Limitations of Efficient Reducibility to the Kolmogorov Random Strings

John M. HITCHCOCK ${ }^{1}$
Department of Computer Science, University of Wyoming

Abstract

We show the following results for polynomial-time reducibility to R_{C}, the set of Kolmogorov random strings. 1. If $\mathrm{P} \neq \mathrm{NP}$, then SAT does not dtt-reduce to R_{C}. 2. If PH does not collapse, then SAT does not n^{α}-tt-reduce to R_{C} for any $\alpha<1$. 3. If PH does not collapse, then SAT does not n^{α}-T-reduce to R_{C} for any $\alpha<\frac{1}{2}$. 4. There is a problem in E that does not dtt-reduce to R_{C}. 5. There is a problem in E that does not n^{α}-tt-reduce to R_{C}, for any $\alpha<1$. 6. There is a problem in E that does not n^{α}-T-reduce to R_{C}, for any $\alpha<\frac{1}{2}$. These results hold for both the plain and prefix-free variants of Kolmogorov complexity and are also independent of the choice of the universal machine.

Keywords.

1. Introduction

Because the Kolmogorov complexity function $C(x)$ is noncomputable, the set

$$
R_{C}=\{x|C(x)>|x|\}
$$

of Kolmogorov random strings is undecidable. In fact, R_{C} has no infinite computably enumerable subset. From this and the fact that the complement $\overline{R_{C}}$ is computably enumerable, Arslanov's completeness criterion implies that R_{C} is hard for the c.e. sets under Turing reductions. Kummer [7] showed a stronger result: $\bar{H} \leq_{\mathrm{dtt}} R_{C}$, where \bar{H} is the complement of the halting problem and \leq_{dtt} denotes a disjunctive truth-table reduction. Neither of these reductions from the halting problem to R_{C} is efficient. This raises the question [1]: what can be efficiently reduced to R_{C} ?

[^0]Recall that the Kolmogorov complexity [9] of a binary string x is the length of a shortest program that prints x on a universal Turing machine U :

$$
C_{U}(x)=\min \{|p| \mid U(p) \text { prints } x\} .
$$

For the most part, the theory of Kolmogorov complexity does not depend on the choice of the universal machine U : for any two universal machines U and V, C_{U} and C_{V} are within an additive constant of each other. As usual, we fix a universal machine U and omit it from the notation, writing $C(x)$ instead of $C_{U}(x)$. There are, however, situations when the choice of universal machine matters and then we will be explicit with the subscript. We use the notation $\mathrm{P}_{\tau}(A)$ to denote the class of problems that reduce to A by \leq_{τ}^{p}-reductions.

Kummer's result $[7]$ implies there is a computable time bound $t(n)$ such that for every decidable $A, A \leq_{\mathrm{dtt}}^{t(n)} R_{C}$. Kummer's proof is nonconstructive and does not yield any information about the function $t(n)$. In fact, Allender et al. [1] show that some uncertainty about the time bound $t(n)$ is inevitable. They show that the $t(n)$ in Kummer's theorem may be arbitrarily large, depending on the choice of the universal machine U. Formally, for every computable time bound $t(n)$, there exists a universal machine U and a decidable set A such that A does not $\leq_{\mathrm{dtt}}^{t(n)}$-reduce to $R_{C_{U}}$. On the other hand, independent of U, there exist decidable sets with arbitrarily high time complexity that reduce to $R_{C_{U}}$ via a polynomialtime dtt-reduction: for every computable time bound $t(n)$ and every universal machine U, there is a set $A \in \operatorname{DEC}-\operatorname{DTIME}(t(n))$ such that $A \leq_{\mathrm{dtt}}^{\mathrm{p}} R_{C_{U}}$. While this result shows $\mathrm{P}_{\mathrm{dtt}}\left(R_{C}\right)$ contains sets of high time complexity, the set A in this theorem is constructed via padding, which makes A very sparse. Thus while A has high time complexity, A is very simple in other terms. We show that this simplicity is inherent: any such A is highly predictable in the sense of polynomial-time dimension. From this it follows that R_{C} is not hard for E under $\leq_{\mathrm{dtt}}^{\mathrm{p}}$-reductions. This holds for every universal machine, i.e. $\mathrm{E} \nsubseteq \mathrm{P}_{\mathrm{dtt}}\left(R_{C_{U}}\right)$ for every U. We also show that R_{C} is not polynomial-time dtt-hard for NP unless $P=N P$. Both of these results follow from showing that if a decidable set $\leq_{d_{t t t}}^{\mathrm{p}}{ }^{-}$ reduces to R_{C}, then the set $\leq_{\mathrm{dtt}}^{\mathrm{p}}$-reduces to a tally set. These results complement the result of Allender et al. [1] that

$$
\mathrm{P}=\mathrm{DEC} \cap \bigcap_{U} \mathrm{P}_{\mathrm{dtt}}\left(R_{C_{U}}\right),
$$

where the intersection is over all universal machines. While the class $\operatorname{DEC} \cap$ $\mathrm{P}_{\mathrm{dtt}}\left(R_{C_{U}}\right)$ contains arbitrarily complex sets, it is intuitively "close" to P for every U, in that it has small dimension and cannot contain NP unless $\mathrm{P}=\mathrm{NP}$.

Allender et al. [2] showed that R_{C} is hard for PSPACE under polynomialtime Turing reductions: PSPACE $\subseteq \mathrm{P}_{\mathrm{T}}\left(R_{C}\right)$. Buhrman et al. [3] showed that R_{C} is hard for BPP under polynomial-time truth-table reductions: $\mathrm{BPP} \subseteq \mathrm{P}_{\mathrm{tt}}\left(R_{C}\right)$. We consider bounded query Turing and truth-table reductions. Based on the Winnow algorithm [10] and polynomial-time dimension [6], we show that R_{C} is not $\leq_{n^{\alpha}-\mathrm{tt}}^{\mathrm{p}}$-hard for E , for any $\alpha<1$. This is an improvement of a result in [1] which obtained the same consequence for EE. Also, we use the techniques of $[5,4]$
to show that R_{C} is not $\leq_{n^{\alpha}-t_{t}}^{\mathrm{p}}$-hard for NP unless NP \subseteq coNP/poly and the polynomial-time hierarchy collapses by Yap's theorem [13]. Finally, we obtain the same consequences for $\leq_{n^{\alpha}-T^{-}}^{\mathrm{p}}$-reductions, for all $\alpha<\frac{1}{2}$.

2. Preliminaries

We use standard notions of polynomial-time reducibilities [8]. We also need the following two notions of reducibility.

Definition. Let $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ be a family of subsets of Σ^{*}. We say that A NP-reduces to \mathcal{B} if there is an NPMV function N such that for all n, for all $x \in \Sigma^{n}, x \in A$ iff at least one output of $N(x)$ is in B_{n}.

Definition. Let $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ be a family of subsets of Σ^{*}. We say that A disjunctively reduces to \mathcal{B} in $t(n)$ time if there is an algorithm M such that for all n, for all $x \in \Sigma^{n}, M(x)$ outputs a list of strings in $t(n)$ time and $x \in A$ iff at least one output of $M(x)$ is in B_{n}.

The following lemma is from [4], based on a technique of [5]. An AND-function (of order 1) for a set A is a polynomial-time computable function g such that for all strings $x_{1}, x_{2}, \ldots, x_{n},\left|g\left(x_{1}, \ldots, x_{n}\right)\right|=O\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)$ and $g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A$ iff $x_{i} \in A$ for all i.

Lemma 2.1. Let A have an $A N D$-function and let $\alpha<1$. Let $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ be a family of sets with $\left|B_{n}\right| \leq 2^{n^{\alpha}}$ for sufficiently large n. If A NP-reduces to \mathcal{B}, then $A \in \mathrm{NP} /$ poly.

The p-dimension [11] of a complexity class is a real number in $[0,1]$. The pdimension of P is 0 and the p-dimension of E is 1 . For this paper, we do not need the full details of p-dimension; all we require is the fact that a p-dimension 0 class cannot contain E and the following lemma. The proof of this lemma relies on the Winnow online learning algorithm [10] and is straightforward to prove using the approach of [6].

Lemma 2.2. Let $\alpha<1$ and let $c \geq 1$. Let X be the class of all A for which there exists a family $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ with $\left|B_{n}\right| \leq 2^{n^{\alpha}}$ such that A disjunctively reduces to \mathcal{B} in $2^{\text {cn }}$ time. Then X has p -dimension 0. In particular, X does not contain E.

3. Disjunctive Reductions

Theorem 3.1. If A is decidable and $A \leq_{\mathrm{dtt}}^{\mathrm{p}} R_{C}$, then $A \leq_{\mathrm{dtt}}^{\mathrm{p}} B$ for some $B \in$ TALLY.

Proof. We use the proof technique from [1] that A is decidable and $A \leq{ }_{\mathrm{mtt}}^{\mathrm{p}} R_{C}$ (monotone truth-table) implies $A \in \mathrm{P} /$ poly, observing that we can encode in a tally set to obtain the stronger result.

Suppose A is decidable and $A \leq_{\mathrm{dtt}}^{\mathrm{p}} R_{C}$ via a reduction computable in time n^{d}. Let the queries on input x be denoted by $Q(x)$. For some constant c, we claim only the queries of length at most $l(n)=c \log n$ "matter."

For any x, we have $x \in A$ iff $Q(x) \cap R_{C} \neq \emptyset$. Define $Q^{\prime}(x)=Q(x) \cap \Sigma^{\leq l(n)}$, where $n=|x|$. We claim that for each $x \in A$, there is some $q \in Q^{\prime}(x)$ such that for all y with $|y|=|x|, q \in Q^{\prime}(y)$ implies $y \in A$.

Suppose the claim is false. Then given n, we can find the first string x of length n such that $x \in A$ and each query $q \in Q^{\prime}(x)$ belongs to $Q^{\prime}(y)$ for some $y \notin A$. This implies that $Q^{\prime}(x) \cap R_{C}=\emptyset$. Since $x \in A$, it follows that $Q(x)-Q^{\prime}(x)$ contains a string $r \in R_{C}$. This string r has $C(r)>l(n)$ because $r \notin Q^{\prime}(x)$. We can describe r by describing n and the index of r in $Q(x)$. Since $|Q(x)| \leq n^{d}$, this takes at most $(d+3) \log n$ bits, a contradiction if we choose $c=d+4$.

Let $\left\{w_{1}, \ldots, w_{N}\right\}$ be an enumeration of $\Sigma^{\leq l(n)}$. Let I_{n} be the collection of all i where for all y of length $n, w_{i} \in Q(y)$ implies $y \in A$. Our desired tally set is $\left\{0^{\langle n, i\rangle} \mid n \geq 0\right.$ and $\left.i \in I_{n}\right\}$, where $\langle\cdot, \cdot\rangle$ is a pairing function on the natural numbers.

Corollary 3.2. If $\mathrm{P} \neq \mathrm{NP}$, then $\mathrm{NP} \nsubseteq \mathrm{P}_{\mathrm{dtt}}\left(R_{C}\right)$.
Proof. Suppose that $\mathrm{NP} \subseteq \mathrm{P}_{\mathrm{dtt}}\left(R_{C}\right)$. By Theorem 3.1, SAT $\leq_{\mathrm{dtt}}^{\mathrm{p}} B$ for a tally set B. Then $\overline{\mathrm{SAT}} \leq_{\mathrm{ctt}}^{\mathrm{p}} \bar{B} \cap 0^{*}$. Ukkonen [12] showed that $\mathrm{P}=\mathrm{NP}$ if coNP has a sparse $\leq_{\text {ctt }}^{\mathrm{p}}$-hard set.

Corollary 3.3. The class $\mathrm{P}_{\mathrm{dtt}}\left(R_{C}\right) \cap \mathrm{DEC}$ has p-dimension 0 .
Proof. Theorem 3.1 implies $\mathrm{P}_{\mathrm{dtt}}\left(R_{C}\right) \cap \mathrm{DEC} \subseteq \mathrm{P}_{\mathrm{dtt}}(\mathrm{TALLY}) \subseteq \mathrm{P}_{\mathrm{dtt}}(\mathrm{SPARSE})$. This last class was shown to have p-dimension 0 in [6].

Corollary 3.4. $\mathrm{E} \nsubseteq \mathrm{P}_{\mathrm{dtt}}\left(R_{C}\right)$.
Proof. This follows from Corollary 3.3 because E has p-dimension 1.

4. Truth-Table Reductions

Theorem 4.1. Let $\alpha<1$.

1. If A is decidable, A has an $A N D$-function, and $A \leq_{n^{\alpha-t t}}^{\mathrm{p}} R_{C}$, then $A \in$ NP/poly.
2. The class $\mathrm{P}_{n^{\alpha}-\mathrm{tt}}\left(R_{C}\right) \cap \mathrm{DEC}$ has p -dimension 0 .

Proof. The main idea of the proof is from [1]. We expound the argument here and show how to apply Lemmas 2.1 and 2.2.

Let A be decidable such that $A \leq_{n^{\alpha}-\mathrm{tt}}^{\mathrm{p}} R_{C}$. Write $Q(x)$ for the truth-table reduction's queries on input x and $Z_{x} \subseteq \Sigma^{n^{\alpha}}$ for the query answer sequences that cause the reduction to accept x. That is, if $Q(x)=\left\{q_{1}, \ldots, q_{n^{\alpha}}\right\}$ in lexicographic order, then $x \in A$ if and only if $R_{C}\left[q_{1}\right] \cdots R_{C}\left[q_{n^{\alpha}}\right] \in Z_{x}$.

Let $l(n)=n^{\epsilon}$, where $0<\epsilon<1-\alpha$. We claim that the truth-table reduction is still correct if we only use the queries of length at most $l(n)$. Formally, let
$Q^{\prime}(x)=Q(x) \cap \Sigma^{\leq l(n)}$ and let Z_{x}^{\prime} be the restriction of Z_{x} with bits corresponding to strings in $Q(x)-Q^{\prime}(x)$ removed.

Call two strings x and y of the same length equivalent if $Q^{\prime}(x)=Q^{\prime}(y)$. We claim that for each $x \in A$, there is some $z_{x} \in Z_{x}^{\prime}$ such that for all y equivalent to $x, z_{x} \in Z_{y}^{\prime}$ iff $y \in A$.

Suppose the claim is false. We can find the least $x \in A$ such that for all $z \in Z_{x}^{\prime}$, there is some y_{z} equivalent to x such that $z \in Z_{y}^{\prime}$ iff $y_{z} \notin A$. Let v be the correct answer sequence for $Q^{\prime}(x) \cap R_{C}$ and let r be the number of 1's in v; that is, $r=\left|Q^{\prime}(x) \cap R_{C}\right|$. Given x and r, we can enumerate $\overline{R_{C}}$ to compute $Q^{\prime}(x) \cap R_{C}$ and obtain v. Then we can compute y_{v} such that query answers v are incorrect for y_{v}. This means that $Q\left(y_{v}\right)-Q^{\prime}\left(y_{v}\right)$ must contain a string in R_{C} with length $>l(n)$. However, we can describe this string by describing n, r, and its index in $Q\left(y_{v}\right)$, which takes $O(\log n)$ bits, a contradiction.

We define a family of sets $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ as follows. For each equivalence class $[x]$ with queries $Q^{\prime}(x)=\left\{w_{1}, \ldots, w_{n^{\alpha}}\right\}$ and $z_{x} \in Z_{x}^{\prime}$ the answer sequence that is correct for all strings in the equivalence class, we put the tuple $\left\langle w_{1}, \ldots, w_{n^{\alpha}}, z_{x}\right\rangle$ in B_{n}. Note that $\left|B_{n}\right|<2^{n^{\gamma}}$ where $\alpha+\epsilon<\gamma<1$. By the claim, A NP-reduces to \mathcal{B}. It follows from Lemma 2.1 that $A \in \mathrm{NP} /$ poly if A has an AND-function.

We also have that A is disjunctively reducible in 2^{n} time to \mathcal{B}. Therefore Lemma 2.2 applies to show $\mathrm{P}_{n^{\alpha}-\mathrm{tt}}\left(R_{C}\right) \cap \mathrm{DEC}$ has p-dimension 0 .

Corollary 4.2. If $\mathrm{NP} \subseteq \mathrm{P}_{n^{\alpha}-\mathrm{tt}}\left(R_{C}\right)$ for some $\alpha<1$, then $\mathrm{NP} \subseteq$ coNP/poly.
Proof. This follows from Theorem 4.1 because the hypothesis implies $\overline{\mathrm{SAT}} \leq_{n^{\alpha}-\mathrm{tt}}^{\mathrm{p}}$ R_{C} and $\overline{\mathrm{SAT}}$ has an AND-function.

Corollary 4.3. If the polynomial-time hierarchy does not collapse, then NP \nsubseteq $\mathrm{P}_{n^{\alpha}-\mathrm{tt}}\left(R_{C}\right)$ for any $\alpha<1$.

Proof. This is immediate from Corollary 4.2 and Yap's theorem [13] that NP \subseteq coNP/poly implies the polynomial-time hierarchy collapses to its third level.

Corollary 4.4. For any $\alpha<1, \mathrm{E} \nsubseteq \mathrm{P}_{n^{\alpha}-\mathrm{tt}}\left(R_{C}\right)$.
Proof. This follows from Theorem 4.1 because E has p-dimension 1.

5. Turing Reductions

Theorem 5.1. Let $\alpha<\frac{1}{2}$.

1. If A is decidable, A has an $A N D$-function, and $A \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{p}} R_{C}$, then $A \in$ NP/poly.
2. The class $\mathrm{P}_{n^{\alpha}-\mathrm{T}}\left(R_{C}\right) \cap \mathrm{DEC}$ has p -dimension 0 .

Proof. Let $\alpha<\beta<\frac{1}{2}$. Suppose that $A \in \mathrm{DEC}$ and $A \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{p}} R_{C}$ via M. Let M^{\prime} be the Turing machine that simulates M and whenever M makes a query of length at least n^{β}, M^{\prime} makes no query and proceeds as if the answer to the query were no. We use the following concepts:

- An advice is a tuple $\left(z, w_{1}, \ldots, w_{n^{\alpha}}\right)$ such that $z \in \Sigma^{n^{\alpha}}$ and each $w_{i} \in \Sigma^{<n^{\beta}}$.
- A string y is accepted with advice $\left(z, w_{1}, \ldots, w_{n^{\alpha}}\right)$ if $M^{\prime}(y)$ queries $w_{1}, \ldots, w_{n^{\alpha}}$ and accepts y when M^{\prime} is given $z[1], \ldots, z\left[n^{\alpha}\right]$ as the query answers.
- An advice $\left(z, w_{1}, \ldots, w_{n^{\alpha}}\right)$ is safe if for all $y \in \Sigma^{n}, y$ is accepted with advice $\left(z, w_{1}, \ldots, w_{n^{\alpha}}\right)$ implies $y \in A$.

We claim that for all $x \in A_{=n}$, there is a safe advice (z, \vec{w}) such that x is accepted with advice (z, \vec{w}).

Suppose the claim is false. Then we can find the least $x \in A_{=n}$ that does not have a safe advice. We can specify the correct answer sequence $z \in \Sigma^{n^{\alpha}}$ for $M(x)$ when querying oracle R_{C}. With this correct answer sequence z, M must query some string in R_{C} that is not in $\Sigma^{<n^{\beta}}$. Therefore we can describe a string r with $C(r) \geq n^{\beta}$ by describing n, z, and the index of r in $M(x)$'s query set on query answer sequence z. Thus $C(r) \leq n^{\alpha}+O(\log n)$, which is a contradiction since $\alpha<\beta$.

We define a family of sets \mathcal{B} by putting into B_{n} all advices $\left(z, w_{1}, \ldots, w_{n^{\alpha}}\right)$ that are safe. Let $1>\gamma>\alpha+\beta$. The total number of possible advices is at most $2^{n^{\alpha}} \cdot\left(2^{n^{\beta}}\right)^{n^{\alpha}}<2^{n^{\gamma}}$, so $\left|B_{n}\right|<2^{n^{\gamma}}$. We have that A NP-reduces to \mathcal{B} and A disjunctively reduces in 2^{n} time to \mathcal{B}, so the theorem follows from Lemmas 2.1 and 2.2.

Corollary 5.2. If $\mathrm{NP} \subseteq \mathrm{P}_{n^{\alpha}-\mathrm{T}}\left(R_{C}\right)$ for some $\alpha<\frac{1}{2}$, then $\mathrm{NP} \subseteq$ coNP/poly.
Corollary 5.3. If the polynomial-time hierarchy does not collapse, then NP \nsubseteq $\mathrm{P}_{n^{\alpha}-\mathrm{T}}\left(R_{C}\right)$ for any $\alpha<\frac{1}{2}$.

Corollary 5.4. For any $\alpha<\frac{1}{2}$, $\mathrm{E} \nsubseteq \mathrm{P}_{n^{\alpha}-\mathrm{T}}\left(R_{C}\right)$.

6. Open Problems

We believe the following open problems should be tractable but appear to require techniques beyond those used in this paper.

Problem 6.1. Show that $\mathrm{E} \nsubseteq \mathrm{P}_{n^{\alpha}-\mathrm{T}}\left(R_{C}\right)$ for $\frac{1}{2} \leq \alpha<1$.
Problem 6.2. Show that NP $\nsubseteq \mathrm{P}_{n^{\alpha}-\mathrm{T}}\left(R_{C}\right)$ for $\frac{1}{2} \leq \alpha<1$ under a reasonable hypothesis.

It is unknown whether even every decidable problem is polynomial-time Turing reducible to R_{C}. We conjecture that ESPACE $\nsubseteq \mathrm{P}_{\mathrm{T}}\left(R_{C}\right)$ and that this can be proved using resource-bounded dimension or measure:

Problem 6.3. Show that $\mathrm{P}_{\mathrm{T}}\left(R_{C}\right) \cap \mathrm{DEC}$ has pspace-dimension 0 .
Lastly, we know $\mathrm{SAT} \leq_{\mathrm{dtt}} R_{C}$ and that $\mathrm{SAT} \leq_{\mathrm{dtt}}^{\mathrm{p}} R_{C}$ iff $\mathrm{P}=\mathrm{NP}$. What more can be said about the amount of time it takes to disjunctively reduce SAT to R_{C} ?

References

[1] E. Allender, H. Buhrman, and M. Koucký. What can be efficiently reduced to the Kolmogorov-random strings? Annals of Pure and Applied Logic, 138:2-19, 2006.
[2] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger. Power from random strings. SIAM Journal on Computing, 35:1467-1493, 2006.
[3] H. Buhrman, L. Fortnow, M. Koucký, and B. Loff. Derandomizing from random strings. In Proceedings of the 25th Annual IEEE Conference on Computational Complexity, pages 58-63. IEEE Computer Society, 2010.
[4] H. Buhrman and J. M. Hitchcock. NP-hard sets are exponentially dense unless NP \subseteq coNP/poly. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, pages 1-7. IEEE Computer Society, 2008.
[5] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Journal of Computer and System Sciences, 77(1):96-106, 2011.
[6] J. M. Hitchcock. Online learning and resource-bounded dimension: Winnow yields new lower bounds for hard sets. SIAM Journal on Computing, 36(6):1696-1708, 2007.
[7] M. Kummer. On the complexity of random strings. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science, pages 25-36. Springer, 1996.
[8] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial-time reducibilities. Theoretical Computer Science, 1(2):103-123, 1975.
[9] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, third edition, 2008.
[10] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2(4):285-318, 1988.
[11] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):12361259, 2003.
[12] E. Ukkonen. Two results on polynomial time truth-table reductions to sparse sets. SIAM Journal on Computing, 12(3), 1983.
[13] C. K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science, 26:287-300, 1983.

[^0]: ${ }^{1}$ This research was supported in part by NSF grants 0652601 and 0917417 . Part of this research was done while the author was on sabbatical at CWI, supported by an NWO visiting scholar grant. A preliminary version of this paper appeared in the proceedings of the 6th Conference on Computability in Europe (2010).

