
Length-Increasing Reductions for
PSPACE-Completeness

John M. Hitchcock1? and A. Pavan2??

1 Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu
2 Department of Computer Science, Iowa State University. pavan@cs.iastate.edu

Abstract. Polynomial-time many-one reductions provide the standard
notion of completeness for complexity classes. However, as first expli-
cated by Berman and Hartmanis in their work on the isomorphism con-
jecture, all natural complete problems are actually complete under reduc-
tions with stronger properties. We study the length-increasing property
and show under various computational hardness assumptions that all
PSPACE-complete problems are complete via length-increasing reduc-
tions that are computable with a small amount of nonuniform advice.

If there is a problem in PSPACE that requires exponential time,
then polynomial size advice suffices to give li-reductions to all PSPACE-
complete sets. Under the stronger assumption that linear space requires
exponential-size NP-oracle circuits, we reduce the advice to logarithmic
size. Our proofs make use of pseudorandom generators, hardness versus
randomness tradeoffs, and worst-case to average-case hardness reduc-
tions.

Keywords. computational complexity, completeness, length-increasing
reductions, PSPACE

1 Introduction

Completeness is arguably the single most important notion in computational
complexity theory. Many natural problems that arise in practice turn out be
complete for appropriate complexity classes. Informally, a set A is complete for a
class C if A belongs to C and every set from C “polynomial-time reduces” to A. In
his seminal paper, Cook [Coo71] used Turing reductions to define completeness.
However, Karp [Kar72] used a much more restrictive notion, many-one reduc-
tions, to define completeness. Since then polynomial-time many-one reductions
have been considered as the most natural reductions to define completeness.

It has been observed that most problems remain complete under more strin-
gent notions of reducibility. Perhaps the most restrictive notion of a polynomial-
time reduction is that of isomorphic reduction. Two setsA andB are p-isomorphic
if there exists a polynomial-time computable, one-one, onto, and polynomial-
time invertible reduction from A to B. Berman and Hartmanis [BH77] observed

? This research was supported in part by NSF grants 0652601 and 0917417.
?? This research was supported in part by NSF grant 0916797.

that all known natural NP-complete sets are indeed p-isomorphic and this led to
their famous “isomorphism conjecture”—all NP-complete sets are p-isomorphic
to SAT. Berman and Hartmanis characterized isomorphism in terms of one-
one, length-increasing reductions. They showed that two sets A and B are p-
isomorphic if they are reducible to each other via one-one, polynomial-time in-
vertible length-increasing reductions. We write “li-reduction” as an abbreviation
for “length-increasing reduction.” Thus the isomorphism conjecture is equiva-
lent to the following statement: All NP-complete sets are complete via one-one,
polynomial-time invertible li-reductions.

Though the original isomorphism conjecture concerns the class NP, a similar
conjecture can be formulated for classes such as E, NE, and PSPACE. In spite
of many years of research we do not have concrete evidence for or against the
isomorphism conjecture for any complexity class. This has led researchers to
ask weaker questions such as: Do complete sets for a class remain complete
under one-one reductions? Do complete sets for a class remain complete under
li-reductions? Even these weaker questions are not completely resolved and we
only know of some partial answers.

Berman [Ber77] showed that all complete sets for E are complete under one-
one, li-reductions. Ganesan and Homer [GH92] showed that all NE-complete sets
are complete under one-one reductions. For quite sometime, there had been no
progress on NP and the first major result for NP is due to Agrawal [Agr02].
He showed that if one-way permutations exist, then all NP-complete sets are
complete via one-one, P/poly-computable li-reductions. Since then there have
been several results of this nature. Hitchcock and Pavan [HP07] showed that
if NP does not have p-measure zero, then all NP-complete sets are complete
via P/poly li-reductions. Buhrman, Hescott, Homer, and Torenvliet [BHHT10]
improved this result to show that under the same hypothesis, NP-complete sets
are complete via li-reductions that use a logarithmic amount of advice. Next,
Agrawal and Watanabe [AW09] showed that if regular one-way functions ex-
ist, then NP-complete sets are complete via one-one, P/poly li-reductions. Most
recently, Gu, Hitchcock, and Pavan [GHP12] showed that if NP contains a lan-

guage that requires time 2n
Ω(1)

at almost all lengths, then NP-complete sets are
complete via P/poly li-reductions. All of the known results till date concern the
complexity classes NP, E, and NE.

In this paper, we consider the question of whether PSPACE-complete sets
are complete via li-reductions. It should be noted that the proofs of many of
the aforementioned results go through if one replaces NP with PSPACE. For ex-
ample, Agrawal’s proof shows that if one-way permutations exist, then all com-
plete sets for PSPACE are complete via, one-one, P/poly li-reductions. Similarly,
Hitchcock and Pavan’s proof shows that if PSPACE does not have p-measure
zero, then PSPACE-complete sets are complete via P/poly li-reductions. How-
ever, Gu, Hitchcock, and Pavan’s proof does not go through if one replaces NP
with PSPACE.

In this paper we establish new results regarding PSPACE-complete sets. Us-
ing ideas from [GHP12], we first give evidence that PSPACE-complete sets are

complete via non uniform, li-reductions. Our first main result is the following.

Theorem I. If PSPACE contains a language that requires 2n
ε

time at almost
all lengths, then PSPACE-complete sets are complete via li-reductions that use
a polynomial amount of advice.

We note that the hypothesis used in this result is a worst-case hardness hy-
pothesis (as opposed to average-case or almost-everywhere hardness hypotheses
used in the works of [Agr02,HP07,BHHT10]). Next we address the question of
whether we can eliminate or reduce the amount of nonuniformity used. We estab-
lish two sets of results. Our first result on this shows that nonuniformity in the
reductions can be traded for nondetermisnism. We show that if NP contains a
language that requires 2n

Ω(1)

time at almost all lengths, then PSPACE-complete
sets are complete via strong nondeterministic (SNP) li-reductions.

Next we show that using stronger hypotheses the amount of nonuniformity
can be reduced. Our second main contribution is the following.

Theorem II. If there is a language in linear space that requires exponential size
NP-oracle circuits, then PSPACE-complete sets are complete via li-reductions
that use a logarithmic amount of advice.

The proof of this theorem is nonstandard. All known proofs that establish
length-increasing completeness are of the following form: Say A is a complete
language and we wish to prove that it is complete via li-reductions. All known
proofs first define an intermediate language S and show that a standard complete
language (such as SAT or K) length-increasing reduces to S, and there is a length-
increasing reduction from S to A. We note that this approach may not work for
our case (see the discussion after the statement of Theorem 3.4). Our proof
proceeds by constructing two intermediate languages S1 and S2. We show both
S1 and S2 length-increasing reduce to A. Our final length-increasing reduction
from K to A goes via S1 on some strings, and via S2 on other strings. We use
tools from pseudorandomness and hardness amplification to establish this result.

The following table compares some of the main results of this paper.

class hardness assumption li-reduction type

PSPACE 2n
Ω(1)

time P/poly

NP 2n
Ω(1)

time SNP

LINSPACE 2Ω(n) NP-oracle circuits P/ log

PSPACE 2n
Ω(1)

circuits P/ log
E 2Ω(n) NP-oracle circuits

The interpretation of a line in the table is that if the class (or pair of classes for
the last line) satisfies the hardness assumption, then PSPACE-complete sets are
complete under li-reductions of the stated type.

2 Preliminaries

Let H be a class of length bound functions mapping N → N. A function f :
Σ∗ → Σ∗ is P/H-computable if there exist a polynomial-time computable g :
Σ∗ × Σ∗ → Σ∗ and an l(n) ∈ H so that for every n, there is an advice string
an ∈ Σ≤l(n) such that for all x ∈ Σn, f(x) = g(x, an). We will use the length
bound classes poly = {l : l(n) = nO(1)} and log = {l : l(n) = O(log n)}.

Given a language L, L=n denotes the set of strings of length n that belong
to L. For a language L, we denote the characteristic function of L with L itself.
That is, L(x) is 1 if x ∈ L, otherwise L(x) equals 0. Given two languages A and
B, we say that A and B are infinitely often equivalent, A =io B, if for infinitely
many n, A=n = B=n. Given a complexity class C, we define ioC as

ioC = {A | ∃B ∈ C, A =io B}.

In this paper we will use strong nondeterministic reductions [AM77]. A lan-
guage A is SNP-reducible to a language B if there is a polynomial-time bounded
nondeterministic machine M such that for every x the following holds:

– Every path of M(x) outputs a string y or outputs a special symbol ⊥. Dif-
ferent paths of M(x) may output different strings.

– If a path outputs a string y, then x ∈ A⇔ y ∈ B.

We say that an SNP reduction is length-increasing if the length of every output
(excluding ⊥) is greater than the length of the input.

For a Boolean function f : Σn → Σ, CC(f) is the smallest number s such
that there is circuit of size s that computes f , and CCNP(f) is the small-
est number s such that there is a size s, NP-oracle circuit that computes f .
The Boolean function f is (s, ε)-hard if for every circuit of size at most s,
Prx∈Σn [C(x) 6= f(x)] ≥ ε.

Definition 2.1. A pseudorandom generator (PRG) family is a collection of
functions G = {Gn : Σm(n) → Σn} such that Gn is uniformly computable
in time 2O(m(n)) and for every circuit of C of size O(n),∣∣∣∣ Pr

x∈Σn
[C(x) = 1]− Pr

y∈{0,1}m(n)
[C(Gn(y)) = 1

∣∣∣∣ ≤ 1

n
.

A pseudorandom generator is secure against NP-oracle circuits if the above state-
ment holds when the circuits have access to an NP-oracle.

There are many results that show that the existence of hard functions in
exponential time implies PRGs exist. We will use the following.

Theorem 2.2 ([KvM02]). If there is a language A in E and an ε > 0 such
that CCNP(An) ≥ 2εn for all sufficiently large n, then there is a constant k and a
PRG family G = {Gn : Σk logn → Σn} that is secure against NP-oracle circuits.

3 PSPACE-Complete Sets

We will first prove that if PSPACE contains a worst-case hard language, then
PSPACE-complete sets are complete via P/poly li-reductions. We will use ideas
from [GHP12]. As noted before, the proof of the analogous result in [GHP12]
does not go through if we replace NP with PSPACE. This is because that proof
uses the fact that NP contains complete languages that are disjunctively self-
reducible. Since every disjunctively self-reducible language is in NP, we cannot
hope that PSPACE has a disjunctively self-reducible complete set unless NP
equals PSPACE. To get around this problem, we will use the fact that PSPACE
is closed under complementation.

Theorem 3.1. If there is language L in PSPACE that is not in ioDTIME(2n
ε

)
for some ε > 0, then all PSPACE-complete sets are complete via P/poly li-
reductions.

Proof. Let A be a PSPACE-complete set that can be decided in time 2n
k

, and
let K be the standard PSPACE-complete set that can be decided in time 2cn,
for some constants k and c. We define the following intermediate language S,
where δ = ε

ck .

S =
{
〈x, y〉

∣∣ |y| = |x|δ, L(x)⊕K(y) = 1
}

Since S is in PSPACE, there is a many-one reduction f from S to A.
Let

Tn =
{
x ∈ Σn

∣∣∣ x ∈ L, ∀y ∈ Σnδ , |f(〈x, y〉)| > nδ
}
.

We will first show that Tn is not an empty set.

Lemma 3.2. For all but finitely many n, Tn 6= ∅.

Proof. Suppose there exist infinitely many n for which Tn = ∅. We will exhibit
an algorithm that decides L correctly in time 2n

ε

for every n at which Tn = ∅.
Consider the following algorithm for L.

1. Input x, |x| = n.
2. Cycle through all y of length nδ and find a y such that |f(〈x, y〉)| ≤ nδ. If

no such y is found reject x.
3. Suppose such a y is found. Compute K(y) and A(f(〈x, y〉)).
4. Accept x if and only if A(f(〈x, y〉))⊕K(y) = 1.

Consider a length n at which Tn = ∅. Let x be an input of length n. We
first consider the case when the above algorithm finds a y in Step 2. Since f is
many-one reduction from S to A, we have L(x) ⊕ K(y) = A(f(〈x, y〉)). Thus
L(x) = K(y)⊕A(f(〈x, y〉)). Therefore the algorithm is correct in this case. Now
consider the case when the algorithm does not find a y. Since Tn = ∅, for every
x (of length n) in L, it must be the case that the length of f(〈x, y〉) is at most
nδ for some y of length nδ. Thus if the algorithm does not find a y in Step 2,
then it must be the case that x /∈ L. In this case, the algorithm correctly rejects
x. Therefore the algorithm is correct on all strings of length n.

The time taken find a y in Step 2 is bounded by 22n
δ

. The time taken to

compute K(y) is 2cn
δ

. The time taken to compute A(f(〈x, y〉) is at most 2m
k

,
where m = |f(〈x, y〉)|. Since the length of f(〈x, y〉) is at most nδ and δ = ε/ck,
the total time taken by the above algorithm is bounded by 2n

ε

.
Thus if Tn = ∅ for infinitely many n, then L is in ioDTIME(2n

ε

) and this
contradicts the hardness of L. �

We will now describe the P/poly many-one reduction from K to A. Let zn be
the lexicographically smallest string from Tn. It exists because of the previous
lemma. On input y of length nδ, the reduction outputs f(〈zn, y〉). Since zn ∈ L,
y ∈ K if and only if 〈zn, y〉 is in S. Since f is a many-one reduction from S to
A, this is a many-one reduction from K to A. By the definition of zn, we have
that the length of f(〈zn, y〉) is bigger than nδ. Since y is of length nδ, this is
a li-reduction from K to A. The advice for the reduction is zn. Thus, this is a
P/poly reduction. �

Theorem 3.3. If there is language L in NP that is not in ioDTIME(2n
ε

) for
some ε > 0, then all PSPACE-complete sets are complete via SNP li-reductions.

The proof of Theorem 3.3 uses the same setup as Theorem 3.1. Consider S
and Tn as before. We have that Tn is not empty for all but finitely many lengths.
The reduction will use nondeterminism to find string in Tn. Let y be an input of
length nδ. Nondeterministically guess a string z of length n and verify that such
that z is in L and |f(〈z, y〉)| > nδ. If the verification is successful, then output
f(〈z, y〉). Otherwise, output ⊥. Since Tn is not empty, there exist at least one
path that guesses a z from Tn and on this path the reduction is correct. Note
that any path that fails to guess a z ∈ Tn will output ⊥. Thus there is no path
on which the reduction outputs a wrong answer. Thus S is SNP-complete via
li-reductions.

We now show how to reduce the number of advice bits from polynomial to
logarithmic with a stronger hypothesis. We will show that if the worst-case NP-
oracle circuit complexity of LINSPACE is 2Ω(n), then PSPACE-complete sets
are complete via li-reductions that are P/ log-computable. We will first assume
that PSPACE has a language that is hard on average, and then use a known
worst-case to average-case connection for PSPACE.

Theorem 3.4. Suppose there is a language L in LINSPACE such that for every
n, L is (2εn, 3/8)-hard for NP-oracle circuits, then PSPACE-complete sets are
complete via P/ log li-reductions.

Before we present the proof, we will mention the idea behind the proof. Our
goal is to proceed as in the proof of Theorem 3.1. Consider Tn—in the proof of
Theorem 3.1, we have shown that Tn is not empty. Suppose, we could show a
stronger claim and establish that Tn contains many (say > 3/4 fraction) strings.
Then a randomly chosen string will be a good advice with high probability. If
LINSPACE is hard on average, then E is also hard on average and pseudorandom

generators exist. Thus we can derandomize the process of “randomly picking a
string from Tn” and instead generate a small list of strings such that at least
one string from this list belongs to Tn. Now, a small advices suffices to identify
the good string from Tn.

However, this idea does not work for two reasons. Note that every string in
Tn must be in L. Since L is in PSPACE, this places Tn in PSPACE. We would
like to derandomize the process of “randomly picking a string from a language in
PSPACE.” For this to work, we need a pseudorandom generator that is secure
against PSPACE-oracle circuits. For this, we need a language that is hard for
PSPACE-oracle circuits. However, the hard language L that is guaranteed by
our hypothesis is in linear space, and thus cannot be hard for PSPACE. The
second reason is that it is not clear that Tn will contain a 3/4 fraction of strings
from Σn. Since L is hard on average for circuits, L contains roughly 1/2-fraction
of strings from Σn (at every length n). Since Tn is a subset of L, we cannot hope
that the size of Tn will be bigger than 3

42n.
We overcome these difficulties by considering two intermediate sets S1 and

S2 instead of one intermediate set S. Say f and g are many-one reductions from
S1 and S2 to the complete set A. Then we define Tn as the set of all strings x
from Σn such that for every y, the length of f(〈x, y〉) and g(〈x, y〉) are both large
enough. This will place Tn in coNP and we can pseudorandomly pick strings from
Tn provided we have a pseudorandom generator that is secure against NP-oracle
circuits. Depending on the string that we picked, we will either use reduction f
or reduction g. Now, we present the details.

Proof. Let A be a PSPACE-complete language that can be decided in time 2n
k

,
and let K be the standard complete language for PSPACE. Observe that K
can be decided in time 2cn for some constant c > 0. Let δ = ε/k. Consider the
following two languages

S1 =
{
〈x, y〉

∣∣∣ K(x)⊕ L(y) = 1, |x| = ε

2c
|y|
}
,

S2 =
{
〈x, y〉

∣∣∣ K(x)⊕ L(y) = 0, |x| = ε

2c
|y|
}
.

Both languages are in PSPACE, thus there is a many-one reduction f from
S1 to A and many-one reduction g from S2 to A. We first show that these
reductions must be honest for most strings.

Claim 3.5. Under our hardness assumption of L, there is a polynomial time
algorithm A such that for all but finitely many m, A(1m) outputs polynomially
many strings y1, y2, · · · yt of length n = 2cn

ε , such that for some yi 1 ≤ i ≤ t, and
for every x ∈ {0, 1}m, the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are at least nδ.

Assuming that Claim 3.5 holds, we complete the proof of the theorem. We
will describe a honest reduction h from K to A. Given a length m, let y1, · · · , yt
be the strings output by the algorithm A. By the lemma, there is yi such that for
every x the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are at least nδ. The reduction
gets i and L(yi) as advice. Note that the length is the advice is O(logm).

Let x be a string of length m. The reduction first computes the list y1, · · · , yt.
If the L(yi) = 0, then h(x) = f(〈x, yi〉), else h(x) = g(〈x, yi〉).

Thus h is P/O(log n) computable. If yi /∈ L, then x ∈ K if and only if
〈x, yi〉 ∈ S1. Similarly if yi ∈ L, then x ∈ K if and only if 〈x, yi〉 ∈ S2. Since f is
a reduction from S1 to A and g is a reduction S2 to A, h is a valid reduction from
K to A. Since the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are at least nδ, h is an
honest reduction from K to A. Since K is paddable, there is a length-increasing
P/O(log n)-reduction from K to A. This, together with the forthcoming proofs
of Claims 3.6 and 3.5, complete the proof of Theorem 3.4. �

To prove Claim 3.5, we need the following result.

Claim 3.6. Let

Tn =
{
y ∈ {0, 1}n

∣∣ ∀x ∈ {0, 1} εn2c , |f(〈x, y〉)| ≥ nδ, and |g(〈x, y〉)| ≥ nδ
}
.

For all but finitely many n, |Tn| ≥ 3
42n.

Proof. Suppose not. There exist infinitely many n for which Tn has at most 3
42n

strings. We will show that this implies L must be not be average-case hard at
infinitely many lengths. Consider the following algorithm for L.

1. Input y, |y| = n.
2. Cycle through all strings of length εn

2c to find a string x such that at least
one of f(〈x, y〉) or g(〈x, y〉) has length less than nδ.

3. If no such string is found output ⊥.
4. If |f(〈x, y〉)| ≤ nδ, then output A(f(〈x, y〉))⊕K(x).
5. If |g(〈x, y〉)| ≤ nδ, then output A(g(〈x, y〉))⊕K(x).

Consider a length n for which the cardinality of Tn is less than 3
42n. We will

first show that the above algorithm correctly solves L on 1/4 fraction of strings
from {0, 1}n.

A string y does not belong to Tn, if there is a string x of length εn
2c such that

at least one of the strings f(〈x, y〉) or g(〈x, y〉) has length less than nδ. For all
such string y the above algorithm halts in either Step 4 or in Step 5. It is clear
that the decision made by the algorithm in these steps is correct. Thus if y /∈ Tn,
then the above algorithm correctly decide the membership of y in L. Since the
size of Tn is at most 3

42n for many strings, the above algorithm correctly decides
L on at least 1/4 fraction of strings at length n.

The running time of the above algorithm can be bounded as follows. It takes
2
nε
2c time to search for x. Computing K(x) takes at most 2

nε
2 time. If |f(〈x, y〉)| <

nδ, computing A(f(〈x, y〉)) takes at most 2n
ε

time. Thus Step 4 take at most
O(2

εn
2) time. Similarly Step 5 also takes at most O(2

εn
2) time. Thus the running

time of the above algorithm is bounded by O(2
εn
2).

Observe that the above algorithm never errs. On any string y it either outputs
⊥ or correctly decides L, and for at least 1/4 fraction of the strings the algorithm
does not output ⊥. By providing one bit of advice, we can make the algorithm
to correctly decide L on at least 5/8 fraction of inputs from Σn.

We can convert this modified algorithm into a family of circuits of size at
most 2εn. If the size of Tn is less than 3

42n for infinitely many n, then this circuit
family correctly computes L on at least 5/8 fraction of strings from {0, 1}n for
infinitely many n. This contradicts the hardness of L. �

Now we return to the proof of Claim 3.5.
Proof of Claim 3.5. In the following we fix m and so n. Recall that n = 2cm

ε .
There is a polynomial p such that the computation of both f and g on strings of
form 〈x, y〉, |y| = n, |x| = m is bounded by p(n). Let r = p2(n). Since LINSPACE
is hard on average for 2εn-size NP-oracle circuits, and LINSPACE ⊆ E, by
Theorem 2.2 there is a PRG family Gr that maps d log r bits to r bits. The
algorithm A on input 1m behaves as follows: For each d log r bit string u compute
Gr(u) and output its n-bit prefix. This generates at most rd strings. Since r is
a polynomial in m, the number of strings output are polynomial in m.

We have to show that there exists a string yi from the output of A(1m)
such that for every x ∈ {0, 1}m, the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are
bigger than nδ. Suppose not. Consider the following algorithm B that has SAT
as oracle.

Given a string of length r as input, let y be its n-bit prefix. By making queries
to the SAT find if there is a string x of length m such that one of f(〈x, y〉) or
g(〈x, y〉) have length less than nδ. If no such x is found accept, else reject.

This algorithm runs in time p(n), and so can be converted into a circuit C
of size at most r. By our assumption,

Pr
z∈{0,1}d log r

[C(Gr(z)) = 1] = 0

However, by Claim 3.6
Pr

z∈{0,1}r
[C(z) = 1] ≥ 3/4

This contradicts the fact that G is a pseudorandom generator against NP-oracle
circuits. � Claim 3.5

We can weaken the average-case hardness assumption in the above theorem
to a worst-case hardness assumption. It is known that if LINSPACE requires
2εn-size NP-circuits at every length, there is a language in LINSPACE that is
(2ε

′n, 3/8) hard for NP-oracle circuits at all lengths of the form t2 [IW97,KvM02].
The proof of Theorem 3.4 requires average-case hardness of a language L at
all lengths. However, the proof can be easily modified to work even when the
language is average-case hard only at lengths of the form t2. Thus we have the
following theorem.

Theorem 3.7. Suppose there is a language L in LINSPACE such that for every
n, the worst-case NP-oracle circuit complexity of L is 2εn. Then all PSPACE-
complete sets are complete via P/ log li-reductions.

We conclude with an improvement of Theorem 3.7. Consider the proof of
Theorem 3.4. The hardness assumption “LINSPACE is (2εn, 3/8) hard for NP-
oracle circuits” is used at two places. First in the proof of Claim 3.6. Note that

the proof of this lemma only needs a weaker assumption, namely “PSPACE
is (2εn, 3/8) hard for circuits.” By a very slight modification of the proof, we
can further weaken the hypothesis needed to establish Claim 3.6. Consider the
following definitions of S1 and S2.

S1 =

{
〈x, y〉

∣∣∣∣ K(x)⊕ L(y) = 1, |x| = |y|
ε

2c

}
,

S2 =

{
〈x, y〉

∣∣∣∣ K(x)⊕ L(y) = 0, |x| = |y|
ε

2c

}
.

We define Tn as

Tn =
{
y ∈ {0, 1}n

∣∣∣ ∀x ∈ {0, 1}nε2c , |f(〈x, y〉)| ≥ nδ, and |g(〈x, y〉)| ≥ nδ
}
.

With this definition of S1, S2, and Tn, the proof proceeds exactly as before,
except that to establish Claim 3.6, we only need that “PSPACE is (2n

ε

, 3/8)
hard for circuits”. Again, it is known that if PSPACE is does not have 2n

ε

-size
circuits, then PSPACE is (2n

ε

, 3/8)-hard for circuits.
The second place where the hardness of LINSPACE is used is in the proof

of Claim 3.5. Note that the proof of this claim goes through if we merely have
the assumption “E has a language with 2εn-size NP-oracle circuit complexity”.
These observations yield the following improvement.

Theorem 3.8. Suppose there is a language L in PSPACE such that for every
n, the worst-case circuit complexity of L is 2n

ε

for some ε > 0. Further assume
that E has a language whose worst-case NP-oracle circuit complexity is 2δn for
some δ > 0. All PSPACE-complete sets are complete via P/ log li-reductions.

References

[Agr02] M. Agrawal. Pseudo-random generators and structure of complete degrees.
In Proceedings of the Seventeenth Annual IEEE Conference on Computa-
tional Complexity, pages 139–147. IEEE Computer Society, 2002.

[AM77] L. Adleman and K. Manders. Reducibility, randomness, and intractability.
In Proceedings of the 9th ACM Symposium on Theory of Computing, pages
151–163, 1977.

[AW09] M. Agrawal and O. Watanabe. One-way functions and the isomorphism
conjecture. Technical Report TR09-019, Electronic Colloquium on Compu-
tational Complexity, 2009.

[Ber77] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cor-
nell University, 1977.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other
complete sets. SIAM Journal on Computing, 6(2):305–322, 1977.

[BHHT10] H. Buhrman, B. Hescott, S. Homer, and L. Torenvliet. Non-uniform reduc-
tions. Theory of Computing Systems, 47(2):317–241, 2010.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceedings
of the Third ACM Symposium on the Theory of Computing, pages 151–158,
1971.

[GH92] K. Ganesan and S. Homer. Complete problems and strong polynomial re-
ducibilities. SIAM Journal on Computing, 21(4):733–742, 1992.

[GHP12] X. Gu, J. M. Hitchcock, and A. Pavan. Collapsing and separating complete
notions under worst-case and average-case hypotheses. Theory of Computing
Systems, 51(2):248–265, 2012.

[HP07] J. M. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets.
Information and Computation, 205(5):694–706, 2007.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Sym-
posium on Theory of Computing, pages 220–229, 1997.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–104. Plenum Press, 1972.

[KvM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM
Journal on Computing, 31(5):1501–1526, 2002.

