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Chapter 1

Introduction

About a decade ago, Lutz [Lut92] presented resource-bounded measure as an analogue for classical
Lebesgue measure in complexity theory. Resource-bounded measure has been commonly applied
in complexity theory research in the following two forms.

1. Resource-bounded measure may be used to obtain quantitative characterization of the relative
“sizes” of many complexity classes. Ideally this leads to separation results.

2. Hypotheses on the resource-bounded measure of complexity classes may be investigated. Some
strong measure hypotheses are reasonable and seem to have more explanatory power than
weaker, traditional complexity-theoretic hypotheses.

Resource-bounded dimension was recently introduced by Lutz [Lut00a] as an effectivization
of classical Hausdorff dimension for complexity theory. Resource-bounded measure is refined by
resource-bounded dimension in the same way that Hausdorff dimension refines Lebesgue mea-
sure. The two application methods listed above for resource-bounded measure can also be used
with resource-bounded dimension. Dimension provides a finer quantitative measure of complexity
classes, and this provides a finer variety of strong hypotheses for investigation. We study both
applications in this thesis.

In the first part of the thesis, a theory of scaled resource-bounded dimensions is developed.
These scaled dimensions are then used to give dimension measures for many nonuniform complexity
classes that are too fine to be analyzed by unscaled dimension. The latter portion of this thesis
uses a hypothesis on the polynomial-time dimension of NP to investigate the approximability of the
MAX3SAT optimization problem. In the remainder of this introduction we motivate and further
describe these results.

1.1 Scaled Dimension and Nonuniform Complexity

Many sets of interest in computational complexity have quantitative structures that are too fine
to be elucidated by resource-bounded measure. For example, it has long been known that the
Boolean circuit-size complexity class SIZE

(
2n

n

)
has measure 0 in ESPACE [Lut92], so resource-

bounded measure cannot make quantitative distinctions among subclasses of SIZE
(

2n

n

)
.

Resource-bounded dimension is sometimes able to remedy this situation. Just as classical
Hausdorff dimension enables us to quantify the structures of many sets of Lebesgue measure 0,
resource-bounded dimension enables us to quantify the structures of some sets that have measure
0 in complexity classes. For example, Lutz [Lut00a] showed that for every real number α ∈ [0, 1],
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the class SIZE
(
α2n

n

)
has dimension α in ESPACE. He also showed that for every p-computable

α ∈ [0, 1], the class of languages with limiting frequency α has dimension H(α) in E, where H is the
binary entropy function of Shannon information theory. (This is a complexity-theoretic extension
of a classical result of Eggleston [Egg49].) These preliminary results are hopeful because they
suggest new relationships between information and complexity and open the way for investigating
the fractal structure of complexity classes.

However, there is a conspicuous obstacle to further progress along these lines. Many classes that
occur naturally in computational complexity are parametrized in such a way as to remain out of
reach of the resource-bounded dimension of [Lut00a]. For example, when discussing cryptographic
security or derandomization, one is typically interested in circuit-size bounds of the form 2αn or
2nα

, rather than the α2n

n bound of the above-cited result. It is easy to see that for all α < 1,
SIZE(2αn) and SIZE(2nα

) have dimension 0 in ESPACE, so the resource-bounded dimension of
[Lut00a] cannot provide the sort of quantitative classification that is needed. Similarly, in their
investigations of the information content of complete problems, Juedes and Lutz [JL96] established
tight bounds on space-bounded Kolmogorov complexity of the forms 2nε

and 2n+1 − 2nε
; in the

investigation of completeness in E one is typically interested in dense languages, which have census
at least 2nε

; etc. The difficulty here is that classes arising naturally in computational complexity
are often scaled in a nonlinear way that is not compatible with the linear scaling implicit in classical
Hausdorff dimension and the resource-bounded dimension of Lutz [Lut00a].

This sort of difficulty has already been encountered in the classical theory of Hausdorff dimension
and dealt with by rescaling the dimension. For example, it is known that with probability 1, a
Brownian sample path in the plane has Hausdorff dimension 2, but a more careful analysis with
a rescaled version of Hausdorff dimension shows that the dimension is actually “logarithmically
smaller” than 2 [Fal90].

In chapter 3 we extend the resource-bounded dimension of [Lut00a] by introducing the general
notion of a scale according to which dimension may be measured. The choice of which scale to
use for a particular application is very much like the choice of whether to plot data on a standard
Cartesian graph or a log-log graph. We then define a particular, natural hierarchy of scales, one
for each integer, and use these to define the ith-order dimension of arbitrary sets X in suitable
complexity classes. The 0th-order dimension is precisely the dimension used by Hausdorff [Hau19]
and Lutz [Lut00a]. We propose that higher- and lower-order dimensions will be useful for many
investigations in computational complexity. In support of this proposal in chapter 4 we prove the
following for 0 ≤ α ≤ 1 and any polynomial q(n) ≥ n2.

1. The class SIZE(2αn) and the time- and space-bounded Kolmogorov complexity classes KTq(2αn)
and KSq(2αn) have 1st-order dimension α in ESPACE.

2. The classes SIZE(2nα
), KTq(2nα

), and KSq(2nα
) have 2nd-order dimension α in ESPACE.

3. The classes KTq(2n(1 − 2−αn)) and KSq(2n(1 − 2−αn)) have −1st-order dimension α in
ESPACE.

We emphasize that, regardless of α, all these classes have measure 0 in ESPACE, the classes in
1 and 2 have 0th-order dimension 0 in ESPACE, and the class in 3 has 0th-order dimension 1 in
ESPACE. Only when the dimension is appropriately rescaled does it respond informatively to
variation of the parameter α. We also prove more general results along these lines.

The work on scaled dimension and nonuniform complexity in chapters 3 and 4 is joint with Jack
Lutz and Elvira Mayordomo.

2



1.2 Approximation of MAX3SAT

MAX3SAT is a well-studied optimization problem. Tight bounds on its polynomial-time approx-
imability are known:

1. There exists a polynomial-time 7
8 -approximation algorithm (Karloff and Zwick [KZ97, HZ99]).

1

2. If P 6= NP, then for all ε > 0, there does not exist a polynomial-time (7
8 + ε)-approximation

algorithm (H̊astad [H̊as97]).

Recently there has been some investigation of approximating MAX3SAT in exponential time.
For example, for any ε ∈ (0, 1

8 ], Dantsin, Gavrilovich, Hirsch, and Konev [DGHK] give a (7
8 + ε)-

approximation algorithm for MAX3SAT running in time 28εk where k is the number of clauses in
a formula.

Given these results, it is natural to ask for stronger lower bounds on computation time for
MAX3SAT approximation algorithms that have performance ratio greater than 7

8 . Such lower
bounds are not known to follow from the hypothesis P 6= NP. We address this question using
a stronger hypothesis involving resource-bounded dimension.

Resource-bounded measure provides strong, reasonable hypotheses which seem to have more
explanatory power than weaker, traditional complexity-theoretic hypotheses. The hypothesis that
NP does not have p-measure 0, µp(NP) 6= 0, implies P 6= NP and is known to have many plausible
consequences that are not known to follow from P 6= NP.

Resource-bounded dimension refines resource-bounded measure by providing a spectrum of
weaker, but still strong, hypotheses. We will use the hypothesis that NP has positive p-dimension,
dimp(NP) > 0. This hypothesis is implied by µp(NP) 6= 0 and implies P 6= NP.

In chapter 5 we use the hypothesis dimp(NP) > 0 to give an exponential-time lower bound for
approximating MAX3SAT beyond the known polynomial-time achievable ratio of 7

8 on all but a
subexponentially-dense set of satisfiable instances. Put another way, we prove:

If dimp(NP) > 0, then any approximation algorithm A for MAX3SAT must satisfy
at least one of the following:

1. For some δ > 0, A uses at least 2nδ
time.

2. For all ε > 0, A has performance ratio less than 7
8 + ε on an exponentially dense

set of satisfiable instances.

Lutz and Mayordomo asked whether the hypothesis µp(NP) 6= 0 implies an exponential-time
lower bound on approximation schemes for MAXSAT [LM99]. Our result gives a strong affirmative
answer to this question: we obtain a stronger conclusion from the weaker dimp(NP) > 0 hypoth-
esis. In fact, after we present the dimension result, we give an easy proposition that achieves an
exponential-time lower bound from a hypothesis even weaker than dimp(NP) > 0.

The work in chapter 5 has been accepted for publication as a research note in the journal
Theoretical Computer Science [Hit02].

1An algorithm with conjectured performance ratio 7
8

was given in [KZ97], and this conjecture has since been
proved according to [HZ99].
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Chapter 2

Preliminaries

The set of all finite binary strings is {0, 1}∗. We use the standard enumeration of binary strings
s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . .. The length of a string x ∈ {0, 1}∗ is denoted by |x|. We write
A[i..j] for the string consisting of the i-th through the j-th bits of the characteristic sequence of A
according to the standard enumeration of strings.

All languages (decision problems) in this thesis are encoded as subsets of {0, 1}∗. For a language
A ⊆ {0, 1}∗, we define A≤n = {x ∈ A

∣∣|x| ≤ n} and A=n = {x ∈ A
∣∣|x| = n}.

We say that a language A is (exponentially) dense if there is an α > 0 such that |A≤n| > 2nα

holds for all but finitely many n. We write DENSE for the class of all dense languages.
A prefix set is a language A such that no element of A is a prefix of any other element of A.
The Cantor space C is the set of all decision problems. If w ∈ {0, 1}∗ and x ∈ {0, 1}∗ ∪ C,

then w v x means that w is a prefix of x. The cylinder generated by a string w ∈ {0, 1}∗ is
Cw = {A ∈ C | w v A}.

A subset of C is called a class of languages. For any classes C and D of languages we define the
classes

C ] D = {A ∪B |A ∈ C, B ∈ D}

and
Pm(C) = {A ⊆ {0, 1}∗ |(∃B ∈ C)A ≤p

m B } .

All logarithms in this thesis are base 2.
For each i ∈ N we define a class Gi of functions from N into N as follows.

G0 = {f | (∃k)(∀∞n)f(n) ≤ kn}
Gi+1 = 2Gi(log n) = {f | (∃g ∈ Gi)(∀∞n)f(n) ≤ 2g(log n)}

We also define the functions ĝi ∈ Gi by ĝ0(n) = 2n, ĝi+1(n) = 2ĝi(log n). We regard the functions in
these classes as growth rates. In particular, G0 contains the linearly bounded growth rates and G1

contains the polynomially bounded growth rates. It is easy to show that each Gi is closed under
composition, that each f ∈ Gi is o(ĝi+1), and that each ĝi is o(2n). Thus Gi contains superpolyno-
mial growth rates for all i > 1, but all growth rates in the Gi-hierarchy are subexponential.

We use the following classes of functions.
all ={f | f : {0, 1}∗ → {0, 1}∗}
rec = {f ∈ all | f is computable }
pi = {f ∈ all | f is computable in Gi time } (i ≥ 1)
pispace = {f ∈ all | f is computable in Gi space } (i ≥ 1)
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(The length of the output is included as part of the space used in computing f .) We write p for
p1 and pspace for p1space. Throughout this thesis, ∆ and ∆′ denote one of the classes all, rec,
pi(i ≥ 1), pispace(i ≥ 1).

A constructor is a function δ : {0, 1}∗ → {0, 1}∗ that satisfies x@
6=δ(x) for all x. The result

of a constructor δ (i.e., the language constructed by δ) is the unique language R(δ) such that
δn(λ) v R(δ) for all n ∈ N. Intuitively, δ constructs R(δ) by starting with λ and then iteratively
generating successively longer prefixes of R(δ). We write R(∆) for the set of languages R(δ) such
that δ is a constructor in ∆. The following facts are the reason for our interest in the above-defined
classes of functions.

R(all) = C.
R(rec) = REC.
For i ≥ 1, R(pi)=Ei.
For i ≥ 1, R(pispace) = EiSPACE.

If D is a discrete domain, then a function f : D −→ [0,∞) is ∆-computable if there is a function
f̂ : N × D −→ Q ∩ [0,∞) such that |f̂(r, x) − f(x)| ≤ 2−r for all r ∈ N and x ∈ D and f̂ ∈ ∆
(with r coded in unary and the output coded in binary). We say that f is exactly ∆-computable if
f : D −→ Q ∩ [0,∞) and f ∈ ∆.
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Chapter 3

Scaled Dimension

In this chapter we develop a theory of scaled dimensions in complexity classes. We then develop a
particular, natural hierarchy of scaled dimensions that are suitable for complexity-theoretic appli-
cations such as those in chapter 4.

Definition. A scale is a continuous function g : H × R −→ R with the following properties.

1. H = (a,∞) for some a ∈ R ∪ {−∞}.

2. g(m, 1) = m for all m ∈ H.

3. g(m, 0) = g(m′, 0) ≥ 0 for all m,m′ ∈ H.

4. For every sufficiently large m ∈ H, the function s 7→ g(m, s) is nonnegative and strictly
increasing.

5. For all s′ > s ≥ 0, lim
m→∞

[g(m, s′)− g(m, s)] = ∞.

Example 3.1. The function g0 : R×R→ R defined by g0(m, s) = sm is the canonical example of
a scale.

Example 3.2. The function g1 : (0,∞)× R→ R defined by g1(m, s) = ms is also a scale.

Definition. If g : H×R→ R is a scale, then the first rescaling of g is the function g# : H#×R −→ R
defined by

H# = {2m | m ∈ H}

g#(m, s) = 2g(log m,s).

Note that g#
0 = g1, where g0 and g1 are the scales of Examples 3.1 and 3.2.

If g is a scale, then for all m ∈ H# and s ∈ R,

log g#(m, s) = g(log m, s),

which means that a log-log graph of the function m 7→ g#(m, s) is precisely the ordinary graph of
the function m 7→ g(m, s). This is the sense in which g# is a rescaling of g.

Lemma 3.3. If g is a scale, then g# is a scale.

Proof. Let g : H × R→ R be a scale, where H = (a,∞).
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1. It is clear that H# = (2a,∞).

2. For m ∈ H# we have log m ∈ H, so g#(m, 1) = 2g(log m,1) = 2log m = m.

3. If m,m′ ∈ H#, then log m, log m′ ∈ H, so g#(m, 0) = 2g(log m,0) = 2g(log m′,0) = g#(m′, 0).

4. Since g is a scale, there exists m0 ∈ H such that for all m ≥ m0, the function s 7→ g(m, s)
is nonegative and strictly increasing. For all m ≥ 2m0 , then, we have log m ≥ m0, so the
function s 7→ g#(m, s) = 2g(log m,s) is nonnegative and strictly increasing.

5. Assume that s′ > s ≥ 0. Since g is a scale, there exists m0 ∈ H such that g(m, s) ≥ g(m, 0) ≥
0 for all m ≥ m0. It follows that for all m ≥ 2m0 , g(log m, s) ≥ 0, whence

g#(m, s′)− g#(m, s) = 2g(log m,s′) − 2g(log m,s)

= 2g(log m,s)[2g(log m,s′)−g(log m,s) − 1]
≥ 2g(log m,s′)−g(log m,s).

Since lim
m→∞

[g(m, s′)−g(m, s)] = ∞, it follows immediately that lim
m→∞

[g#(m, s′)−g#(m, s)] =
∞.

Definition. If g : H × R→ R is a scale, then the reflection of g is the function gR : H × R→ R
defined by

gR(m, s) =
{

m + g(m, 0)− g(m, 1− s) if 0 ≤ s ≤ 1
g(m, s) if s ≤ 0 or s ≥ 1.

Example 3.4. It is easy to verify that gR
0 = g0 and that

gR
1 (m, s) =

{
m + 1−m1−s if 0 ≤ s ≤ 1
ms if s ≤ 0 or s ≥ 1.

for all m > 0 and s ∈ R.

Lemma 3.5. If g is a scale, then gR is a scale.

Proof. Let g : H × R→ R be a scale. It is clear that gR is continuous and has the same domain
as g. Also, gR(m, 0) = g(m, 0) and gR(m, 1) = g(m, 1), so it suffices to prove that gR satisfies
conditions 4 and 5 in the definition of a scale.

Let m be large enough that s 7→ g(m, s) is nonnegative and strictly increasing, let 0 ≤ s < s′ ≤ 1.
It suffices to show that 0 ≤ gR(m, s) < gR(m, s′). For the first inequality, note that 1 − s ≤ 1, so
g(m, 1− s) ≤ g(m, 1) = m, so gR(m, s) = m + g(m, 0)− g(m, 1− s) ≥ g(m, 0) ≥ 0. For the second
inequality, note that 1 − s > 1 − s′, so g(m, 1 − s) > g(m, 1 − s′), so gR(m, s) < gR(m, s′). This
confirms condition 4.

Let s′ > s ≥ 0. We have three cases.

(i) If s ≥ 1, then

lim
m→∞

[gR(m, s′)− gR(m, s)] = lim
m→∞

[g(m, s′)− g(m, s)]
= ∞.
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(ii) If s′ ≤ 1, then 1− s > 1− s′ ≥ 0, so

lim
m→∞

[gR(m, s′)− gR(m, s)] = lim
m→∞

[g(m, 1− s)− g(m, 1− s′)]
= ∞.

(iii) If s < 1 and s′ > 1, choose m0 ∈ H such that s 7→ g(m, s) is nonnegative and strictly
increasing for all m ≥ m0. Then for all m ≥ m0,

gR(m, s′)− gR(m, s) = gR(m, s′)− gR(m, 1) + gR(m, 1)− gR(m, s)
= g(m, s′)− g(m, 1) + gR(m, 1)− gR(m, s)
> gR(m, 1)− gR(m, s),

so (ii) above (with s′ = 1) tells us that lim
m→∞

[gR(m, s′)− gR(m, s)] = ∞.

Notation. For each scale g : H × R→ R, we define the function ∆g : H × R→ R by

∆g(m, s) = g(m + 1, s)− g(m, s).

Note that g is the usual finite difference operator, with the proviso that it is applied only to the
first variable, m. For l ∈ N, we also use the extended notation

∆lg(m, s) = g(m + l, s)− g(m, s).

The following definition is central to scaled dimension.

Definition. Let g : H × R→ R be a scale, and let s ∈ [0,∞).

1. A g-scaled s-supergale (briefly, an s(g)-supergale) is a function d : {0, 1}∗ −→ [0,∞) such that
for all w ∈ {0, 1}∗ with |w| ∈ H,

d(w) ≥ 2−∆g(|w|,s)[d(w0) + d(w1)]. (3.1)

2. A g-scaled s-gale (briefly, an s(g)-gale) is an s(g)-supergale that satisfies (3.1) with equality
for all w ∈ {0, 1}∗ such that |w| ∈ H.

3. An s-supergale is an s(g0)-supergale.

4. An s-gale is an s(g0)-gale.

5. A supermartingale is a 1-supergale.

6. A martingale is a 1-gale.

Remarks. 1. Martingales were introduced by Lévy [Lév54] and named by Ville [Vil39], who
used them in early investigations of random sequences. Martingales were later used exten-
sively by Schnorr [Sch70, Sch71a, Sch71b, Sch73] in his investigations of random sequences
and by Lutz [Lut92, Lut98] in the development of resource-bounded measure. Gales were in-
troduced by Lutz [Lut00a, Lut00b] in the development of resource-bounded and constructive
dimension. Scaled gales are introduced here in order to formulate scaled dimension.
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2. Although the martingale condition is usually stated in the form

d(w) =
d(w0) + d(w1)

2
,

this is a simplification of

d(w)µ(w) = d(w0)µ(w0) + d(w1)µ(w1),

where µ(x) = 2−|x| is the measure (probability) of the cylinder Cx = {A ∈ C | x v A}.
Similarly, the s-gale condition

d(w) = 2−s[d(w0) + d(w1)]

of [Lut00a, Lut00b] is a simplification of

d(w)µ(w)s = d(w0)µ(w0)s + d(w1)µ(w1)s,

which is equivalent to
d(w) = 2−∆g0(|w|,s)[d(w0) + d(w1)]. (3.2)

In defining s(g)-gales we have replaced the scale g0 in (3.2) by an arbitrary scale g.

3. Condition (3.1) is only required to hold for strings w that are long enough for g(|w|, s) to
be defined. In fact, several of the scales g(m, s) used in this paper are not defined for small
m. For such a scale g, an s(g)-supergale must satisfy condition (3.1) for all but finitely many
strings w, and this is sufficient for our development.

The following lemma is a generalization of Kraft’s inequality.

Lemma 3.6. Let g : H × R→ R be a scale, and let s ∈ [0,∞). If d is an s(g)-supergale and
B ⊆ {0, 1}∗ is a prefix set, then for all w ∈ {0, 1}∗ with |w| ∈ H,∑

u∈B

2−∆|u|g(|w|,s) d(wu) ≤ d(w).

Proof. Assume the hypothesis. We first use induction on n to prove that for all n ∈ N, the lemma
holds for all prefix sets B ⊆ {0, 1}≤n. For n = 0, this is trivial. Assume that it holds for n, and let
A ⊆ {0, 1}≤n+1 be a prefix set. Let

A′ = {u ∈ {0, 1}n | u0 ∈ A or u1 ∈ A},

and let
B = A≤n ∪A′.

Note that B is a prefix set and A≤n∩A′ = ∅ (because A is a prefix set). Also, for all w ∈ {0, 1}∗
with |w| ∈ H,

11



∑
u∈A=n+1

2−∆|u|g(|w|,s)d(wu) = 2−∆n+1g(|w|,s)
∑

u∈A=n+1

d(wu)

≤ 2−∆n+1g(|w|,s)
∑
u∈A′

[d(wu0) + d(wu1)]

≤ 2−∆n+1g(|w|,s)
∑
u∈A′

2∆g(|wu|,s)d(wu)

= 2∆g(|w|+n,s)−∆n+1g(|w|,s)
∑
u∈A′

d(wu)

= 2−∆ng(|w|,s)
∑
u∈A′

d(wu)

=
∑
u∈A′

2−∆|u|g(|w|,s)d(wu).

Since B ⊆ {0, 1}≤n, it follows by the induction hypothesis that for all w ∈ {0, 1}∗ with |w| ∈ H, if
we write

α(u) = 2−∆|u|g(|w|,s)d(wu),

then ∑
u∈A

α(u) =
∑

u∈A≤n

α(u) +
∑

u∈A=n+1

α(u)

≤
∑

u∈A≤n

α(u) +
∑
u∈A′

α(u)

=
∑
u∈B

α(u)

≤ d(w).

This completes the proof that for all n ∈ N, the lemma holds for all prefix sets B ⊆ {0, 1}≤n.
To complete the proof of the lemma, let B be an arbitrary prefix set. Then for all w ∈ {0, 1}∗

with |w| ∈ H, ∑
u∈B

α(u) = sup
n∈N

∑
u∈B≤n

α(u) ≤ d(w).

Corollary 3.7. Let g : H × R → R be a scale, s ∈ [0,∞), 0 < α ∈ R, and w ∈ {0, 1}∗ with
|w| ∈ H. If d is an s(g)-supergale such that d(w) > 0 and B ⊆ {0, 1}∗ is a prefix set such that
d(wu) ≥ α2∆|u|g(|w|,s)−|u|d(w) for all u ∈ B, then∑

u∈B

2−|u| ≤ 1
α

.

Proof. Assume the hypothesis. Then by Lemma 3.6,

d(w) ≥
∑
u∈B

2−∆|u|g(|w|,s)d(wu) ≥ αd(w)
∑
u∈B

2−|u|,

whence the corollary follows.
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Corollary 3.8. Let g : H × R→ R be a scale, let s ∈ [0,∞), and let d be an s(g)-supergale. Then
for all l ∈ N, 0 < α ∈ R, and w ∈ {0, 1}∗ with |w| ∈ H, there are fewer than 2l

α strings u ∈ {0, 1}l

for which
max
vvu

2|v|−∆|v|g(|w|,s)d(wv) > αd(w).

In particular, there is at least one string u ∈ {0, 1}l such that d(wv) ≤ 2∆|v|g(|w|,s)−|v|d(w) for all
v v u.

Proof. Let g, s, d, l, α, and w be as given, and let

A = {u ∈ {0, 1}l | max
vvu

2|v|−∆|v|g(|w|,s)d(wv) > αd(w)}.

Let B be the set of all v ∈ {0, 1}≤l such that 2|v|−∆|v|g(|w|,s)d(wv) > αd(w) but
2|v

′|−∆|v′|g(|w|,s)d(wv′) ≤ αd(w) for all v′ @
6=

v. Then B is a prefix set, and

A = {u ∈ {0, 1}l|(∃v v u)v ∈ B},

so |A| =
∑

v∈B 2l−|v| = 2l
∑

v∈B 2−|v|. Let α′ = minv∈B 2|v|−∆|v|g(|w|,s) d(wv)
d(w) , and note that α < α′ <

∞. Then B is a prefix set such that d(wv) ≥ α′2∆|v|g(|w|,s)−|v|d(w) for all v ∈ B, so Corollary 3.7
tells us that

|A| = 2l
∑
v∈B

2−|v| ≤ 2l

α′
<

2l

α
.

This proves the main assertion of the corollary. The last sentence of the corollary follows by taking
α = 1.

Corollary 3.9. Let g : H × R→ R be a scale, let s ∈ [0,∞), and let d be an s(g)-supergale. Then
for all w, u ∈ {0, 1}∗ with |w| ∈ H,

d(wu) ≤ 2∆|u|g(|w|,s) d(w).

Proof. Let g, s, d, w, and u be as given, and let l = |u|. Then Corollary 3.8 with α = 2l tells us
that there are fewer than 1, hence no strings v ∈ {0, 1}l for which d(wv) > 2∆lg(|w|,s)d(w). Thus
d(wu) ≤ 2∆|u|g(|w|,s)d(w).

The following useful observations are now clear, as are the analogous observations for s(g)-
supergales.

Observation 3.10. Let g : H × R→ R be a scale, let m = min(H ∩ N), and let s ∈ [0,∞). For
each k ∈ N, let dk be an s(g)-gale, and let αk ∈ [0,∞).

1. For each n ∈ Z+,
∑n−1

k=0 αkdk is an s(g)-gale.

2. If
∑∞

k=0 αkdk(w) < ∞ for each w ∈ {0, 1}m, then
∑∞

k=0 αkdk is an s(g)-gale.

Observation 3.11. Let g : H × R→ R be a scale, let s, s′ ∈ [0,∞), and let
d, d′ : {0, 1}∗→ [0,∞). If

d(w) 2−g(|w|,s) = d′(w) 2−g(|w|,s′)

for all w ∈ {0, 1}∗ such that |w| ∈ H, then d is an s(g)-gale if and only if d′ is an s′(g)-gale.
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Definition. Let g be a scale, let s ∈ [0,∞), and let d be an s(g)-supergale.

1. We say that d succeeds on a language A ∈ C if lim sup
n→∞

d(A[0 . . . n− 1]) = ∞.

2. The success set of d is S∞[d] = {A ∈ C | d succeeds on A}.

We now use scaled gales to define scaled dimension.

Notation. Let g be a scale, and let X ⊆ C.

1. G(g)(X) is the set of all s ∈ [0,∞) such that there is an s(g)-gale d for which X ⊆ S∞[d].

2. Ĝ(g)(X) is the set of all s ∈ [0,∞) such that there is an s(g)-supergale d for which X ⊆ S∞[d].

Lemma 3.12. If g is a scale, then for all X ⊆ C, G(g)(X) = Ĝ(g)(X).

Proof. Let s ∈ [0,∞). Let d be an s(g)-supergale. We show that there is an s(g)-gale d̃ such that
S∞[d] ⊆ S∞[d̃].

Define
d̃ : {0, 1}∗ −→ [0,∞)

d̃(w) = d(w) for |w| 6∈ H

d̃(w0) = 1
2 [2g(|w|,s)d̃(w) + d(w0)− d(w1)] for |w| ∈ H

d̃(w1) = 1
2 [2g(|w|,s)d̃(w)− d(w0) + d(w1)] for |w| ∈ H

Then d̃ is clearly an s(g)-gale, and an easy induction shows that d̃(w) ≥ d(w) for all w ∈ {0, 1}∗,
whence S∞[d] ⊆ S∞[d̃].

Recall the scale g0 of Example 3.1. It was proven by Lutz [Lut00a] that the following definition
is equivalent to the classical definition of Hausdorff dimension in C.

Definition. The Hausdorff dimension of a set X ⊆ C is dimH(X) = inf G(g0)(X).

This suggests the following rescaling of Hausdorff dimension in Cantor space.

Definition. If g is a scale, then the g-scaled dimension of a set X ⊆ C is dim(g)(X) = inf G(g)(X).

By Lemma 3.12, this definition would not be altered if we used Ĝ(g)(X) in place of G(g)(X).
We now use resource-bounded scaled gales to develop scaled dimension in complexity classes. In

the following, the resource bound ∆ may be any one of the classes all, rec, p, p2, pspace, p2space,
etc., defined in chapter 2.

Notation. If g is a scale and X ⊆ C, let G(g)
∆ (X) be the set of all s ∈ [0,∞) such that there is a

∆-computable s(g)-gale d for which X ⊆ S∞[d].

Definition. Let g be a scale and X ⊆ C.

1. The g-scaled ∆-dimension of X is dim(g)
∆ (X) = inf G(g)

∆ (X).

2. The g-scaled dimension of X in R(∆) is dim(g)(X | R(∆)) = dim(g)
∆ (X ∩R(∆)).
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Note that dim(g)
∆ (X) and dim(g)(X | R(∆)) are defined for every scale g and every set X ⊆ C.

Recalling the scale g0(m, s) = sm, we write

dim∆(X) = dim(g0)
∆ (X),

dim(X | R(∆)) = dim(g0)(X | R(∆))

and note that these are exactly the resource-bounded dimensions defined by Lutz [Lut00a].

Observation 3.13. Let g be a scale.

1. For all X ⊆ Y ⊆ C,
dim(g)

∆ (X) ≤ dim(g)
∆ (Y )

and
dim(g)(X | R(∆)) ≤ dim(g)(Y | R(∆)).

2. If ∆ and ∆′ are resource bounds such that ∆ ⊆ ∆′, then for all X ⊆ C,

dim(g)
∆′ (X) ≤ dim(g)

∆ (X).

3. For all X ⊆ C, 0 ≤ dim(g)(X | R(∆)) ≤ dim(g)
∆ (X).

4. For all X ⊆ C, dim(g)(X | C) = dim(g)
all (X) = dim(g)(X).

The following lemma relates resource-bounded scaled dimension to resource-bounded measure.

Lemma 3.14. If g is a ∆-computable scale, then for all X ⊆ C,

dim(g)
∆ (X) < 1 ⇒ µ∆(X) = 0

and
dim(g)(X | R(∆)) < 1 ⇒ µ(X | R(∆)) = 0.

Proof. It suffices to prove the first implication, since the second implication then follows immedi-
ately.

Assume that dim(g)
∆ (X) < 1, where g is a ∆-computable scale. Then there exists s ∈ (0, 1) ∩Q

and a ∆-computable s(g)-gale d such that X ⊆ S∞[d]. Then the function d′ : {0, 1}∗→ [0,∞)
defined by

d′(w) = 2|w|−g(|w|,s)d(w)

is ∆-computable, and Observation 3.11 tells us that d′ is a 1(g)-gale, i.e., a martingale. Since g is a
scale and s < 1, we have lim

m→∞
[m−g(m, s)] = lim

m→∞
[g(m, 1)−g(m, s)] = ∞, so X ⊆ S∞[d] ⊆ S∞[d′].

Thus µ∆(X) = 0.

An important property of Hausdorff dimension is its stability [Fal90], which is the fact that
dimH(X ∪ Y ) is always the maximum of dimH(X) and dimH(Y ). We now show that resource-
bounded scaled dimensions also have this property.

Lemma 3.15. For every scale g and all sets X, Y ⊆ C,

dim(g)
∆ (X ∪ Y ) = max{dim(g)

∆ (X), dim(g)
∆ (Y )}

and
dim(g)(X ∪ Y | R(∆)) = max{dim(g)(X | R(∆)), dim(g)(Y | R(∆))}.
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Proof. The second identity follows from the first, so by Observation 3.13 it suffices to show that

dim(g)
∆ (X ∪ Y ) ≤ max{dim(g)

∆ (X),dim(g)
∆ (Y )}.

Choose an arbitrary s > max{dim(g)
∆ (X),dim(g)

∆ (Y )} such that s is ∆-computable. There exist
s1 ≤ s and ∆-computable s

(g)
1 -gale d1 such that X ⊆ S∞[d1], and s2 ≤ s and ∆-computable

s
(g)
2 -gale d2 such that Y ⊆ S∞[d2]. Since s is ∆-computable, dX and dY are ∆-computable s(g)-

supergales, and by the proof of Lemma 3.12 s ∈ G(g)
∆ (X) ∩ G(g)

∆ (Y ). So there exist ∆-computable
s(g)-gales dX and dY such that X ⊆ S∞[dX ] and Y ⊆ S∞[dY ]. Let d = dX + dY . Then d is clearly
∆-computable , and d is an s(g)-gale by Observation 3.10. It is clear that X ∪ Y ⊆ S∞[d], whence
s ∈ G(g)

∆ (X ∪ Y ). It follows that dim(g)
∆ (X ∪ Y ) ≤ s. Since s is arbitrary here, we have shown that

dim(g)
∆ (X ∪ Y ) ≤ max{dim(g)

∆ (X),dim(g)
∆ (Y )}.

Hausdorff dimension is also countably stable [Fal90], which means that the dimension of a
countable union of sets is the supremum of the dimensions of the sets. The following definition
and lemma show that resource-bounded scaled dimensions are “∆-stable” in the sense that they
are stable relative to countable unions that are “∆-effective.”

Definition. Let g be a scale and let X, X0, X1, X2, . . . ⊆ C.

1. X is a ∆-union of the ∆(g)-dimensioned sets X0, X1, X2, . . . if X =
⋃∞

k=0 Xk and for each
rational s > supk∈N dim(g)

∆ (Xk) there is a function d : N×{0, 1}∗ → [0,∞) with the following
properties.

(i) d is ∆-computable.

(ii) For each k ∈ N, if we write dk(w) = d(k, w), then the function dk is an s(g)-gale.

(iii) For each k ∈ N, Xk ⊆ S∞[dk].

2. X is a ∆-union of the sets X0, X1, X2, . . .
(g)-dimensioned in R(∆) if X =

⋃∞
k=0 Xk and

X ∩R(∆) is an ∆-union of the ∆(g)-dimensioned sets X0 ∩R(∆), X1 ∩R(∆), X2 ∩R(∆), . . ..

Lemma 3.16. Let g be a ∆-computable scale, and let X, X0, X1, X2, . . . ⊆ C.

1. If X is a ∆-union of the ∆(g)-dimensioned sets X0, X1, X2, . . ., then

dim(g)
∆ (X) = sup

k∈N
dim(g)

∆ (Xk).

2. If X is a ∆-union of the sets X0, X1, X2, . . .
(g)-dimensioned in R(∆), then

dim(g)(X | R(∆)) = sup
k∈N

dim(g)(Xk | R(∆)).

Proof. We assume that g is exactly ∆-computable; the general proof is similar. It suffices to prove
1, since 2 follows immediately from 1. Assume the hypothesis of 1, and let s > supk∈N dim(g)

∆ (XK)
be arbitrary with s rational and s < 2. By Observation 3.13, it suffices to show that dim(g)

∆ (X) ≤ s.
Since X is a union of the ∆(g)-dimensioned sets X0, X1, X2, . . . , there is a ∆-computable function

d : N × {0, 1}∗ −→ [0,∞) such that each dk is an s(g)-gale with Xk ⊆ S∞[dk]. Without loss of
generality (modifying d if necessary), we can assume that each dk(w) ≤ 1 for each w with |w| = a+1,
H = (a,∞).
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Let d̃ =
∑∞

k=0 2−kdk. By Observation 3.10, d̃ is an s(g)-gale. Since d is ∆-computable, there is
a function d̂ : N× N× {0, 1}∗ −→ Q ∩ [0,∞) such that d̂ ∈ ∆ and for all r, k ∈ N and w ∈ {0, 1}∗,
|d̂(r, k, w)− d(k, w)| ≤ 2−r. Define

ˆ̃d : N× {0, 1}∗ −→ Q ∩ [0,∞)

ˆ̃d(r, w) =
r+g(|w|,2)−g(a+1,s)+1∑

k=0

2−kd̂(r + 2, k, w).

Then ˆ̃d ∈ ∆ and for all r ∈ N and w ∈ {0, 1}∗,

|ˆ̃d(r, w)− d̃(w)| ≤ |d̃(w)− b|+ |b− ˆ̃d(w)|,

where b =
∑r+g(|w|,2)−g(a+1,s)+1

k=0 2−kdk(w). By Corollary 3.9,

|d̃(w)− b| =
∞∑

k=r+g(|w|,2)−g(a+1,s)+2

2−kdk(w)

≤
∞∑

k=r+g(|w|,2)−g(a+1,s)+2

2−k2∆|w|−a−1g(a+1,s)

≤
∞∑

k=r+g(|w|,2)−g(a+1,s)+2

2g(|w|,s)−k−g(a+1,s)

= 2−(r+1).

Also,

|b− ˆ̃d(w)| ≤
r+g(|w|,2)−g(a+1,s)+1∑

k=0

2−k|d̃(r + 2, k, w)− d(k,w)|

≤
∞∑

k=0

2−(k+r+2)

= 2−(r+1)

It follows that for all r ∈ N and w ∈ {0, 1}∗,

|ˆ̃d(r, w)− d̃(w)| ≤ 2−r,

whence ˆ̃d testifies that d̃ is ∆-computable. It is clear that X =
⋃∞

k=0 Xk ⊆
⋃∞

k=0 S∞[dk] ⊆ S∞[d̃],
so it follows that dim(g)

∆ (X) ≤ s.

Definition. Let d be an s(g)-gale. The unitary success set of d is

S1[d] = {S ∈ C |(∃n)d(S[0..n− 1]) ≥ 1} .
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A series
∑∞

n=0 an of nonnegative real numbers an is ∆-convergent if there is a function m : N →
N such that m ∈ ∆ and

∞∑
n=m(i)

an ≤ 2−i

for all i ∈ N. Such a function m is called a modulus of the convergence. Adding a layer of
uniformity, a sequence

∞∑
k=0

aj,k (j = 0, 1, 2, . . .)

of series of nonnegative real numbers is uniformly ∆-convergent if there is a function m : N2 → N
such that m ∈ ∆ and, for all j ∈ N, mj is a modulus of the convergence of the series

∑∞
k=0 aj,k.

We now further generalize the Borel-Cantelli lemma as was done for resource-bounded measure
[Lut92].

Lemma 3.17. Let g : H ×R→ R be a ∆-computable scale, let b = min(H ∩N), and let s ∈ [0,∞).
If d : N2 × {0, 1}∗ → [0,∞) is a ∆-computable function such that for each j, k ∈ N dj,k is an
s(g)-gale, and such that for each w with |w| = b the series

∞∑
k=0

dj,k(w) (j = 0, 1, 2, . . .) (3.3)

are uniformly ∆-convergent, then

dim(g)
∆

 ∞⋃
j=0

∞⋂
t=0

∞⋃
k=t

S1[dj,k]

 ≤ s.

Proof. Assume the hypothesis. Fix a function m : N2 → N testifying that the series (3.3) are
uniformly ∆-convergent for all w with |w| = b. (The same m can be valid for all w because there
are only finitely many w with |w| = b.) Let d̂ be a ∆-computation of d.

Without loss of generality, assume that mj is nondecreasing and mj(n) ≥ 2 for all j, n ∈ N.
Define

Sj,t =
∞⋃

k=t

S1[dj,k],

Sj =
∞⋂

t=0

Sj,t, and

S =
∞⋃

j=0

Sj .

Our task is to prove that dim(g)
∆ (S) ≤ s.

Let ε > 0. Define d′ : N× {0, 1}∗ → [0,∞) by

d′j(w) =
∞∑

k=0

dj,k(w) · 2g(|w|,s+ε)−g(|w|,s)
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for all j ∈ N and w ∈ {0, 1}∗ with |w| ∈ H. For each j ∈ N, d′j is an (s + ε)(g)-gale by Observations

3.10 and 3.11. We will use the ∆-union Lemma (3.16) to show that d′ testifies that dim(g)
∆ (S) ≤ s+ε.

To see that each Sj ⊆ S∞[d′j ], let A ∈ Sj . For each t ∈ N, A ∈ ∩∞t=0Sj,t, so there exists a
kt ≥ mj(t) and lt ∈ N such that dj,kt(x[0..lt − 1]) ≥ 1. Then

d′j(A[0..lt − 1]) ≥ 2g(lt,s+ε)−g(lt,s)dj,kt(A[0..lt − 1])

≥ 2g(lt,s+ε)−g(lt,s).

By Corollary 3.9, dj,kt(A[0..lt − 1]) ≤ 2−t2g(lt,s)−g(b,s), so g(lt, s) ≥ t + g(b, s) and lt is unbounded.
By the definition of scale, 2g(lt,s+ε)−g(lt,s) is unbounded as t goes to infinity, so A ∈ S∞[d′j ]. ”

To complete the proof, we need to show that d′ is ∆-computable. For each j, r ∈ N we define

d̂′j,r(w) =
mj(r+1−g(|w|,s+ε)−g(b,s))∑

k=0

d̂j,k,r+k+2+g(|w|,s+ε)−g(b,s)(w) · 2g(|w|,s+ε)−g(|w|,s).

Then d̂′ ∈ ∆ and for each j, r ∈ N

|d′j(w)− d̂′j,r(w)| = 2g(|w|,s+ε)−g(|w|,s)

( ∞∑
k=mj(r+1−g(|w|,s+ε)−g(b,s))+1

dj,k(w)

+

∣∣∣∣∣∣
mj(r+1−g(|w|,s+ε)−g(b,s))∑

k=0

dj,k(w)− d̂j,k,r+k+2+g(|w|,s+ε)−g(|w|,s)

∣∣∣∣∣∣
)

≤ 2−(r+1) +
mj(r+1−g(|w|,s+ε)−g(b,s))∑

k=0

2−(r+k+2)

≤ 2−(r+1) + 2−(r+1) = 2−r.

We now show that singleton subsets of R(∆) have scaled dimension 0 in R(∆).

Lemma 3.18. If g is a ∆-computable scale, then for all A ∈ R(∆),

dim(g)({A} | R(∆)) = dim(g)
∆ ({A}) = 0.

Proof. Assume the hypothesis, with g : H×R→ R, and let s > 0 be rational. Let m = min(H∩N),
and define

d : {0, 1}∗ −→ [0,∞)

d(w) =


2g(m,s) if w v A and |w| < m

2g(|w|,s) if w v A and |w| ≥ m
0 if w 6v A .

The hypothesis implies that d is ∆-computable, and it is easily checked that d is an s(g)-gale. It is
clear that A ∈ S∞[d], whence d testifies that dim(g)

∆ ({A}) ≤ s. Since s is arbitrary here, it follows
that dim(g)

∆ ({A}) = 0.
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Lemmas 3.15 and 3.18 immediately give the following.

Corollary 3.19. If g is a ∆-computable scale, then for all finite sets X ⊆ R(∆),

dim(g)(X | R(∆)) = dim(g)
∆ (X) = 0.

In fact, Lemma 3.18 can be combined with ∆-stability (Lemma 3.16) to show that all “∆-
countable” subsets of R(∆) have scaled dimension 0 in R(∆). This implies, for example, that for
all pspace-computable scales g and all constants c ∈ N,

dim(g)(DSPACE(2cn) | ESPACE) = 0.

In contrast, even if R(∆) is countable, R(∆) does not have scaled dimension 0 in R(∆). In fact
we have the following.

Theorem 3.20. If g is a ∆-computable scale, then

dim(g)(R(∆) | R(∆)) = dim(g)
∆ (R(∆)) = dim(g)

∆ (C) = 1

Proof. Let g : H × R→ R be ∆-computable. It is clear that

dim(g)(R(∆) | R(∆)) = dim(g)
∆ (R(∆)) ≤ dim(g)

∆ (C),

so it suffices to prove that dim(g)(R(∆) | R(∆)) ≥ 1 and dim(g)
∆ (C) ≤ 1.

By the Measure Conservation Theorem [Lut92], µ(R(∆) | R(∆)) = 1, so by Lemma 3.14,
dim(g)(R(∆) | R(∆)) ≥ 1.

Let s > 1 be rational, and define

d : {0, 1}∗ −→ [0,∞)

d(w) =
{

2g(m0,s)−m0 if |w| < m0

2g(|w|,s)−|w| if |w| ≥ m0,

where m0 = min(H∩N). Then d is a ∆-computable s(g)-gale and lim
m→∞

[g(m, s)−m] = lim
m→∞

[g(m, s)−

g(m, 1)] = ∞ (because g is a scale), so C ⊆ S∞[d]. Thus dim(g)
∆ (C) ≤ s. Since s > 1 is arbitrary,

this implies that dim(g)
∆ (C) ≤ 1.

We now define a particular family of scales that will be useful for studying the fractal structures
of classes that arise naturally in computational complexity.

Definition. 1. For each i ∈ N, define ai by the recurrence a0 = −∞, ai+1 = 2ai .

2. For each i ∈ Z, define the ith-order scale gi : (a|i|,∞)× R→ R by the following recursion.

(a) g0(m, s) = sm.

(b) For i ≥ 0, gi+1 = g#
i .

(c) For i < 0, gi = gR
−i.

Note that each gi is a scale by Lemmas 3.3 and 3.5. It is easy to see that each gi is ∆-computable.

Definition. Let i ∈ Z and X ⊆ C.
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1. The ith-order dimension of X is dim(i)(X) = dim(gi)(X).

2. The ith-order ∆-dimension of X is dim(i)
∆ (X) = dim(gi)

∆ (X).

3. The ith-order dimension of X in R(∆) is dim(i)(X | R(∆)) = dim(gi)(X | R(∆)).

In the spirit of the above definition, s(gi)-gales are now called s(i)-gales, etc.
Intuitively, if i < j, then it is harder to succeed with an s(j)-gale than with an s(i)-gale, so

dim(i)(X) ≤ dim(j)(X). We conclude this chapter by showing that even more is true.

Theorem 3.21. Let i ∈ Z and X ⊆ C. If dim(i+1)
∆ (X) < 1, then dim(i)

∆ (X) = 0.

Proof. It can be proven by induction that for every i ∈ Z, for arbitrary s, s̃ < 1, ∆gi+1(m, s) =
o(∆gi(m, s̃)).

Assume the hypothesis. There exist an s < 1 and a ∆-computable s(i+1)-gale d such that
X ⊆ S∞[d]. Take an arbitrary s̃ > 0, since ∆gi+1(m, s) = o(∆gi(m, s̃)), by changing only finitely
many values we can transform d into an s̃(i)-supergale d̃ with S∞[d] = S∞[d̃]. It follows that
dim(i)

∆ (X) ≤ s̃. Since s̃ was arbitrary, dim(i)
∆ (X) = 0.

This theorem tells us that for every set X ⊆ C, the sequence of dimensions dim(i)
∆ (X) for i ∈ Z

satisfies exactly one of the following three conditions.

(i) dim(i)
∆ (X) = 0 for all i ∈ Z.

(ii) dim(i)
∆ (X) = 1 for all i ∈ Z.

(iii) There exist i∗ ∈ Z such that dim(i)
∆ (X) = 0 for all i < i∗ and dim(i)

∆ (X) = 1 for all i > i∗.

Intuitively, if condition (iii) holds and 0 < dim(i∗)
∆ (X) < 1, then i∗ is the “best” order at which to

measure the ∆-dimension of X because dim(i∗)
∆ (X) provides more quantitative information about

X than is provided by dim(i)
∆ (X) for i 6= i∗. Chapter 4 provides some concrete examples of this

phenomenon.
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Chapter 4

Nonuniform Complexity

In this chapter we examine the scaled dimension of several nonuniform complexity classes in the
complexity class ESPACE.

The circuit-size complexity of a language A ⊆ {0, 1}∗ is the function CSA : N→ N, where
CSA(n) is the number of gates in the smallest n-input Boolean circuit that decides A∩{0, 1}n. For
each function f : N→ N, we define the circuit-size complexity classes

SIZE(f) = {A ∈ C | (∀∞n)CSA(n) ≤ f(n)}

and
SIZEi.o.(f) = {A ∈ C | (∃∞n)CSA(n) ≤ f(n)}.

Given a machine M , a resource-bound t : N→ N, a language L ⊆ {0, 1}∗, and a natural number
n, the t-space-bounded Kolmogorov complexity of L=n relative to M is

KSt
M (L=n) = min

{
|π|
∣∣∣M(π, n) = χL=n in ≤ t(2n) space

}
,

i.e., the length of the shortest program π such that M , on input (π, n), outputs the characteristic
string of L=n and halts without using more than t(2n) workspace. Similarly the t-time-bounded
Kolmogorov complexity of L=n relative to M is

KTt
M (L=n) = min

{
|π|
∣∣∣M(π, n) = χL=n in ≤ t(2n) time

}
,

Well-known simulation techniques show that there exists a machine U which is optimal in the
sense that for each machine M there is a constant c such that for all t, L and n we have

KSct+c
U (L=n) ≤ KSt

M (L=n) + c

and
KTct log t+c

U (L=n) ≤ KTt
M (L=n) + c.

For each resource bound t : N → N and function f : N → N we define the following complexity
classes.

KSt(f) = {L ∈ C|(∀∞n)KSt(L=n) < f(n)}
KTt(f) = {L ∈ C|(∀∞n)KTt(L=n) < f(n)}

KSt
i.o.(f) = {L ∈ C|(∃∞n)KSt(L=n) < f(n)}

KTt
i.o.(f) = {L ∈ C|(∃∞n)KTt(L=n) < f(n)}
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Our first lemma provides inclusion relationships between some SIZE and KS classes defined
using the scales.

Lemma 4.1. There exists a constant c0 ∈ N such that for all i > 0, α ∈ [0, 1],and ε > 0,

SIZE(gi(2n, α)) ⊆ KSc0n+c0(gi(2n, α + ε)).

Proof. It was shown in [Lut92] that there exists a polynomial q0 and a constant d such that for all
A ⊆ {0, 1}∗ and n ∈ N,

KSq0(A=n) < fA(n)(d + log fA(n)),

where fA(n) = max{CSA(n), n}. From that proof it is easy to see that q0 may be taken as c0n + c0

for some c0 ∈ N. Also, for i > 0,

gi(2n, α)(d + log gi(2n, α)) = o(gi(2n, α + ε)).

The lemma follows using these facts.

The next two lemmas present positive-order dimension lower bounds for some SIZE classes.

Lemma 4.2. For all i ≥ 1 and α ∈ (0, 1], for all sufficiently large n there are at least 2gi(2
n,α)

different sets B ⊆ {0, 1}n that are decided by Boolean circuits of fewer than gi(2n, α) gates.

Proof. Let m(n) = dlog gi(2n, α)e. For n large enough, m(n) < n. Then there are 22m(n) ≥ 2gi(2
n,α)

different sets C ⊆ {0, 1}m(n). Fix ε > 0. For all sufficiently large n, Lupanov [Lup58] has shown
that each of these sets is decided by a circuit of at most 2m(n)

m(n) (1 + ε) gates. Now for sufficiently
large n,

2m(n)

m(n)
(1 + ε) ≤ 2gi(2n, α)

log(gi(2n, α))
(1 + ε) < gi(2n, α).

Thus, for each C ⊆ {0, 1}m(n), if we let BC = {w0n−m(n) | w ∈ C}, then BC is decided by a Boolean
circuit of fewer than gi(2n, α) gates.

Lemma 4.3. For every i ≥ 1, for every real α ∈ [0, 1],

dim(i)(SIZE(gi(2n, α))|ESPACE) ≥ α.

Proof. This is clear if α = 0, so assume that α ∈ (0, 1]. Let s, α′ ∈ Q such that 0 < s < α′ < α, and
let d be a pspace-computable s(i)-gale. It suffices to show that SIZE(gi(2n, α))∩ESPACE 6⊆ S∞[d].

By Lemma 4.2, there is an N1 such that for all n ≥ N1, there are at least 2gi(2
n,α′) different

sets B ⊆ {0, 1}n that are decided by Boolean circuits of fewer than gi(2n, α′) gates. By Corollary
3.8, for all w such that |w| = 2n − 1, there are fewer than 2gi(2

n,α′) sets B ⊆ {0, 1}n such that
d(wu) > 2−gi(2

n,α′)2∆2n
gi(|w|,s)d(w), where u is the characteristic string of B. Let N2 be such that

∆2n
gi(2n − 1, s)− gi(2n, α′) < 0 for all n ≥ N2.
We now define a language A inductively by lengths. Let N = max(N1, N2). We start with

A<N = ∅. Let n ≥ N and assume that A<n has been defined by characteristic string w. Let u be
the lexicographically first string of length 2n such that d(wu) < d(w) and the set with characteristic
string u can be decided by a circuit of less than gi(2n, α′) gates. By the previous paragraph, A
is well-defined and A 6∈ S∞[d]. Since d is pspace-computable, A ∈ ESPACE, and by definition,
A ∈ SIZE(gi(2n, α′)) ⊆ SIZE(gi(2n, α)).
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We now give positive-order scaled dimension upper bounds for some KS classes defined using
the scales.

Lemma 4.4. For all i ≥ 0, for any polynomial q, and any α ∈ [0, 1],

dim(i)
pspace(KSq(gi(2n, α))) ≤ α.

Proof. Let q be a polynomial, let α ∈ (0, 1], and let s > α be rational. Define d : N × {0, 1}∗ −→
[0,∞) inductively as follows. For k ∈ N with 2k ≥ ai + 2,

(i) For w ∈ {0, 1}∗ with |w| ≤ ai + 1, let dk(w) = 1.

(ii) For w ∈ {0, 1}∗ with ai + 1 ≤ |w| < 2k − 1, b ∈ {0, 1}, let dk(wb) = 2∆gi(|w|,s)−1dk(w).

(iii) Assume that dk(w) has been defined, where |w| = 2n − 1 for some n ∈ N, n ≥ k. For each u

with 0 < |u| ≤ 2n, define dk(wu) = 2∆|u|gi(|w|,s)ρ(u)dk(w), where

ρ(u) =

∣∣∣∣∣{π
∣∣∣|π| < gi(2n, α) ∧ u v U(π, n) in ≤ q(2n) space

}∣∣∣∣∣
2gi(2n,α) − 1

.

It is easy to check that d is exactly pspace-computable and that for each k, dk is an s(i)-gale.
The definition of dk implies that if |w| = 2n−1 and u is the characteristic string of a set B ⊆ {0, 1}n

with KSq(B=n) < gi(2n, α), then for sufficiently large n,

dk(wu) ≥ 2∆2n
gi(|w|,s) 1

2gi(2n,α) − 1
dk(w)

≥ 2∆2n
gi(|w|,s)−gi(2

n,α)dk(w)

= 2gi(2
n+1−1,s)−gi(2

n−1,s)−gi(2
n,α)dk(w)

Since s > α,
gi(m,α) = o(gi(2m− 1, s)− gi(m− 1, s))

then for n large enough, dk(wu) ≥ 2dk(w). This implies that if

Yk = {L ∈ C | (∀n ≥ k)KSq(L=n) < gi(2n, α)},

Yk ⊆ S∞[dk]. Therefore d witnesses that KSq(gi(2n, α)) is a pspace-union of the pspace(i)-dimensioned
sets Y0, Y1, . . .. Lemma 3.16 then yields

dim(i)
pspace(KSq(gi(2n, α))) ≤ α.

Now we are able to present exact scaled-dimension results for circuit-size complexity classes
defined in terms of the positive scales. Note that in each case, we have obtained the “best” order
at which to measure the dimension of the class.
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Theorem 4.5. Let i ≥ 1 and α ∈ [0, 1]. Then

dim(i)(SIZE(gi(2n, α))|ESPACE) = α.

In particular,
dim(1)(SIZE(2αn)|ESPACE) = α

and
dim(2)(SIZE(2nα

)|ESPACE) = α.

Proof. By Lemma 4.1 we have SIZE(gi(2n, α)) ⊆ KSc0n+c0(2n, α + ε) for all ε > 0. The theorem
then follows from Lemmas 4.3 and 4.4.

At this point, we could use Lemmas 4.1 and 4.3 to give scaled dimension lower bounds for
some KS classes defined using the positive scales. Also, proving an analogue of Lemma 4.1 for
KT complexity will yield scaled dimension lower bounds for similar KT classes. However, taking
a direct approach to these lower bounds yields slightly stronger results for KT complexity. In the
next lemma we do this, and we also obtain scaled dimension lower bounds for all orders (not just
the positive ones) at the same time.

Lemma 4.6. There exist constants c1, c2 ∈ N such that for all i ∈ Z and α ∈ [0, 1],

dim(i)(KTc1n log n+c1(gi(2n, α))|ESPACE) ≥ α

and
dim(i)(KSc2n+c2(gi(2n, α))|ESPACE) ≥ α.

Proof. Let s < α be rational. Define m(n) = dgi(2n, s)e for each n ∈ N. For each x ∈ {0, 1}m(n),
let Bx ⊆ {0, 1}n be the set with characteristic string x02n−m(n). Let M be a machine that on input
(x, n) outputs x02n−|x|. Then there are constants c and d such that for all x ∈ {0, 1}m(n),

KTc(dn) log(dn)+c
U (Bx) ≤ KTdn

M (Bx) + c

≤ m(n) + c

= dgi(2n, s)e+ c.

We let c1 be such that cdn log(dn) + c ≤ c1n log n + c1 for all n. For all sufficiently large n,
gi(2n, s) + c1 is bounded by gi(2n, α) since s < α. Similarly, we obtain

KSc2n+c2
U (Bx) ≤ gi(2n, α)

for all x ∈ {0, 1}m(n).
Let d be a pspace-computable s(i)-gale. By Corollary 3.8, for all w with |w| = 2n − 1, there

are fewer than 2gi(2
n,s) strings u ∈ {0, 1}2n

such that d(wu) > 2−gi(2
n,s)2∆2n

gi(|w|,s)d(w). For all
sufficiently large n, we have constructed at least 2gi(2

n,s) sets B ⊆ {0, 1}n with KTc1n log n+c1(B) ≤
gi(2n, α). As in the proof of Lemma 4.3, we can define a language

A ∈ [KTc1n log n+c1(gi(2n, α)) ∩ ESPACE]− S∞[d].

Analagously, we also obtain

KSc2n+c2(gi(2n, α)) ∩ ESPACE 6⊆ S∞[d].
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Now we can state exact scaled dimensions results for some KS and KT classes in the 0th- and
positive-order scales.

Theorem 4.7. Let i ≥ 0, α ∈ [0, 1], and t : N → N be a polynomially-bounded function. Let c1 and
c2 be as in Lemma 4.6. If t(n) ≥ c1n log n + c1 almost everywhere, then

dim(i)(KTt(gi(2n, α))|ESPACE) = α,

and if t(n) ≥ c2n + c2 almost everywhere, then

dim(i)(KSt(gi(2n, α))|ESPACE) = α.

In particular, for any polynomial q(n) ≥ n2,

dim(1)(KTq(2αn)|ESPACE) = dim(1)(KSq(2αn)|ESPACE) = α,

and
dim(2)(KTq(2nα

)|ESPACE) = dim(2)(KSq(2nα
)|ESPACE) = α.

Proof. This follows immediately from Lemmas 4.4 and 4.6.

Now we give an upper bound on the scaled dimension of some KS classes for the negative scales.
In the negative orders, we are able to work with classes of the infinitely-often type.

Lemma 4.8. Let i ≤ −1, q be a polynomial, and α ∈ [0, 1]. Then

dim(i)
pspace(KSq

i.o.(gi(2n, α))) ≤ α.

Proof. Let q be a polynomial, let α ∈ (0, 1), and let 1 > s > α be rational. Define for each n ∈ N
a function dn : {0, 1}∗ −→ [0,∞) inductively as follows. For n ∈ N with 2n ≥ a|i| + 2,

(i) For w ∈ {0, 1}∗ with |w| ≤ a|i| + 1, let dn(w) = 2−g|i|(2
n,1−s).

(ii) For w ∈ {0, 1}∗ with a|i| + 1 ≤ |w| < 2n − 1, b ∈ {0, 1}, let dn(wb) = 2∆gi(|w|,s)−1dn(w).

(iii) Assume that dn(w) has been defined, where |w| = 2n − 1. For each u with 0 < |u| ≤ 2n,
define dn(wu) = 2∆|u|gi(|w|,s)ρ(u)dn(w), where

ρ(u) =

∣∣∣∣∣{π
∣∣∣|π| < gi(2n, α) ∧ u v U(π, n) in ≤ q(2n) space

}∣∣∣∣∣
2gi(2n,α) − 1

.

(iv) For w ∈ {0, 1}∗ with |w| ≥ 2n+1 − 1, b ∈ {0, 1}, let dn(wb) = 2∆gi(|w|,s)−1dn(w)

It is easy to check that for each n, dn is an exactly pspace-computable s(i)-gale. The definition
of dn implies that if |w| = 2n − 1 and u is the characteristic string of a set B ⊆ {0, 1}n with
KSq(B=n) < gi(2n, α), then for sufficiently large n,

dn(wu) ≥ 2∆2n
gi(|w|,s) 1

2gi(2n,α) − 1
dn(w)

≥ 2∆2n
gi(|w|,s)−gi(2

n,α)dn(w)

= 2∆2n
gi(|w|,s)−gi(2

n,α)2∆
|w|−a|i|−1

gi(a|i|+1,s)−|w|+a|i|+1−g|i|(2
n,1−s)

= 2gi(2
n+1−1,s)−gi(a|i|+1,s)−gi(2

n,α)−|w|+a|i|+1−g|i|(2
n,1−s)

= 2g|i|(2
n,1−α)−g|i|(2

n+1−1,1−s)−g|i|(2
n,1−s)+g|i|(a|i|+1,1−s)
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Since s > α,
g|i|(2m− 1, 1− s) + g|i|(m, 1− s) = o(g|i|(m, 1− α).

Then for n large enough, dn(wu) ≥ 1. This implies that if

Yn = {L ∈ C|KSq(L=n) < gi(2n, α)},

then Yn ⊆ S1[dn]. Since for each w with |w| = a|i|+1,
∑∞

n=0 dn(w) is pspace-convergent, by Lemma

3.17 it holds that dim(i)
pspace(KSq

i.o(2
gi(2

n,α))) ≤ α.

Our final theorem is an exact scaled dimension result analagous to Theorem 4.7 for the negative
scales. Here the dimension is invariant if we change the type of the class from almost-everywhere
to infinitely-often.

Theorem 4.9. Let i ≤ −1, α ∈ [0, 1], and t : N → N be a polynomially-bounded function. Let c1

and c2 be as in Lemma 4.6. If t(n) ≥ c1n log n + c1 almost everywhere, then

dim(i)(KTt(gi(2n, α))|ESPACE) = dim(i)(KTt
i.o.(gi(2n, α))|ESPACE) = α,

and if t(n) ≥ c2n + c2 almost everywhere,

dim(i)(KSt(gi(2n, α))|ESPACE) = dim(i)(KSt
i.o.(gi(2n, α))|ESPACE) = α.

In particular, for any polynomial q(n) ≥ n2,

dim(−1)(KTq(2n(1− 2−αn)))|ESPACE) = dim(−1)(KSq(2n(1− 2−αn)))|ESPACE) = α.

Proof. This follows from Lemmas 4.6 and 4.8.
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Chapter 5

Approximation of MAX3SAT

In this chapter prove an inapproximability result for the MAX3SAT problem under a hypothesis on
the p-dimension of NP. We will restrict our attention polynomial-time measure and polynomial-time
0th-order dimension. For clarity we now recall the definitions of p-measure and p-dimension.

Definition. Let s ∈ [0,∞).

1. A function d : {0, 1}∗ → [0,∞) is an s-gale if for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2s
.

2. A martingale is a 1-gale.

Definition. Let s ∈ [0,∞) and let d be an s-gale.

1. We say d succeeds on a language A if

lim sup
n→∞

d(A[0..n− 1]) = ∞.

2. The success set of d is

S∞[d] = {A ⊆ {0, 1}∗|d succeeds on A}.

Definition. Let C be a class of languages.

1. C has p-measure 0, written µp(C) = 0, if there exists a polynomial-time martingale d with
C ⊆ S∞[d].

2. The p-dimension of C is

dimp(C) = inf
{

s

∣∣∣∣ there exists a polynomial-time
s-gale d for which C ⊆ S∞[d]

}
.

For any class C, dimp(C) ∈ [0, 1]. In this chapter we will use hypotheses on the p-dimension
and p-measure of NP. The following implications are easy to verify.

µp(NP) 6= 0 ⇒ dimp(NP) = 1
⇒ dimp(NP) > 0
⇒ P 6= NP.

We begin with the following simple but useful measure and dimension invariance result.
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Lemma 5.1. Let C be a class of languages and c ∈ N.

(1) If µp(C) = 0, then µp(C ]DTIME(2cn)) = 0.

(2) dimp(C ]DTIME(2cn)) = dimp(C).

Proof. Let s ∈ [0, 1] be rational and assume that there is a polynomial-time s-gale d succeeding
on C. It suffices to give a polynomial-time s-gale succeeding on C ] DTIME(2cn). Let M0,M1, . . .
be a standard enumeration of all Turing machines running in time 2cn. Define for each i ∈ N and
w ∈ {0, 1}∗,

di(w1) =


2sdi(w) if Mi accepts s|w|
d(w1)
d(w) di(w) if d(w) 6= 0

0 otherwise,
di(w0) = 2sdi(w)− di(w1).

Let d′ =
∑∞

i=0 2−idi. Then d′ is a polynomial-time computable s-gale. Let A ∈ C and B = L(Mi) ∈
DTIME(2cn). Then for all n ∈ N, di((A ∪ B)[0..n − 1]) ≥ 2−id(A[0..n − 1]). Because A ∈ S∞[d],
A ∪B ∈ S∞[di] ⊆ S∞[d′].

5.1 Dimension of Pm(DENSEc)

Lutz and Mayordomo [LM94] proved that a superclass of Pm(DENSEc) has p-measure 0, so
µp(Pm(DENSEc)) = 0. We now develop a proof of the stronger result that dimp(Pm(DENSEc)) = 0.
This result will be used in proving the main theorem of this chapter.

We use the binary entropy function H : [0, 1] → [0, 1] defined by

H(x) =
{
−x log x− (1− x) log(1− x) if x ∈ (0, 1)
0 if x ∈ {0, 1}.

Lemma 5.2. For all n ∈ N and 0 ≤ k ≤ n,(
n

k

)
≤ nn

kk(n− k)(n−k)
= 2H( k

n
)n.

Lemma 5.2 appears as an exercise in [CLR90]. The following lemma is also easy to verify.

Lemma 5.3. For all ε ∈ (0, 1),
H(2(nε−n))2n = o(2εn).

We now show that only a p-dimension 0 set of languages are ≤p
m-reducible to non-dense lan-

guages.

Theorem 5.4.
dimp(Pm(DENSEc)) = 0.

Proof. Let s > 0 be rational. It suffices to show that dimp(Pm(DENSEc)) ≤ s.
Let {(fm, εm)}m∈N be a standard enumeration of all pairs of polynomial-time computable func-

tions fm : {0, 1}∗ → {0, 1}∗ and rationals εm ∈ (0, 1). Define

Am,n =
{

u ∈ {0, 1}2n+1−1

∣∣∣∣ (∀i, j)(fm(si) = fm(sj) ⇒ u[i] = u[j])
and |{fm(si)|u[i] = 1}| ≤ 2nεm

}
.
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For each u ∈ {0, 1}≤2n+1−1, define the integers

collisionm,n(u) = |{(i, j)|0 ≤ i < j < |u|, fm(si) = fm(sj), and u[i] 6= u[j]}|,
committedm,n(u) = |{fm(si)|0 ≤ i < |u| and u[i] = 1}|, and

freem,n(u) =
∣∣{fm(si)||u| ≤ i < 2n+1 − 1} − {fm(si)|0 ≤ i < |u|}

∣∣ .
Then there are

countm,n(u) =


2nεm−committedm,n(u)∑

i=0

(freem,n(u)
i

)
if collisionm,n(u) = 0

0 otherwise

strings v for which uv ∈ Am,n.
Define for each m,n ∈ N a function dm,n : {0, 1}∗ → [0,∞) by

dm,n(u) =

{
countm,n(u)2s|u|

|Am,n| if |u| ≤ 2n+1 − 1

2(s−1)(|u|−2n+1+1)d(u[0..2n+1 − 2]) otherwise.

Then each dm,n is a well-defined s-gale because countm,n(u) = countm,n(u0) + countm,n(u1) for all
u. Define a polynomial-time computable s-gale

d =
∞∑

m=0

2−m
∞∑

n=0

2−ndm,n.

Let A ≤p
m D ∈ DENSEc by a reduction f running in time nl. Let ε be a positive rational such

that for infinitely many n, |D≤nl | < 2nε
. Let m ∈ N be such that fm = f and εm = ε. Using

Lemmas 5.2 and 5.3, we have

|Am,n| = countm,n(λ)

=
2nε∑
i=0

(|f({0,1}≤n)|
i

)
≤ (2nε

+ 1)
(2n+1−1

2nε

)
≤ (2nε

+ 1)2H(2nε−n)2n

≤ 22εn

≤ 2s2n−2n

for all sufficiently large n. Whenever |D≤nl | < 2nε
, we have A[0..2n+1 − 2] ∈ Am,n. Therefore for

infinitely many n,

d(A[0..2n+1 − 2]) ≥ 2−(m+n)dm,n(A[0..2n+1 − 2])

= 2−(m+n) countm,n(A[0..2n+1−2])2s(2n+1−1)

|Am,n|

≥ 2−(m+n) 2s(2n+1−1)

2s2n−2n

≥ 2n−m.

Therefore A ∈ S∞[d]. This shows that Pm(DENSEc) ⊆ S∞[d], from which it follows that
dimp(Pm(DENSEc)) = 0.
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5.2 An Inapproximability Result

We now present an inapproximability result for the MAX3SAT problem under the hypothesis that
NP has positive p-dimension.

Notation. For an instance x of 3SAT we write MAX3SAT(x) for the maximum fraction of clauses
of x that can be satisfied by a single assignment. An approximation algorithm A for MAX3SAT
outputs an assignment of the variables for each instance of 3SAT. For each instance x we write
A(x) for the fraction of clauses satisfied by the assignment produced by A for x. An approximation
algorithm A has performance ratio α on x if A(x) ≥ α ·Max3Sat(x). If A has performance ratio
α on all instances, then A is an α-approximation algorithm.

H̊astad proved the following in order to show that satisfiable instances of 3SAT cannot be
distinguished from instances x with Max3Sat(x) < 7

8 + ε in polynomial-time unless P=NP.

Theorem 5.5. (H̊astad [H̊as97]) For each ε > 0, there exists a polynomial-time computable function
fε such that for all x ∈ {0, 1}∗,

x ∈ SAT ⇒ Max3Sat(fε(x)) = 1
x 6∈ SAT ⇒ Max3Sat(fε(x)) < 7

8 + ε.

We are now ready to prove the main theorem of this chapter.

Theorem 5.6. If dimp(NP) > 0, then for all ε > 0 there exists a δ > 0 such that any 2nδ
-time

approximation algorithm for Max3Sat has performance ratio less than 7
8 + ε on a dense set of

satisfiable instances.

Proof. We prove the contrapositive. Let ε > 0 be rational. For any Max3Sat approximation
algorithm A, define the set

FA =
{

x ∈ 3SAT
∣∣∣∣A(x) <

7
8

+ ε

}
.

Assume that for each δ > 0, there exists a 2nδ
-time approximation algorithm Aδ for Max3Sat with

FAδ
∈ DENSEc. By Theorem 5.4 and Lemma 5.1, it is sufficient to show that NP ⊆ Pm(DENSEc)]

DTIME(2n).
Let B ∈ NP and let r be a ≤p

m-reduction of B to SAT. Let nk be an almost-everywhere time
bound for computing fε ◦ r where fε is as in Theorem 5.5. Then

x ∈ B ⇐⇒ r(x) ∈ SAT
⇐⇒ Max3Sat((fε ◦ r)(x)) = 1
⇐⇒ A 1

k
((fε ◦ r)(x)) ≥ 7

8 + ε or (fε ◦ r)(x) ∈ FA 1
k

.

Define the languages

C =
{

x

∣∣∣∣(fε ◦ r)(x) ∈ FA 1
k

}
and D =

{
x

∣∣∣∣A 1
k
((fε ◦ r)(x)) ≥ 7

8
+ ε

}
.

Then B = C ∪ D, C ≤p
m FA 1

k

∈ DENSEc, and D can be decided in time 2(nk)
1
k = 2n for all

sufficiently large n, so B ∈ Pm(DENSEc) ]DTIME(2n).

Theorem 5.6 provides a strong positive answer to Problem 8 of Lutz and Mayordomo [LM99]:
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Does µp(NP) 6= 0 imply an exponential lower bound on approximation schemes for
MaxSat?

We observe that a weaker positive answer can be more easily obtained by using a simplified version
of our argument to prove the following result.

Proposition 5.7. If
NP 6⊆

⋂
α>0

DTIME
(
2nα)

,

then for all ε > 0 there exists a δ > 0 such that there does not exist a 2nδ
-time (7

8 +ε)-approximation
algorithm for Max3Sat.

The inapproximability results for MAX3SAT derivable from various strong hypotheses are sum-
marized in figure 5.1.

µp(NP) 6= 0
⇓

dimp(NP) > 0 ⇒
There exists a δ > 0 such that any 2nδ

-time
approximation algorithm for MAX3SAT has
performance ratio less than 7

8 + ε on a dense
set of satisfiable instances.

⇓ ⇓

NP 6⊆
⋂

α>0 DTIME
(
2nα) ⇒

There exists a δ > 0 such that no 2nδ
-

time
(

7
8 + ε

)
-approximation algorithm for

MAX3SAT exists.
⇓ ⇓

P 6= NP ⇒ No polynomial-time
(

7
8 + ε

)
-approximation

algorithm for MAX3SAT exists.

Figure 5.1: Inapproximability Results for MAX3SAT
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