
Exact Learning Algorithms, Betting Games, and

Circuit Lower Bounds

Ryan C. Harkins and John M. Hitchcock∗

Abstract

This paper extends and improves work of Fortnow and Klivans [6], who showed that if
a circuit class C has an efficient learning algorithm in Angluin’s model of exact learning via
equivalence and membership queries [2], then we have the lower bound EXPNP 6⊆ C. We use
entirely different techniques involving betting games [5] to remove the NP oracle and improve
the lower bound to EXP 6⊆ C. This shows that it is even more difficult to design a learning
algorithm for C than the results of Fortnow and Klivans indicated. We also investigate the
connection between betting games and natural proofs, and as a corollary the existence of strong
pseudorandom generators.

1 Introduction

We continue the line of research basing hardness of learning results on computational complexity
and cryptography (see for example [20, 9, 1, 10]). Fortnow and Klivans [6] consider Angluin’s model
of exact learning from equivalence and membership queries [2]. In an equivalence query, the learner
presents a hypothesis and asks if it is equivalent to the unknown target concept. If the hypothesis
is equivalent, the learner has succeeded; otherwise, the learner is given an example on which the
hypothesis is incorrect. In a membership query, the learner chooses an example and asks the value
of the target concept on that example. To succeed, the learner must exactly identify the target
concept.

Fortnow and Klivans show that learning algorithms for a circuit class give lower bounds for that
type of circuit in the class EXPNP. Throughout this introduction, C denotes any nonuniform class
of polynomial-size circuits. In the following theorem (as well as our results), it is most interesting to
consider for C a class of circuits where no learning algorithm is yet known, nor is there is a known
obstacle such as cryptographic hardness to learning. An example is polynomial-size depth-two
threshold circuits, which corresponds to the complexity class C = TC0[2].

Theorem 1.1. (Fortnow and Klivans [6]) If there is an efficient exact learning algorithm for C
using equivalence and membership queries, then EXPNP 6⊆ C.

While “efficient” typically means a polynomial-time algorithm, the result of Fortnow and Klivans
as well as our results allow for exponential time and subexponentially many queries (i.e. (2O(n))

time and 2n
o(1)

queries).

∗Department of Computer Science, University of Wyoming. This research was supported in part by NSF grants
0652601 and 0917417 and by an NWO travel grant. Part of this research was done while Hitchcock was on sabbatical
at CWI.

1

For the case of exact learning algorithms that only make equivalence queries, a stronger lower
bound follows immediately from results [11, 7] connecting resource-bounded measure and dimension
with Littlestone’s model of online mistake-bound learning [12]. Combining these results with the
fact that learnability in the exact learning model with equivalence queries implies learnability in
the online mistake-bound learning model, we have the following, which was also noted in [6].

Theorem 1.2. (Hitchcock [7, 6]) If there is an efficient exact learning algorithm for C using
equivalence queries, then EXP 6⊆ C.

Given these two theorems, it is natural to ask whether we can prove a lower bound in EXP
assuming the learning algorithm makes both equivalence and membership queries. Where does the
NP oracle come from in Theorem 1.1? The proof of Theorem 1.1 separates into two parts, giving
an indirect diagonalization. Assume that EXPNP ⊆ C.

(i) Because C ⊆ P/poly, EXPNP collapses and reduces to the Permanent [4, 8, 19].

(ii) Use the exact learning algorithm to learn the C circuits for the Permanent. An NP oracle is
used to answer the equivalence queries. This yields a PNP algorithm for the Permanent.

Combining (i) and (ii) gives EXPNP ⊆ PNP, a contradiction. Therefore we see that the NP oracle
in Theorem 1.1 is for the equivalence queries. In contrast, no NP oracle is required in Theorem
1.2 where equivalence queries are allowed. The proof of Theorem 1.2 relies on martingales and
a more direct measure-theoretic diagonalization, which is very different than the double-collapse
argument and indirect diagonalization used for Theorem 1.1. This suggests hope that a more direct
diagonalization approach may yield the desired improvement.

To improve Theorems 1.1 and 1.2, we must simulate the learning algorithm’s queries while per-
forming our diagonalization. Following [7], consider implementing this in the form of a martingale.
The equivalence queries are no problem. We simply use the transformation in [12] that converts
an equivalence query algorithm to a mistake-bound learning algorithm and apply the technique
from [7]. We can therefore focus our effort on the membership queries. Unfortunately, we have
been unable to discover a method for simulating membership queries in a martingale, due to the
stringent requirement that a martingale must bet on all strings in lexicographic order. However,
there is an extension of martingales called betting games that do help.

1.1 Betting Games

Buhrman et al. [5] introduced betting games to define a generalization of resource-bounded
measure with applications to autoreducibility and the BPP vs. EXP problem. Betting games
and martingales are similar; the difference is how the betting strategy is allowed to operate. A
martingale is required to consider the strings at each length in lexicographic order. Betting games
lift this requirement by allowing the betting strategy to pick the next string that it will bet on. We
can easily simulate a membership query in a betting game – the strategy simply asks to make a
prediction on the queried string and then it gets to see the answer for that string. A betting game
succeeds on a class C if it able to attain unbounded amounts of capital betting on languages in C.

Theorem 1.3. If there is an exact learning algorithm for C using equivalence and membership
queries, then there is a betting game which succeeds on C.

2

Buhrman et al. showed that it is also possible to diagonalize within EXP against betting games
[5], just as is the case for martingales [13]. Formally, no betting game can succeed on all of EXP.
Hence the desired improvement, our main result, follows from Theorem 1.3:

Theorem 1.4. If there is an exact learning algorithm for C using equivalence and membership
queries, then EXP 6⊆ C.

These results show that designing an exact learning algorithm for many circuit classes C will be
difficult, as for most classes of interest it is an open problem whether EXP ⊆ C.

1.2 Natural Proofs

Razborov and Rudich [17] introduced natural proofs in order to explain the difficulty of proving
circuit lower bounds. Regan, Sivakumar, and Cai [18] connected natural proofs to martingales,
showing that if there is a martingale that succeeds on P/poly, then there is a natural proof against
P/poly. It is a basic question to ask whether this extends to betting games as well. We show that
this extends to “honest” betting games:

Theorem 1.5. If there is an honest betting game which succeeds on P/poly, then there is a natural
proof against P/poly.

The betting game in the proof of Theorem 1.3 is honest. Combining Theorem 1.5 with Theorem
1.3, we have the following corollary:

Corollary 1.6. If there is an efficient exact learning algorithm for P/poly using equivalence and
membership queries, then there is a natural proof against P/poly.

Razborov and Rudich showed that a natural proof against P/poly implies that cryptographically
secure pseudorandom generators do not exist. Therefore, we have the following:

Corollary 1.7. If strong pseudorandom generators exist, then there is no honest betting game that
succeeds on P/poly.

It is also interesting to compare this sequence of implications to known hardness of learning
results based on cryptographic assumptions (e.g. [9]). We find the connection between exact
learning of Boolean circuits and the existence of strong pseudorandom generators via betting games
and natural proofs to be elegant.

1.3 Organization

This paper is organized as follows. Precise technical definitions for betting games, exact learn-
ing, and natural proofs are given in section 2. We construct betting games from exact learning
algorithms in section 3. The connections with natural proofs and pseudorandom generators are
presented in section 4.

2 Preliminaries

We use standard notation. The binary alphabet is Σ = {0, 1}, the set of all binary strings is
Σ∗, the set of all binary strings of length n is Σn, and the set of all infinite binary sequences is Σ∞.

3

The empty string is denoted by λ. We use the standard enumeration of strings, λ, 0, 1, 00, 01, . . .,
and a total ordering of strings corresponding to this enumeration. A language A can alternatively
be seen as a subset of Σ∗, or as an element of Σ∞ via identification with its characteristic sequence.

2.1 Betting Games

Betting games, which are also called nonmonotonic martingales, originated in the field of al-
gorithmic information theory. In that setting they yield the notion of Kolmogorov-Loveland ran-
domness (generalizing Kolmogorov-Loveland stochasticity) [16, 15]. The concept was introduced
to computational complexity by Buhrman et al. [5]. Our notation for betting games is taken pre-
dominantly from Merkle et al. [15]. First, for comparison, we recall the definition of a martingale:

Definition. A martingale is a function d : Σ∗ → [0,∞) such that for all w ∈ Σ∗, we have the
following averaging condition:

d(w) =
d(w0) + d(w1)

2
.

Intuitively, a martingale is betting in order on the characteristic sequence of an unknown language.
The martingale starts with finite initial capital d(λ). The quantity d(w) represents the current
capital the martingale has after betting on the first |w| bits of a sequence that begins with w. The
quantities π(w, 0) = d(w0)/2d(w) and π(w, 1) = d(w1)/2d(w) represent the fraction of its current
capital that the martingale is waging on 0 and 1, respectively, being the next bit of the sequence.
This next bit is revealed and the martingale has d(w0) = 2π(w, 0)d(w) in the case of a 0 and
d(w1) = 2π(w, 1)d(w) in the case of a 1.

Betting games are similar to martingales but have an additional capability of selecting which
position in a sequence, or equivalently, which string in a language, to bet upon next. A betting
game is permitted to select strings in a nonmonotone order, that is, it may bet on longer strings,
then shorter strings, then longer strings again (with the important restriction that it may not bet
on the same string twice). Because of this added complexity, it is simpler to break the description
of a betting game into pieces.

Definition. A betting game is a system that bets nonmonotonically on an infinite sequence (or
equivalently a language) and formally is a triple G = (s, π, V) consisting of a scan rule s, a stake
function π, and a capital function V .

1. A finite assignment is a sequence w ∈ (Σ∗ × Σ)∗. In essence, it is a list of strings examined
thus far, each string coupled with an assignment, saying whether or not it is included in the
language being bet upon. The set of all finite assignments is denoted FA. We use the ·
symbol for concatenation of finite assignments.

2. The scan rule is a (partial) computable function s : FA → Σ∗ from finite assignments to
strings that looks at a finite assignment and determines the next string (or bit of a sequence)
to bet on. The scan rule is limited in that it cannot select a string that already appears in
the current finite assignment.

3. The stake function is a partial function π : FA × Σ → [0, 1]. Its function is to examine the
current finite assignment and determine what fraction of the capital to bet on either side. It
carries a condition that π(w, 0) + π(w, 1) = 1 for all w ∈ FA.

4

4. The capital function is a partial function V : FA→ [0,∞) from finite assignments to nonneg-
ative reals, and utilizes the stake function π. Its initial capital V (λ) is finite. For w ∈ FA,
when V (w) is defined, the scan rule s(w) determines the next string to bet on, and π(w, b) is
the stake amount, the capital is updated according to the rule

V (w · (s(w), b)) = 2π(w, b)V (w). (2.1)

A betting game’s capital function also satisfies an averaging condition, in analogy with the definition
of a martingale:

V (w) =
V (w · (s(w), 0)) + V (w · (s(w), 1))

2
.

Note that a betting game is a martingale when the scan rule always selects the next string in the
lexicographic order.

The play of the betting game on a language A is defined by recurrence wA
0 = λ and wA

n+1 =
wA
n · (s(wn), A(s(wn))) for n ≥ 0, which may be a finite or infinite sequence in general (depending

on the definition of the scan rule). For the definition of success we are concerned with the sequence
of capital values V A

n = V (wA
n).

Definition. If a betting game G earns unbounded capital on a language A (in the sense that for
every constant c there is a point at which the capital V A

n exceeds c when betting on A), we say that
G succeeds on A. The success set of a betting game G, denoted S∞[G], is the set of all languages
on which G succeeds. A betting game G succeeds on a class X of languages if X ⊆ S∞[G].

The ability of the betting game to examine a sequence nonmonotonically makes determining
its running time complicated, since each language can induce a unique computation of the betting
game. In other words, the betting game may choose to examine strings in different orders depending
upon the language it is wagering against. Buhrman et al. looked at a betting game as an infinite
process on a language, rather than a finite process on a string. They used the following definition:

Definition. A betting game G runs in time t(n) if for all languages A, every query of length n
made by G occurs in the first t(n) steps of the computation.

Specifically, once a t(n)-time-bounded betting game uses t(n) computational steps, its scan rule
cannot go back and select any string of length n. We remark that in the results of this paper all
betting games have the special form that they bet on all strings of each length before moving on to
the next length, so the technical issue of measuring the run time is not important for this paper.
In any case, the crucial result is that exponential-time betting games cannot succeed on the classes
E = DTIME(2O(n)) and EXP = DTIME(2n

O(1)
).

Theorem 2.1. (Buhrman et al. [5])

1. No 2O(n)-time betting game succeeds on E.

2. No 2n
O(1)

-time betting game succeeds on EXP.

5

2.2 Exact Learning

In general, a learning algorithm seeks to identify an unknown concept from some known class
of concepts. We now review the basic notation and definitions for the exact learning model.

A concept is a Boolean function cn : Σn → Σ. For any string x ∈ Σn, if cn(x) = 1, then x
is positively classified as belonging to the concept, while if cn(x) = 0, then x is classified as not
belonging to the concept. A string x paired with the classification cn(x) is called an example. A
concept cn is often identified with the set of positive examples {x | cn(x) = 1} ⊆ Σn. A concept
class Cn is a set of concepts over Σn. A concept class family is a sequence C = {Cn}n≥0 of concept
classes.

A learning algorithm tries to identify a target concept drawn from Cn, and often does this by
forming a hypothesis, which is typically some concept in Cn that is consistent with (i.e. classifies
correctly) all the examples seen thus far. In the exact learning paradigm, a learner A may make
various sorts of queries to a teacher, and then, depending on the answers, formulate a hypothesis.
This process repeats until A has successfully discovered the target concept. We will focus on two
types of queries: equivalence queries and membership queries.

Definition. An equivalence query is a request to the teacher to know if the current hypothesis
matches the target concept. If the answer is yes, the teacher responds accordingly. If the answer
is no, then the teacher provides the learner with a counterexample (an example that is incorrectly
classified by the current hypothesis).

Definition. A membership query is a request to the teacher to know the classification of a specific
string x. The teacher responds with cn(x), where cn is the target concept.

2.3 Natural Proofs and Pseudorandom Generators

The natural proofs of Razborov and Rudich are combinatorial properties which can be shown
to be “useful,” i.e. diagonalize against, certain specific classes. Formally, let Fn be the set of all
n-variable Boolean functions. A combinatorial property is a sequence Π = {Πn}n≥0 where each
Πn is a subset of Fn. For classes C and D, Π is C-natural against D if it satisfies the following
conditions:

• Constructivity: the decision problem fn ∈ Πn belongs C.

• Largeness: |Πn| ≥ 2−O(n) · |Fn| for all n.

• Usefulness: for any A ∈ D, for infinitely many n, A=n /∈ Πn.

For more information on natural proofs, we refer the reader to [17, 18, 14]. We now recall the
connection between natural proofs and pseudorandom generators. A language A belongs to the
class P/poly if there is a polynomial q(n) such that for all n, A=n has a Boolean circuit of size
at most q(n). Similarly, A belongs to the class QP/qpoly if the circuits have size bounded by

2(logn)O(1)
.

Theorem 2.2. (Razborov and Rudich [17]) If there exists a combinatorial property that is QP/qpoly-
natural against P/poly, then pseudorandom generators of exponential hardness against nonuniform
adversaries do not exist.

We refer to [17] for precise definitions about pseudorandom generators.

6

3 Exact Learning and Betting Games

Theorem 3.1. Let C = {Cn | n ∈ N} be a concept class family, and let

X = {A | (∃∞n)A=n ∈ Cn } .

1. If there is an exact learning algorithm for C that learns each Cn in time 2cn and makes no
more than 2n−2 equivalence and membership queries, then there exists a betting game G that
runs in time O(2(c+2)n), such that X ⊆ S∞[G].

2. If there is an exact learning algorithm for C that learns each Cn in time 2n
c

and makes no
more than 2n−2 equivalence and membership queries, then there exists a betting game G that
runs in time O(2n

c+2
), such that X ⊆ S∞[G].

Proof. We prove the first item – the proof of the second item is analogous.
Let A be the learning algorithm that learns concepts in C. In other words, for each n ∈ N, and

for any target concept cn ∈ Cn, A can learn cn using no more than 2cn time, and making at most
2n−2 equivalence and membership queries.

Let G(s, π, V) be as follows. G effectively runs in stages, examining strings by length, betting
on all strings of length n before betting on any string of size n+ 1. This is proper, since A learns
concepts taken from Cn, whose concepts only classify strings of length n. Therefore, we will apply
two indices to the stages of calculation, the first to indicate string length, and the second to indicate
how many stages have been executed at the string length.

G starts with capital V0,0 = 2, but it treats its capital as divided up into an infinite number
of amounts, 2−n for each n. Thus at each stage (n, 0), the capital effectively is Vn,0 = 2−n (with
all previous winnings “banked” and untouchable). To reflect this, we will divide π in a class of
functions {πn}n≥0, so that πn only touches the capital Vn,i for 0 ≤ i ≤ 2n.

At each stage (n, i), the scan rule s runs the learning algorithm A, which updates its current
hypothesis hn,i. In the process of formulating hn,i+1, one of two things will happen:

• A will make a membership query to some string x ∈ Σn

• A will make an equivalence query

If A makes a membership query to x, s then checks to see if x occurs in w, the current finite
assignment. If so, then s answers the query according to the label. If not, then we set s(w) = x
and πn(w, 0) = πn(w, 1) = 1/2. In other words, the betting game selects x and makes no bet on
the outcome. Once the label for x is revealed, the finite assignment is updated (w = w · (x, b),
where b is the label for x). The scan rule then provides the correct classification of x to A as the
answer to the membership query. The betting game’s capital is unchanged and the computation
then proceeds onto stage (n, i+ 1).

If A makes an equivalence query, then s proceeds in an online fashion. First, the scan rule
selects s(w) = x, where x is the lexicographically least string in Σn that does not appear in w.
The stake function computes the prediction b = hn,i(x) using the current hypothesis hn,i and sets
πn(w, b) = 3/4 and πn(w, 1− b) = 1/4. The true classification of x is revealed and Vn,i is updated
according to (2.1). If cn(x) 6= hn,i(x), then (x, 1 − b) is presented to A as a counterexample, and
computation proceeds to stage (n, i + 1). If cn(x) = hn,i(x), then computation proceeds to stage
(n, i + 1), and A is treated as still making an equivalence query. This process repeats until either
a counterexample is discovered or the strings of size n are exhausted.

7

Without loss of generality, we will assume that A always finishes with an equivalence query to
ensure correctness of its hypothesis. Thus if A has formed the correct hypothesis, G will continue
searching for a counterexample until all strings of length n are exhausted, and G moves onto
(n+ 1, 0), where it utilizes A to learn a new concept.

To examine the running time of G, we note first that A updates its hypothesis in 2cn time. The
remaining time is allotted to the scan rule, which takes only time linear in the size of the current
finite assignment (which has size at most 2n+1) to determine a string to select, and to updating
the capital function, which can be done in time O(2n). Hence the aggregate time for G to make all
queries of size n is O(2n · 2cn · 2n). Therefore G is an O(2(c+2)n)-time betting game.

To see that G succeeds on X, it suffices to show that for infinitely many n, Vn,2n ≥ 1. We know
that for any A ∈ X, there exist infinitely many n such that A=n ∈ Cn, and hence for infinitely many
n, A will either correctly learn A=n, or at least will classify correctly a sufficiently large number
of strings in A=n. Thus it suffices to show that for any sufficiently large n, A learns sufficiently
quickly enough to bring in large earnings.

The worst case occurs if all 2n−2 queries are equivalence queries, to which a counterexample
is ultimately found for each query. (If we allow for membership queries, the bet for each query
is 0, and so the capital does not change regardless of the true label. The counterexample to the
equivalence query, though, will decrease capital.) Since, by definition, each string of length n will
be queried, we have:

Vn,2n = Vn,0 ·
(

1

2

)2n−2

·
(

3

2

)3·2n−2

= 2−n
(

27

16

)2n−2

≥ 1

Hence for infinitely many n, G will “bank” one dollar, and therefore its earnings will increase
unbounded. Therefore, X ⊆ S∞[G].

Our improvement to the result of Fortnow and Klivans now follows as an immediate corollary to
Theorems 2.1 and 3.1:

Corollary 3.2. Let C = {Cn | n ∈ N} be a concept class family, and let

X = {A | (∃∞n)A=n ∈ Cn } .

1. If there is an exact learning algorithm for C that learns each Cn in time 2O(n) and makes no
more than 2n−2 equivalence and membership queries, then E 6⊆ X.

2. If there is an exact learning algorithm for C that learns each Cn in time 2n
O(1)

and makes no
more than 2n−2 equivalence and membership queries, then EXP 6⊆ X.

Corollary 3.3. Let C be any subclass of P/poly that is exactly learnable in time 2O(n), making at
most 2n−2 equivalence and membership queries. Then E * C. In particular, if P/poly is learnable
under these assumptions, then EXP * P/poly.

4 Betting Games and Natural Proofs

A basic question to ask regarding betting games is if they, like martingales as shown in Regan,
Sivakumar, and Cai [18], give rise to natural proofs, as defined by Razborov and Rudich [17].
While a general answer proves elusive, we can restrict our focus to “honest” betting games, defined
analagously to the “honest” martingales in [18]:

8

Definition. An honest betting game G = (s, π, V) is one in which, for each n, the scan rule s
selects every string of length n before selecting any strings of greater length, and the computation
to select a string of length n depends only on the portion of the finite assignment dealing with
strings of length n.

In other words, an honest betting game is one that bets entirely within a string length before
betting on the next string length, and the only history that matters is the history within the current
string length. Our betting game in Theorem 3.1 is an honest betting game.

We will now provide definitions and lemmas much akin to those of [18] and show that we can
construct a P-natural property that is useful against P/poly.

Notation. For an honest betting game G = (s, π, V), let Vn(w) denote the fractional capital
accrued while betting on strings of length n, for a language whose characteristic sequence at length
n is determined by the string w ∈ Σ2n , and let Vcur(n) be the current capital before betting on
strings of length n.

In other words, for any language A, we have Vcur(0) = V (λ) and

Vcur(n+ 1) = Vn(χA=n) · Vcur(n).

Also, note that if lim sup
n→∞

∏n
i=0 Vi(χA=n) =∞, then A ∈ S∞[G].

Lemma 4.1. Let G = (s, π, V) be an honest betting game and n ∈ N. Then∥∥∥∥{v ∈ Σ2n
∣∣∣∣ Vn(v) ≤

(
1 +

1

n2

)}∥∥∥∥ ≥ 22n
(

1

n2 + 1

)
.

Proof. This follows from the averaging condition of an honest betting game. Like a martingale, an
honest betting game must average Vcur(n) across all possible v ∈ Σ2n . That is,∑

v∈Σ2n

Vn(v)Vcur(n) = Vcur(n),

which implies ∑
v∈Σ2n

Vn(v) = 1.

An application of Markov’s inequality yields the bound in the lemma.

Lemma 4.2. If an honest 2cn-time-bounded betting game G = (s, π, V) succeeds on P/poly, then
for every polynomial q there exist infinitely many n such that for all circuits Cn of size at most
q(n),

Vn(v) ≥
(

1 +
1

n2

)
where v ∈ Σ2n is the characteristic sequence that agrees with the circuit Cn.

Proof. Suppose not. There exists some N such that for all n > N , there exists some circuit Cn of
size at most q(n) such that Vn(v) < (1 + 1/n2).

We will construct a language L as follows: arbitrarily fix L≤N . Then for each n > N , let Cn be
a circuit fitting the criteria above. Then fix L=n to be v, where v is the characteristic sequence that

9

agrees with Cn. Then it follows that L ∈ P/poly (we have a family of circuits {Ci}i≥0 where each
Ci has size at most q(i)), and that L /∈ S∞[G]. This last fact is because

∏∞
n=1(1 + 1/n2) converges,

and

lim
n→∞

Vcur(n) = lim
n→∞

V (λ)
n∏

i=1

Vn(v) ≤ V (λ) lim
n→∞

n∏
i=1

(
1 +

1

n2

)
<∞.

This provides the necessary contradiction.

Theorem 4.3. If there is an honest, 2cn-time-bounded betting game G = (s, π, V) that succeeds on
P/poly, then there is a P-natural property against P/poly.

Proof. For all n, we define

Πn =

{
v ∈ Σ2n

∣∣∣∣ Vn(v) ≤
(

1 +
1

n2

)}
.

We note that we do not worry here about the potential of G having depleted all of its capital prior
to betting on strings of length n because we only consider the fractional amount accrued when
calculating Vn. It follows that computing v ∈ Πn is in P: it requires at most 2cn time to determine
Vn(v) by simulating the computation of G, but |v| = 2n, which means the time required is |v|c.

It follows from Lemma 4.1 that Πn is large: |Πn| ≥ 1/(n2 +1) · |Fn|, which is significantly bigger
than 2−O(n) · |Fn|. Finally, usefulness follows from Lemma 4.2: for any L ∈ P/poly, there exist
infinitely many n such that L=n /∈ Πn. If this were not so, then for all but finitely many n, L=n ∈ Πn,
but the capital accrued on all these segments would be bounded, and thus L /∈ S∞[G].

Combining Theorems 2.2 and 4.3, we have the following:

Corollary 4.4. If there is an honest, 2cn-time-bounded betting game that succeeds on P/poly, then
pseudorandom generators of exponential hardness against nonuniform adversaries do not exist.

We remark that in this section, we could also use 2n
O(1)

-time betting games and learning algo-
rithms, obtaining the same result through a QP-natural property.

We conclude with the following diagram summarizing the implications for P/poly:

there is an exact learning
algorithm for Boolean circuits

⇓
there is an honest betting game

that succeeds on P/poly
⇒ EXP 6⊆ P/poly

⇓
there is a natural proof

against P/poly

⇓
strong pseudorandom

generators do not exist

10

References

[1] H. Aizenstein, T. Hegeds, L. Hellerstein, and L. Pitt. Complexity theoretic hardness results
for query learning. Computational Complexity, 7:19–53, 1998.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

[3] N. H. Bshouty, R. Cleve, S. Kannan, R. Gavaldà, and C. Tamon. Oracles and queries that are
sufficient for exact learning. Journal of Computer and System Sciences, 52(3):421–433, 1996.

[4] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the exponen-
tial hierarchy. In Proceedings of the 12th Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 116–127. Springer, 1992.

[5] H. Buhrman, D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss. A generalization
of resource-bounded measure, with application to the BPP vs. EXP problem. SIAM Journal
on Computing, 30(2):576–601, 2001.

[6] L. Fortnow and A. R. Klivans. Efficient learning algorithms yield circuit lower bounds. Journal
of Computer and System Sciences, 75(1):27–36, 2009.

[7] J. M. Hitchcock. Online learning and resource-bounded dimension: Winnow yields new lower
bounds for hard sets. SIAM Journal on Computing, 36(6):1696–1708, 2007.

[8] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pages
302–309, 1980.

[9] M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formulae and finite
automata. Journal of the ACM, 41(1):67–95, 1994.

[10] M. Kharitonov. Cryptographic lower bounds for learnability of Boolean functions on the
uniform distribution. Journal of Computer and System Sciences, 50(3):600–610, 1995.

[11] W. Lindner, R. Schuler, and O. Watanabe. Resource-bounded measure and learnability. Theory
of Computing Systems, 33(2):151–170, 2000.

[12] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1988.

[13] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992.

[14] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L.
Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.

[15] W. Merkle, J. S. Miller, A. Nies, J. Reimann, and F. Stephan. Kolmogorov-Loveland random-
ness and stochasticity. Annals of Pure and Applied Logic, 138(1–3):183–210, 2006.

[16] A. A. Muchnik, A. L. Semenov, and V. A. Uspensky. Mathematical metaphysics of random-
ness,. Theoretical Computer Science, 207(2):263 – 317, 1998.

11

[17] A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences,
55(1):24–35, 1997.

[18] K. W. Regan, D. Sivakumar, and J. Cai. Pseudorandom generators, measure theory, and
natural proofs. In Proceedings of the 36th Symposium on Foundations of Computer Science,
pages 26–35. IEEE Computer Society, 1995.

[19] S. Toda. On the computational power of PP and ⊕P. SIAM Journal on Computing, 20(5):865–
877, 1991.

[20] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

12

