > r > infHDEC(X) be arbitrary. Take a decidable A and 2s,
2t rational such that X ⊆ Aδ and HA < s < t < r. We will show that the t-gale d
defined above is computable. For this, choose a natural number k > 1

t−s
. Define a function

d̂ : {0, 1}∗ × N → [0,∞) ∩Q by

d̂(w, r) =

kr+|w|∑
n=0

2(s−t)ndn(w).

Then d̂ is exactly computable. For all n, dn(w) ≤ 1 for all w with |w| ≥ n, so for any
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precision r,

|d(w)− d̂(w, r)| =
∞∑

n=kr+|w|+1

2(s−t)ndn(w)

≤
∞∑

n=kr+|w|+1

2(s−t)n

≤
∞∑

n=kr+1

2(s−t)n

= 2(s−t)(kr)

< 2−r.

Therefore d̂ demonstrates that d is computable. Then dimcomp(X) ≤ t < r because
X ⊆ Aδ ⊆ S∞[d]. It follows that dimcomp(X) ≤ infHDEC(X) because r > infHDEC(X)
is arbitrary.

Next we give lower bounds for constructive dimension and computable dimension by
entropy rates.

Lemma 5.5. For all X ⊆ C,

infHCE(X) ≤ cdim(X)

and
infHDEC(X) ≤ dimcomp(X).

Proof. Suppose that d is an s-supergale with X ⊆ S∞[d]. Assume without loss of generality
that d(λ) < 1 and let A = {w | d(w) > 1}. Then for all n ∈ N,∑

w∈{0,1}n

d(w) ≤ 2sn

and |A=n| ≤ 2sn. Also, X ⊆ S∞[d] ⊆ Aδ. For any t > s,

∑
w∈A

2−t|w| =
∞∑

n=0

2−tn|A=n| ≤
∞∑

n=0

2(s−t)n < ∞,

so HA ≤ t. Therefore HA ≤ s.
Let s > cdim(X) such that there is a constructive s-supergale d succeeding on X. Then

the set A defined above is computably enumerable, so HA ∈ HCE(X). We showed that
HA ≤ s, so infHCE(X) ≤ s. Therefore infHCE(X) ≤ cdim(X).

If s > dimcomp(X) and 2s is rational, then by Corollary 3.4 there is an exactly computable
s-gale d succeeding on X. Then the set A above is decidable, and analogously we obtain
infHDEC(X) ≤ dimcomp(X).

11



Combining Lemmas 5.4 and 5.5 yields new characterizations of constructive and com-
putable dimension.

Theorem 5.6. For all X ⊆ C,

cdim(X) = infHCE(X)

and
dimcomp(X) = infHDEC(X).

We remark that some resource-bounded analogues of these results hold. For example, if
we define the similar concepts for polynomial-time and polynomial-space computability [2],
the proofs of Lemmas 5.4 and 5.5 can be extended to show that

dimp(X) ≥ infHP(X)

and
dimpspace(X) = infHPSPACE(X)

hold for all X ⊆ C.
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