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Abstract. We show the following results for polynomial-time reducibility

to RC , the set of Kolmogorov random strings.

1. If P 6= NP, then SAT does not dtt-reduce to RC .

2. If PH does not collapse, then SAT does not nα-tt-reduce to RC
for any α < 1.

3. If PH does not collapse, then SAT does not nα-T-reduce to RC
for any α < 1

2
.

4. There is a problem in E that does not dtt-reduce to RC .

5. There is a problem in E that does not nα-tt-reduce to RC , for

any α < 1.
6. There is a problem in E that does not nα-T-reduce to RC , for

any α < 1
2

.

These results hold for both the plain and prefix-free variants of Kol-
mogorov complexity and are also independent of the choice of the uni-

versal machine.

Keywords.

1. Introduction

Because the Kolmogorov complexity function C(x) is noncomputable, the set

RC = {x | C(x) > |x|}

of Kolmogorov random strings is undecidable. In fact, RC has no infinite com-
putably enumerable subset. From this and the fact that the complement RC is
computably enumerable, Arslanov’s completeness criterion implies that RC is
hard for the c.e. sets under Turing reductions. Kummer [7] showed a stronger
result: H ≤dtt RC , where H is the complement of the halting problem and ≤dtt

denotes a disjunctive truth-table reduction. Neither of these reductions from the
halting problem to RC is efficient. This raises the question [1]: what can be effi-
ciently reduced to RC?
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Recall that the Kolmogorov complexity [9] of a binary string x is the length
of a shortest program that prints x on a universal Turing machine U :

CU (x) = min{|p| | U(p) prints x}.

For the most part, the theory of Kolmogorov complexity does not depend on the
choice of the universal machine U : for any two universal machines U and V , CU
and CV are within an additive constant of each other. As usual, we fix a universal
machine U and omit it from the notation, writing C(x) instead of CU (x). There
are, however, situations when the choice of universal machine matters and then
we will be explicit with the subscript. We use the notation Pτ (A) to denote the
class of problems that reduce to A by ≤p

τ -reductions.
Kummer’s result [7] implies there is a computable time bound t(n) such that

for every decidable A, A ≤t(n)dtt RC . Kummer’s proof is nonconstructive and does
not yield any information about the function t(n). In fact, Allender et al. [1] show
that some uncertainty about the time bound t(n) is inevitable. They show that
the t(n) in Kummer’s theorem may be arbitrarily large, depending on the choice
of the universal machine U . Formally, for every computable time bound t(n),
there exists a universal machine U and a decidable set A such that A does not
≤t(n)dtt -reduce to RCU . On the other hand, independent of U , there exist decidable
sets with arbitrarily high time complexity that reduce to RCU via a polynomial-
time dtt-reduction: for every computable time bound t(n) and every universal
machine U , there is a set A ∈ DEC − DTIME(t(n)) such that A ≤p

dtt RCU .
While this result shows Pdtt(RC) contains sets of high time complexity, the set
A in this theorem is constructed via padding, which makes A very sparse. Thus
while A has high time complexity, A is very simple in other terms. We show
that this simplicity is inherent: any such A is highly predictable in the sense of
polynomial-time dimension. From this it follows that RC is not hard for E under
≤p

dtt-reductions. This holds for every universal machine, i.e. E 6⊆ Pdtt(RCU ) for
every U . We also show that RC is not polynomial-time dtt-hard for NP unless
P = NP. Both of these results follow from showing that if a decidable set ≤p

dtt-
reduces to RC , then the set ≤p

dtt-reduces to a tally set. These results complement
the result of Allender et al. [1] that

P = DEC ∩
⋂
U

Pdtt(RCU ),

where the intersection is over all universal machines. While the class DEC ∩
Pdtt(RCU ) contains arbitrarily complex sets, it is intuitively “close” to P for every
U , in that it has small dimension and cannot contain NP unless P = NP.

Allender et al. [2] showed that RC is hard for PSPACE under polynomial-
time Turing reductions: PSPACE ⊆ PT(RC). Buhrman et al. [3] showed that RC
is hard for BPP under polynomial-time truth-table reductions: BPP ⊆ Ptt(RC).
We consider bounded query Turing and truth-table reductions. Based on the
Winnow algorithm [10] and polynomial-time dimension [6], we show that RC is
not ≤p

nα-tt-hard for E, for any α < 1. This is an improvement of a result in [1]
which obtained the same consequence for EE. Also, we use the techniques of [5,4]



to show that RC is not ≤p
nα-tt-hard for NP unless NP ⊆ coNP/poly and the

polynomial-time hierarchy collapses by Yap’s theorem [13]. Finally, we obtain the
same consequences for ≤p

nα-T-reductions, for all α < 1
2 .

2. Preliminaries

We use standard notions of polynomial-time reducibilities [8]. We also need the
following two notions of reducibility.

Definition. Let B = (Bn | n ≥ 0) be a family of subsets of Σ∗. We say that
A NP-reduces to B if there is an NPMV function N such that for all n, for all
x ∈ Σn, x ∈ A iff at least one output of N(x) is in Bn.

Definition. Let B = (Bn | n ≥ 0) be a family of subsets of Σ∗. We say that A
disjunctively reduces to B in t(n) time if there is an algorithm M such that for
all n, for all x ∈ Σn, M(x) outputs a list of strings in t(n) time and x ∈ A iff at
least one output of M(x) is in Bn.

The following lemma is from [4], based on a technique of [5]. An AND-function
(of order 1) for a set A is a polynomial-time computable function g such that for all
strings x1, x2, . . . , xn, |g(x1, . . . , xn)| = O

(∑n
i=1 |xi|

)
and g(x1, x2, . . . , xn) ∈ A

iff xi ∈ A for all i.

Lemma 2.1. Let A have an AND-function and let α < 1. Let B = (Bn | n ≥ 0)
be a family of sets with |Bn| ≤ 2n

α

for sufficiently large n. If A NP-reduces to B,
then A ∈ NP/poly.

The p-dimension [11] of a complexity class is a real number in [0, 1]. The p-
dimension of P is 0 and the p-dimension of E is 1. For this paper, we do not need
the full details of p-dimension; all we require is the fact that a p-dimension 0 class
cannot contain E and the following lemma. The proof of this lemma relies on the
Winnow online learning algorithm [10] and is straightforward to prove using the
approach of [6].

Lemma 2.2. Let α < 1 and let c ≥ 1. Let X be the class of all A for which there
exists a family B = (Bn | n ≥ 0) with |Bn| ≤ 2n

α

such that A disjunctively reduces
to B in 2cn time. Then X has p-dimension 0. In particular, X does not contain
E.

3. Disjunctive Reductions

Theorem 3.1. If A is decidable and A ≤p
dtt RC , then A ≤p

dtt B for some B ∈
TALLY.

Proof. We use the proof technique from [1] that A is decidable and A ≤p
mtt RC

(monotone truth-table) implies A ∈ P/poly, observing that we can encode in a
tally set to obtain the stronger result.



Suppose A is decidable and A ≤p
dtt RC via a reduction computable in time

nd. Let the queries on input x be denoted by Q(x). For some constant c, we claim
only the queries of length at most l(n) = c log n “matter.”

For any x, we have x ∈ A iff Q(x) ∩ RC 6= ∅. Define Q′(x) = Q(x) ∩ Σ≤l(n),
where n = |x|. We claim that for each x ∈ A, there is some q ∈ Q′(x) such that
for all y with |y| = |x|, q ∈ Q′(y) implies y ∈ A.

Suppose the claim is false. Then given n, we can find the first string x of
length n such that x ∈ A and each query q ∈ Q′(x) belongs to Q′(y) for some
y 6∈ A. This implies that Q′(x)∩RC = ∅. Since x ∈ A, it follows that Q(x)−Q′(x)
contains a string r ∈ RC . This string r has C(r) > l(n) because r 6∈ Q′(x). We
can describe r by describing n and the index of r in Q(x). Since |Q(x)| ≤ nd, this
takes at most (d+ 3) log n bits, a contradiction if we choose c = d+ 4.

Let {w1, . . . , wN} be an enumeration of Σ≤l(n). Let In be the collection of
all i where for all y of length n, wi ∈ Q(y) implies y ∈ A. Our desired tally set
is {0〈n,i〉 | n ≥ 0 and i ∈ In}, where 〈·, ·〉 is a pairing function on the natural
numbers.

Corollary 3.2. If P 6= NP, then NP 6⊆ Pdtt(RC).

Proof. Suppose that NP ⊆ Pdtt(RC). By Theorem 3.1, SAT ≤p
dtt B for a tally

set B. Then SAT ≤p
ctt B ∩ 0∗. Ukkonen [12] showed that P = NP if coNP has a

sparse ≤p
ctt-hard set.

Corollary 3.3. The class Pdtt(RC) ∩DEC has p-dimension 0.

Proof. Theorem 3.1 implies Pdtt(RC) ∩ DEC ⊆ Pdtt(TALLY) ⊆ Pdtt(SPARSE).
This last class was shown to have p-dimension 0 in [6].

Corollary 3.4. E 6⊆ Pdtt(RC).

Proof. This follows from Corollary 3.3 because E has p-dimension 1.

4. Truth-Table Reductions

Theorem 4.1. Let α < 1.

1. If A is decidable, A has an AND-function, and A ≤p
nα-tt RC , then A ∈

NP/poly.

2. The class Pnα−tt(RC) ∩DEC has p-dimension 0.

Proof. The main idea of the proof is from [1]. We expound the argument here and
show how to apply Lemmas 2.1 and 2.2.

Let A be decidable such that A ≤p
nα-tt RC . Write Q(x) for the truth-table

reduction’s queries on input x and Zx ⊆ Σn
α

for the query answer sequences that
cause the reduction to accept x. That is, if Q(x) = {q1, . . . , qnα} in lexicographic
order, then x ∈ A if and only if RC [q1] · · ·RC [qnα ] ∈ Zx.

Let l(n) = nε, where 0 < ε < 1− α. We claim that the truth-table reduction
is still correct if we only use the queries of length at most l(n). Formally, let



Q′(x) = Q(x)∩Σ≤l(n) and let Z ′x be the restriction of Zx with bits corresponding
to strings in Q(x)−Q′(x) removed.

Call two strings x and y of the same length equivalent if Q′(x) = Q′(y). We
claim that for each x ∈ A, there is some zx ∈ Z ′x such that for all y equivalent to
x, zx ∈ Z ′y iff y ∈ A.

Suppose the claim is false. We can find the least x ∈ A such that for all
z ∈ Z ′x, there is some yz equivalent to x such that z ∈ Z ′y iff yz 6∈ A. Let v be the
correct answer sequence for Q′(x) ∩RC and let r be the number of 1’s in v; that
is, r = |Q′(x)∩RC |. Given x and r, we can enumerate RC to compute Q′(x)∩RC
and obtain v. Then we can compute yv such that query answers v are incorrect
for yv. This means that Q(yv)−Q′(yv) must contain a string in RC with length
> l(n). However, we can describe this string by describing n, r, and its index in
Q(yv), which takes O(log n) bits, a contradiction.

We define a family of sets B = (Bn | n ≥ 0) as follows. For each equiva-
lence class [x] with queries Q′(x) = {w1, . . . , wnα} and zx ∈ Z ′x the answer se-
quence that is correct for all strings in the equivalence class, we put the tuple
〈w1, . . . , wnα , zx〉 in Bn. Note that |Bn| < 2n

γ

where α+ ε < γ < 1. By the claim,
A NP-reduces to B. It follows from Lemma 2.1 that A ∈ NP/poly if A has an
AND-function.

We also have that A is disjunctively reducible in 2n time to B. Therefore
Lemma 2.2 applies to show Pnα−tt(RC) ∩DEC has p-dimension 0.

Corollary 4.2. If NP ⊆ Pnα−tt(RC) for some α < 1, then NP ⊆ coNP/poly.

Proof. This follows from Theorem 4.1 because the hypothesis implies SAT ≤p
nα-tt

RC and SAT has an AND-function.

Corollary 4.3. If the polynomial-time hierarchy does not collapse, then NP 6⊆
Pnα−tt(RC) for any α < 1.

Proof. This is immediate from Corollary 4.2 and Yap’s theorem [13] that NP ⊆
coNP/poly implies the polynomial-time hierarchy collapses to its third level.

Corollary 4.4. For any α < 1, E 6⊆ Pnα−tt(RC).

Proof. This follows from Theorem 4.1 because E has p-dimension 1.

5. Turing Reductions

Theorem 5.1. Let α < 1
2 .

1. If A is decidable, A has an AND-function, and A ≤p
nα-T RC , then A ∈

NP/poly.

2. The class Pnα−T(RC) ∩DEC has p-dimension 0.

Proof. Let α < β < 1
2 . Suppose that A ∈ DEC and A ≤p

nα-T RC via M . Let
M ′ be the Turing machine that simulates M and whenever M makes a query of
length at least nβ , M ′ makes no query and proceeds as if the answer to the query
were no. We use the following concepts:



• An advice is a tuple (z, w1, . . . , wnα) such that z ∈ Σn
α

and each wi ∈ Σ<n
β

.
• A string y is accepted with advice (z, w1, . . . , wnα) if M ′(y) queries
w1, . . . , wnα and accepts y when M ′ is given z[1], . . . , z[nα] as the query
answers.

• An advice (z, w1, . . . , wnα) is safe if for all y ∈ Σn, y is accepted with advice
(z, w1, . . . , wnα) implies y ∈ A.

We claim that for all x ∈ A=n, there is a safe advice (z, ~w) such that x is
accepted with advice (z, ~w).

Suppose the claim is false. Then we can find the least x ∈ A=n that does not
have a safe advice. We can specify the correct answer sequence z ∈ Σn

α

for M(x)
when querying oracle RC . With this correct answer sequence z, M must query

some string in RC that is not in Σ<n
β

. Therefore we can describe a string r with
C(r) ≥ nβ by describing n, z, and the index of r in M(x)’s query set on query
answer sequence z. Thus C(r) ≤ nα + O(log n), which is a contradiction since
α < β.

We define a family of sets B by putting into Bn all advices (z, w1, . . . , wnα)
that are safe. Let 1 > γ > α + β. The total number of possible advices is at

most 2n
α · (2nβ )n

α

< 2n
γ

, so |Bn| < 2n
γ

. We have that A NP-reduces to B and
A disjunctively reduces in 2n time to B, so the theorem follows from Lemmas 2.1
and 2.2.

Corollary 5.2. If NP ⊆ Pnα−T(RC) for some α < 1
2 , then NP ⊆ coNP/poly.

Corollary 5.3. If the polynomial-time hierarchy does not collapse, then NP 6⊆
Pnα−T(RC) for any α < 1

2 .

Corollary 5.4. For any α < 1
2 , E 6⊆ Pnα−T(RC).

6. Open Problems

We believe the following open problems should be tractable but appear to require
techniques beyond those used in this paper.

Problem 6.1. Show that E 6⊆ Pnα−T(RC) for 1
2 ≤ α < 1.

Problem 6.2. Show that NP 6⊆ Pnα−T(RC) for 1
2 ≤ α < 1 under a reasonable

hypothesis.

It is unknown whether even every decidable problem is polynomial-time Turing
reducible to RC . We conjecture that ESPACE 6⊆ PT(RC) and that this can be
proved using resource-bounded dimension or measure:

Problem 6.3. Show that PT(RC) ∩DEC has pspace-dimension 0.

Lastly, we know SAT ≤dtt RC and that SAT ≤p
dtt RC iff P = NP. What more can

be said about the amount of time it takes to disjunctively reduce SAT to RC?
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