
On the NP-Completeness of the Minimum Circuit Size Problem

John M. Hitchcock∗

Department of Computer Science
University of Wyoming

A. Pavan†

Department of Computer Science
Iowa State University

Abstract

We study the Minimum Circuit Size Problem (MCSP): given the truth-table of a Boolean
function f and a number k, does there exist a Boolean circuit of size at most k computing
f? This is a fundamental NP problem that is not known to be NP-complete. Previous work
has studied consequences of the NP-completeness of MCSP. We extend this work and consider
whether MCSP may be complete for NP under more powerful reductions. We also show that
NP-completeness of MCSP allows for amplification of circuit complexity. We show the following
results.

• If MCSP is NP-complete via many-one reductions, the following circuit complexity amplifi-

cation result holds: If NP∩co-NP requires 2n
Ω(1)

-size circuits, then ENP requires 2Ω(n)-size
circuits.

• If MCSP is NP-complete under truth-table reductions, then EXP 6= NP ∩ SIZE(2n
ε

) for
some ε > 0 and EXP 6= ZPP. This result extends to polylog Turing reductions.

1 Introduction

Many natural NP problems are known to be NP-complete. Ladner’s theorem [14] tells us that
if P is different from NP, then there are NP-intermediate problems: problems that are in NP,
not in P, but also not NP-complete. The examples arising out of Ladner’s theorem come from
diagonalization and are not natural. A canonical candidate example of a natural NP-intermediate
problem is the Graph Isomorphism (GI) problem. If GI is NP-complete, then the polynomial-time
hierarchy collapses [17, 8]. This gives very strong evidence that GI is unlikely to be NP-complete.

In this paper, we study another candidate example of NP-intermediate problem—the Minimum
Circuit Size Problem (MCSP): given the truth-table of a Boolean function f and a number k, does
there exist a Boolean circuit of size at most k computing f? We do not have a good understanding
of the complexity of this fundamental problem. Clearly MCSP is in NP. It is believed that MCSP
is not in P, however we do not know whether it is NP-complete. Unlike the GI problem, we do
not currently have complexity-theoretic evidence that MCSP is not NP-complete. If MCSP is not
NP-complete, then it implies that P does not equal NP. Previous work has considered whether
MCSP (and its variants) is complete via various notions of reductions [13, 16, 4]. These works
establish that if MCSP is complete, then certain consequences happen for complexity classes –

∗This research was supported in part by NSF grant 0917417.
†This research was supported in part by NSF grants 0916797 and 1421163.

1

some plausible, some not. These results indicate that settling whether MCSP is NP-complete is
outside the scope of current techniques.

Kabanets and Cai [13] showed that if MCSP is NP-complete under natural reductions, then (i)
E 6⊆ P/poly and (ii) E requires 2Ω(n)-size circuits or NP can be solved in subexponential time. On
the contrary, they obtained a host of interesting consequences under the assumption that MCSP
is in P. For example, they showed that if MCSP is in P, then Blum integers can be factored in
time 2n

ε
. They also related this assumption to circuit complexity amplification. They showed that

the assumption “MCSP is in P” yields the following: if there exists a language in E with circuit
complexity 2δn (for some δ > 0), then there is a language in E with essentially maximal circuit
complexity (close to 2n/n). Such a circuit complexity amplification result, even though believable,
is surprising.

Recently Murray and Williams [16] showed that MCSP is not complete under local reductions
where each output bit of the reduction can be computed in time n1/2−ε. They also showed that if
MCSP is complete via AC0 reductions then E has languages with circuit complexity 2δn. For the
case of polynomial-time reductions, they showed that if MCSP is NP-complete via polynomial-time
reductions,then EXP 6⊆ P/poly or EXP = NEXP. In particular, it follows that EXP 6= NP∩P/poly
and EXP 6= ZPP. Even though we strongly believe that statements such as EXP differs from ZPP
and E has high circuit complexity hold, we are far away from proving them. These results explain
the difficult of proving a NP-completeness result for MCSP (if it is indeed NP-complete). Allender,
Holden, and Kabanets studied the oracle version of MCSP problem. Given the truth-table of a
Boolean function f and a parameter k, does f admit circuits of size k that have access to an
oracle A? They showed that MCSPQBF is unlikely to be hard for various complexity classes under
reductions that are more restrictive than polynomial-time reductions. For example, they showed
that if MCSPQBF is hard for NP under logspace reductions, then nondeterministic exponential time
(NEXP) collapses to PSPACE.

The known results that concern NP-completeness of MCSP and oracle versions of MCSP can
be summarized as follows: For the case of “restricted” reductions, these problems are unlikely to
complete NP-hard; Establishing NP-hardness under polynomial-time reductions would resolve a
few major open problems in complexity theory.

Our Results. In this paper we obtain additional results regarding NP-completeness of MCSP
under polynomial-time reductions. Our first result relates completeness of MCSP with circuit
complexity amplification. If a complexity class C requires superpolynomial-size circuits, then can
we amplify this hardness to show that a complexity class D requires circuits of much higher size?
Ideally, we want D to be the same as C. However, we do not know how to prove such results
even when the class D is a superclass of C. Buresh-Oppenheim and Santhanam [10] showed that
if the nondeterministic circuit complexity of E is 2δn, then E/O(n) has languages with maximal
circuit complexity. They established a negative result that shows that known proof techniques can
not amplify deterministic circuit complexity. As our first result, we show that NP-completeness
of MCSP implies certain circuit complexity amplification. Assume that MCSP is NP-complete
and suppose further that we have a moderately exponential-size (2n

Ω(1)
) circuit-size lower bound

for NP ∩ co-NP. We show that this hardness can be amplified into a strongly exponential (2Ω(n))
circuit-size lower bound for ENP. Admittedly, the gap between these classes is large, but we know
of no unconditional method of doing this. This result should be contrasted with the previously
mentioned result of Kabanets and Cai. Interestingly, both the statements “MCSP is in P” and

2

“MCSP is NP-complete” imply that circuit complexity amplification is possible.
The statement “If NP ∩ co-NP requires circuits of size 2n

Ω(1)
, then ENP requires circuits of size

2Ω(n)” can also be viewed as an upward separation result—if a complexity class is hard, then a higher
complexity class is much harder. In general, such upward separation results are rare. For example,
we do not know if NP differs from P, then NEXP differs from EXP. Thus NP-completeness of
MCSP implies an upward separation result.

Next we consider the completeness of MCSP under reductions that are more general than
polynomial-time, many-one reductions. We do not know whether GI polynomial-time, many-one
reduces to MCSP, however Allender and Das [3] showed that GI reduces to MCSP if we allow
probabilistic, Turing reductions. These reductions use randomness and are allowed to ask multiple
(adaptive) queries. This result suggests that allowing more general reductions to MCSP yields more
power. This raises the following question: Is it possible to establish completeness of MCSP under
more general reductions? In our second result, we show that it would be difficult to establish com-
pleteness MCSP under truth-table/nonadaptive reductions. We show that if MCSP is NP-complete
under truth-table reductions, then EXP 6= NP ∩ SIZE(2n

ε
) for some ε > 0. This is an extension of

Murray and Williams’ result. We first provide an alternate proof of Murray and Williams result
for the case of many-one reductions using different techniques, and extend this proof to the case
of truth-table reductions. Our alternate proof could be of independent interest. We also note
that the proof of Murray and Williams can also be extended to the case of truth-table reductions.
Additionally, our proof extends to polylog-Turing reductions. It is worth noting that our results
for truth-table completeness and polylog-Turing completeness are not directly comparable.

Techniques. Our approaches are based on ideas from honest reductions. A many-one reduction
f is honest if |f(x)| ≥ |x|ε for some ε > 0. From early work of Berman and Hartmanis [7], we know
that all natural NP-complete problems are complete under honest reductions. Let f be a many-one
reduction from L to MCSP. We say that this reduction is parametric honest if there is an ε > 0
such that for every x, the output f(x) = 〈y, k〉 satisfies k > nε. Note that L reduces to MCSP
via honest reductions does not imply that L reduces to MCSP via parametric honest reductions.
Suppose that MCSP is NP-complete via parametric honest reductions. Consider such a reduction
f from 0∗ to MCSP. Note that f(1n) = 〈y, k〉 is a negative instance of MCSP, and since k > nε, we
have that the circuit complexity of y (when viewed a truth-table of a boolean function) is at least
nε. Thus we have a polynomial-time algorithm that outputs strings with high circuit complexity
which in turn implies that E has high circuit complexity.

We show that under certain plausible hypotheses, NP-completeness of MCSP implies that there
exist parametric honest reductions to MCSP. We combine this with the above observation to obtain
our results.

• In our first result, the hypothesis is that NP ∩ co-NP requires moderately exponential-size
circuits. We show this implies MCSP is complete under parametric honest, SNP (strong
nondeterministic) reductions. Informally, a reduction is an SNP reduction if it is computable
by a NP ∩ co-NP machine. This yields the strong exponential-size circuit lower bound for
ENP.

• In our second result, the hypothesis is that there is a hard tally language T in NP. Using
this hypothesis, we show that if MCSP is truth-table complete, then there is a truth-table
reduction from T to MCSP where at least one query is parametric, honest. This yields a

3

circuit lower bound for E. We build on this to show that truth-table completeness of MCSP
implies a separation of EXP from ZPP.

Even though we know that all known NP-complete sets are complete via honest reductions, we
do not whether this is true for all NP-complete sets. In recent years there have been a few results
that show that, under some believable hypotheses, every NP-complete set is complete via honest
reductions whose resource bounds are slightly larger than polynomial [2, 12, 11, 9]. We use ideas
from these works to show that if MCSP is complete, then it is complete via parametric honest
reductions (under certain hypotheses).

This paper is organized as follows. Section 2 covers preliminaries and previous work. Our
results on truth-table completeness of MCSP are in Section 3. The consequences for amplification
of circuit complexity are in section 4.

2 Preliminaries

For the standard notation and notions in complexity theory we refer the reader to [6]. Our alphabet
is Σ = {0, 1} and we use Σn to denote all binary strings of length n. Given an n bit string (where
n is a power of 2) x, we view x as the truth-table of a function, denoted fx, from {0, 1}logn to
{0, 1}. Given a function f : Σn → {0, 1}, we use CC(f) to denote the size of the smallest Boolean
circuit that computes f . For a string x (whose length is a power of two), we use CC(x) to denote
CC(fx). For a language L, L(x) = 1 if x ∈ L; otherwise L(x) = 0. Given a language L, we use
Ln : Σn → {0, 1} to denote the characteristic function of L restricted to strings of length n. We
say that CC(L) > s(n) if there exist infinitely many n for which CC(Ln) > s(n). We say that
CC(L) > s(n) a.e. if CC(Ln) > s(n) for all but finitely many n. A complexity class C does not
have circuits of size s(n) if there exists L ∈ C such that CC(L) > s(n).

Definition 2.1. MCSP is the set of tuples 〈x, k〉 such that CC(fx) is at most k.

An instance 〈x, k〉 of MCSP is called `-large is if k ≥ `. In our proofs we use strong nondeter-
ministic reductions [1, 15] and approximable sets. We define these notions.

Definition 2.2. A language A reduces to a language B via strong, nondeterministic, polynomial-
time reductions (SNP reductions), if there exists a polynomial-time bounded, nondeterministic
Turing machine N such that for every x ∈ Σ∗, the following conditions hold:

• Every path of N(x) outputs a string y or outputs a special symbol ⊥.

• If x ∈ A, then every output y of N(x) belongs to B; if x /∈ A, every output y of N(x) does
not belong to B.

Definition 2.3. A language L is t(n)-time 2-approximable [5], if there is exists a function f
computable in time O(t(n)) such that for every pair of strings x and y, f(x, y) 6= L(x)L(y). A
language L is io-lengthwise, t(n)-time, 2-approximable if there exists a O(t(n))-time computable
function f such that for infinitely many n for every pair of strings x and y of length n, f(x, y) 6=
L(x)L(y).

It is known that every polynomial-time, 2-approximable set has polynomial-size circuits [5].
This proof can be extended.

4

Theorem 2.4 ([5]). If a language L is io-length wise, t(n)-time 2-approximable, then for infinitely
many n, CC(Ln) ≤ O(t2(n)).

Definition 2.5. A language A is polynomial-time, truth-table reduces to a language B if there
exist a pair of polynomial-time computable functions f and g such that for every x, A(x) =
f(x,B(q1), · · · , B(qm)), where g(x) = 〈q1, · · · qm〉.

Definition 2.6. Let L be a language that polynomial-time, many-one reduces to MCSP. We
say that L reduces to MCSP via parametric, honest reduction if there exists an ε > 0, and a
polynomial-time, many-one reduction f from L to MCSP if f(x) is |x|ε large for every x ∈ Σ∗.

The above definition can be extended to the case of SNP reductions.

Definition 2.7. We say that a language L reduces to MCSP via parametric, honest, SNP reduction,
if there exists an ε > 0 and a polynomial-time nondeterministic machine N such that L SNP reduces
to MCSP via N and every output of N(x), that does not equal ⊥, is |x|ε-large.

The following observations are proved using the standard techniques.

Observation 2.8. Suppose that there is a P/O(log n) algorithm A and an ε > 0 such that for all
but infinitely many n the output of A(1n) has circuit complexity greater than nε. Then there is a
language L is E such that CC(L) ≥ 2δn for some δ > 0.

Observation 2.9. Suppose that there is a non-deterministic, polynomial-time algorithm A and an
ε > 0 such that for infinitely many n the following holds: Every output of A(1n) that does not equal
⊥, has circuit complexity greater than nε. Then there is a language L is ENP such that CC(L) ≥ 2δn

for some δ > 0.

3 Amplification of Circuit Complexity

In this section we show that completeness of MCSP implies that circuit complexity can be amplified.

Theorem 3.1. Assume that MCSP is NP-complete via polynomial-time, many-one reductions. If
there exists a language L in NP ∩ co-NP such that for some ε > 0, CC(L) ≥ 2n

ε
a.e., then there

exists δ > 0 such that then ENP does not have circuits of size 2δn.

Before we proceed with proof, we give a brief overview of the proof. Gu, Hitchcock, and
Pavan [11] showed that if NP can not be solved in sub-exponential time (at all lengths), then every
NP-complete set is complete via P/poly, length-increasing reductions. We borrow ideas from this
work. Let L be a hard language in NP ∩ co-NP whose circuit complexity is high.

Our first step in the proof is that under this hypothesis, completeness of MCSP implies complete-
ness via parametric, honest reductions. For this we define an intermediate language I that embeds
both SAT and L. This language consists of tuples 〈x, y, z〉 so that Maj(x ∈ L, y ∈ SAT, z ∈ L)
is 1. This language is clearly in NP. Consider a reduction f from I to MCSP. Suppose that
f(〈x, y, z〉) = 〈u, k〉. If k is small (less than nδ), then we can solve the membership of 〈u, k〉 in

time roughly 2n
δ
. If 〈u, k〉 is in MCSP then 〈x, y, z〉 ∈ I. Thus it must be the case that at least

one of x or z are in L. Thus L(x)L(z) cannot be equal to 00. Thus in time 2n
δ

time we learned
some information about the collective membership of x and z in L (even though this information

5

does help us solve individual memberships of x and z in L). Now suppose that for every pair x
and z, we have that f(〈x, y, z〉) is small, then for every pair of strings x and z we can exclude one

possibility for L(x)L(z) in time 2n
δ
. This implies that L must be io-2-approximable and thus L

has low enough circuit complexity (by Theorem 2.4). From this we conclude that for at least one
pair x and z, f(〈x, y, z〉) is large. Using this we build a parametric, honest reduction from SAT to
I. We now proceed with details.

Proof. Let L be a language in NP∩co-NP that does not have 2n
ε
-size circuits at almost all lengths.

We will first prove that if MCSP is NP-complete, then MCSP is complete via parametric, honest,
SNP reductions.

Lemma 3.2. Suppose that there exists a language in NP∩co-NP that requires 2n
ε
-size circuits a.e.

for some ε > 0. If MCSP is NP-complete, then MCSP is complete via parametric, honest, SNP
reductions.

Proof. Let L be the hard language in NP ∩ co-NP that requires 2n
ε
-size circuits. We define the

following intermediate language I. Let δ = ε/2.

I = {〈x, y, z〉 | Maj{x ∈ L, y ∈ SAT, z ∈ L} = 1, |x| = |z| = |y|1/δ}.

Clearly I is in NP. Let f be a many-one reduction from I to MCSP. Our goal is to exhibit a large
query, SNP reduction from SAT to MCSP. For this we will first show that for every string y of
length nδ, there exist x ∈ L, z /∈ L (of length n) such that f(〈x, y, z〉) is nδ-large.

Let

Tn = {〈x, z〉 ||x| = |z| = n,L(x) 6= L(z), ∀y ∈ Σnδ , f(〈x, y, z〉) is not nδ-large}.

We will next claim that Tn must be the empty set for all but finitely many n.

Claim 3.2.1. For all but finitely many n, Tn = ∅.

Proof. We prove by contradiction. Suppose that there exist infinitely many n at which Tn is not
empty. We show that for infinitely many lengths n, CC(Ln) ≤ 2n

ε
, which contradicts the hardness

of L. This contradiction is achieved by showing that L is io-lengthwise, 2-approximable in time
2n

ε
. Consider the following approximator function h:

1. Input: x, z of length n.

2. For every y from Σnδ compute f(〈x, y, z〉).

3. If every f(〈x, y, z〉) is nδ-large, then output 01 and stop.

4. If for some y ∈ Σnδ , f(x, y, z) is not nδ large, compute the membership of f(x, y, z) in MCSP.

5. If f(x, y, z) ∈ MCSP, then output 00; otherwise output 11.

Let n be a length at which Tn 6= ∅. We show that for every x, z of length n the output of the
above algorithm does not equal L(x)L(z). Since Tn is not empty, there exists a y ∈ {0, 1}nδ such
that f(〈x, y, z〉 is not nδ large. Thus the above algorithm reaches Step 4. If f(x, y, z) ∈ MCSP,
then the algorithm outputs 00. In this case, since f is a many-one reduction from I to MCSP,
〈x, y, z〉 ∈ I. Thus at least one of x or z must belong to L. Thus L(x)L(z) 6= 00. Similarly, if

6

f(x, y, z) /∈ MCSP, then 〈x, y, z〉 /∈ I, and this implies that at least one of x or z does not belong
to L. Thus the output of the algorithm 11 does not equal L(x)L(z).

We now bound the running time of the above algorithm. Step 2 takes O(2n
δ · poly(n)) time.

Consider Step 4. This step is performed only when f(x, y, z) = 〈u, k〉 is not nδ-large. Thus k ≤ nδ.
Thus to decide the membership of 〈u, k〉, we have to cycle through all circuits of size ≤ nδ and

check if any of them computes the function fu. This step takes 2O(lognnδ) time. Thus the total
time taken by the above algorithm is bounded by 2O(lognnδ).

If Tn is not empty for infinitely many n, the language L is io-lengthwise, 2-approximable in
time 2O(lognnδ). Thus by Theorem 2.4, CC(Ln) ≤ 2n

ε
for infinitely many n as δ ≤ ε/2.This is a

contradiction.

We will now return to the proof of Lemma 3.2. Thus Tn 6= ∅ for all but finitely many lengths n.
This suggests the following SNP reduction from SAT to MCSP: On an input y of length n, guess a
string x ∈ L and a string z /∈ L of lengths n1/δ and compute f(〈x, y, z〉) = 〈u, k〉. If k < n output
⊥, otherwise output 〈u, k〉. By claim 3.2.1, for all but finitely many n, Tn1/δ is not empty. Thus
for all but finitely many n, there exist strings x and z of length n1/δ such that x ∈ L, z /∈ L and
f(〈x, y, z〉) is n-large for every y of length n. Since L is in NP ∩ co-NP, at least one path of the
reduction guesses such x and z and the output along this path is n-large. Thus MCSP is complete
via parametric, honest, SNP-reductions.

We now complete the proof of Theorem 3.1. Let T = 0∗, by Lemma 3.2, there is a SNP reduction
f from T to MCSP that is parametric honest. Let xn = 〈yn, k〉 be the lexicographically smallest
output produced by f on input 1n. Since 1n /∈ T , we have that 〈yn, k〉 /∈ MCSP and k ≥ nδ. Thus
CC(yn) ≥ nδ. By Observation 2.9, it follows that ENP has high circuit complexity.

4 Truth-Table Completeness

Our results in this section are based on the following hypothesis.

Hypothesis H: There exists an ε > 0 and a tally language in NP that cannot be solved
deterministically in time 2n

ε
.

Before moving on to more powerful reductions, we begin by examining the case of many-one
reducibility.

Theorem 4.1. Assume that Hypothesis H holds. If MCSP is NP-complete via polynomial-time,
many-one reductions, then there exists a δ > 0 such that E 6⊆ SIZE(2δn).

Proof. Assume that MCSP is NP-complete and let T be the hard tally language that is not in
DTIME(2n

ε
). Let f be a many-one reduction from T to MCSP. Fix δ < ε.

Claim 4.1.1. There exist infinitely many n such that 0n /∈ T and f(0n) is nδ-large.

Proof. Suppose not. For all but finitely many n at which 0n /∈ T we have that f(0n) is not δ-large.
This means that if f(0n) is nδ-large for some n, then 0n ∈ T . This suggests the following algorithm
for T : On input 0n, compute f(0n) = 〈x, k〉. If f(0n) is nδ-large, then accept 0n. Otherwise, we

7

have that k < nδ. Now cycle through all circuits of size at most k to determine the membership of
〈x, k〉 in MCSP. This lets us decide the membership of 0n in T .

The time taken for this procedure is dominated by the time taken to cycle through all circuits
of size at most k. Since there are at most 2O(lognnδ) such circuits, the language T can be decided
in time less than 2n

ε
. This is a contradiction.

Now consider the following polynomial-time algorithm that on input 0n computes f(0n) = 〈x, k〉
and outputs x. Note that for infinitely many n, this algorithm outputs the truth-table of a function
whose circuit complexity is at least nδ. This implies that there is a language in E whose circuit
complexity is 2δn.

The above theorem yields the following corollary, similar to Murray and Williams [16]. The
consequence here EXP 6= NP∩SIZE(2n

ε
) is stronger than EXP 6= NP∩P/poly obtained by Murray

and Williams, though we note that their proof may be adapted to obtain this as well.

Corollary 4.2. If MCSP is NP-complete, then EXP 6= ZPP and EXP 6= NP∩SIZE(2n
ε
) for some

ε > 0.

Proof. Assume that MCSP is NP-complete. We consider two cases.

• If Hypothesis H does not hold, then NP 6= EXP as EXP has tally languages that can not be
solved in time 2n. Since ZPP is a subset of NP, EXP 6= ZPP.

• If Hypothesis H holds, then by the above theorem, E does not have circuits of size 2δn (at
infinitely many lengths). This implies that ZPP can be derandomized to P at infinitely many
length and which in turn implies that EXP 6= ZPP. Finally note that, if E does not have
circuits of size 2δn, then EXP does not have circuits of size 2n

ε
for some ε > 0.

In both cases, the conclusion of the corollary is true.

Next we extend the above theorem (and its proof) to the case of truth-table reductions. We note
that the proof of Murray and Williams can also be extended to the case of truth-table reductions.

Theorem 4.3. Assume that the hypothesis H holds. If MCSP is truth-table complete for NP, E
does not have circuits of size 2δn for some δ > 0.

Proof. Let T be the hard tally language in NP and let f a truth-table reduction from T to MCSP.
On input 0n, let qn1 , · · · qnm be the queries produced by f . Fix δ < ε. We first claim that at least
one of the queries produced is large and is a negative instance of MCSP.

Claim 4.3.1. There exist infinitely many n for which there exists i, 1 ≤ i ≤ m, such that qni is
nδ-large and does not belong to MCSP.

Proof. Suppose not. For all but finitely many n, the following holds. For every i, 1 ≤ i ≤ m, either
qni is not nδ-large or qni ∈ MCSP. This suggests the following algorithm to decide T :

On input 0n, run the reduction f and produce queries qn1 , · · · qnm.

• If qni is not nδ-large then use a brute-force search algorithm to decide the mem-
bership of qni in MCSP.

• If qni is nδ-large, then qni ∈ MCSP.

8

Use all answers to the queries decide the membership of 0n in T .

Clearly, the algorithm correctly decides T . The most expensive step of the algorithm is to decide
the membership of qni in MCSP using the brute-force algorithm. Note that we run the brute-force

algorithm only when qni is not nδ-large. Thus the time taken for this step is 2O(lognnδ). Thus the

total time taken by the algorithm is O(m2O(lognnδ)). Since m is polynomial in n and δ < ε, this is
bounded by 2n

ε
. This contradicts our hypothesis.

Using the above claim, we show that there is an efficient algorithm (with a logarithmic amount
of advice) that outputs strings with high circuit complexity.

Claim 4.3.2. There is a P/O(log n) algorithm A that on input 0n outputs a string xn and for
infinitely many n, CC(xn) ≥ nδ.

Proof. Let n` bound the run time of the truth-table reduction from T to MCSP. The algorithm
on input 0n gets a tuple 〈b, r〉 as advice where b is a bit and r < n`. The bit b is set to 1 if at least
one of qni is nδ-large and does not belong to MCSP; otherwise b is set to 0. When b is 1, then the
number r indicates the first index i, 1 ≤ i ≤ m, for which qni is nδ-large and does not belong to
MCSP. When b equals 0, r is set to 0. Note that the length of the advice is O(log n).

The algorithm on input 0n first looks at the advice bit b. If b is 0, then it outputs 0n. Otherwise
it runs the reduction from T to MCSP to produce queries qn1 , · · · qnm. Let qnr = 〈xn, k〉. The
algorithm outputs xn.

By Claim 4.3.1, there exist infinitely many n at which at least one of qni is nδ-large and does
not belong to MCSP. At every such length the above algorithm (on correct advice bits) outputs a
string xn for which CC(xn) > nδ.

By Observation 2.8, there is a language in E that requires circuits of size 2ρn for some ρ > 0.
This completes the proof of the theorem.

As before we have the following corollary.

Corollary 4.4. If MCSP is truth-table complete for NP, then EXP 6= ZPP and EXP 6= NP ∩
SIZE(2n

ε
) for some ε > 0.

Using similar ideas we can prove the following.

Theorem 4.5. If MCSP is polylog-Turing complete for NP, then EXP 6= ZPP and EXP 6= NP ∩
SIZE(2n

ε
) for some ε > 0.

References

[1] L. Adleman and K. Manders. Reducibility, randomness, and intractability. In Proc. 9th ACM
Symp. Theory of Computing, pages 151–163, 1977.

[2] M. Agrawal. Pseudo-random generators and structure of complete degrees. In 17th Annual
IEEE Conference on Computational Complexity, pages 139–145, 2002.

[3] E. Allender and B. Das. Zero knowledge and circuit minimization. In Mathematical Foun-
dations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, pages 25–32, 2014.

9

[4] E. Allender, D. Holden, and V. Kabanets. The minimum oracle circuit size problem. In 32nd
International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March
4-7, 2015, Garching, Germany, pages 21–33, 2015.

[5] A. Amir, R. Beigel, and W. Gasarch. Some connections between bounded query classes and
non-uniform complexity. Inf. Comput., 186(1):104–139, 2003.

[6] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, 2009.

[7] L. Berman and H. Hartmanis. On isomorphisms and density of NP and other complete sets.
SIAM J. Comput., 6:305–322, 1977.

[8] R. Boppanna, J. Hastad, and S. Zachos. Does Co-NP have short interactive proofs? Informa-
tion Processing Letters, 25(2):125–132, 1987.

[9] H. Buhrman, B. Hescott, S. Homer, and L. Torenvliet. Non-uniform reductions. Theory
Comput. Syst., 47(2):317–341, 2010.

[10] J. Bursesh-Oppenheim and R. Santhanam. Making hard problems harder. In 21st Annual
IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech
Republic, pages 73–87, 2006.

[11] X. Gu, J. M. Hitchcock, and A. Pavan. Collapsing and separating completeness notions under
average-case and worst-case hypotheses. Theory of Computing Systems, 51(2):248–265, 2011.

[12] J. M. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets. Information and
Computation, 205(5):694–706, 2007.

[13] V. Kabanets and J. Y. Cai. Circuit minimization problem. In Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA,
pages 73–79, 2000.

[14] R. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput. Mach.,
22:155–171, 1975.

[15] T. Long. Strong nondeterministic polynomial-time reducibilities. Theor. Comput. Sci., 21:1–
25, 1982.

[16] C. Murray and R. Williams. On the (non) np-hardness of computing circuit complexity. In
Computational Complexity Conference, 2015.

[17] U. Schöning. The power of counting. In A. Selman, editor, Complexity Theory Retrospective,
pages 204–223. Springer-Verlag, 1990.

10

