
Polynomial-Time Random Oracles and Separating

Complexity Classes

John M. Hitchcock ∗ Adewale Sekoni † Hadi Shafei ‡

Abstract

Bennett and Gill (1981) showed that PA 6= NPA 6= coNPA for a random oracle A, with
probability 1. We investigate whether this result extends to individual polynomial-time random
oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales
and resource-bounded measure (Lutz, 1992; Ambos-Spies et al., 1997), and p-betting-game
random oracles using the betting games generalization of resource-bounded measure (Buhrman
et al., 2000). Every p-betting-game random oracle is also p-random; whether the two notions
are equivalent is an open problem.

(1) We first show that PA 6= NPA for every oracle A that is p-betting-game random.

Ideally, we would extend (1) to p-random oracles. We show that answering this either way
would imply an unrelativized complexity class separation:

(2) If PA 6= NPA relative to every p-random oracle A, then BPP 6= EXP.

(3) If PA = NPA relative to some p-random oracle A, then P 6= PSPACE.

Rossman, Servedio, and Tan (2015) showed that the polynomial-time hierarchy is infinite
relative to a random oracle, solving a longstanding open problem. We consider whether we can
extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random.
Showing that PHA separates at even its first level would also imply an unrelativized complexity
class separation:

(4) If NPA 6= coNPA for a p-betting-game measure 1 class of oracles A, then NP 6= EXP.

(5) If PHA is infinite relative to every p-random oracle A, then PH 6= EXP.

We also consider random oracles for time versus space, for example:

(6) LA 6= PA relative to every oracle A that is p-betting-game random.

1 Introduction

Bennett and Gill [5] initiated the study of random oracles in computational complexity, proving
that PA 6= NPA for a random oracle A, with probability 1. Subsequent work showed that this holds
for individual random oracles. Book, Lutz, and Wagner [7] showed that PA 6= NPA for every oracle
A that is algorithmically random in the sense of Martin-Löf [19]. Lutz and Schmidt [18] improved
this further to show PA 6= NPA for every oracle A that is pspace-random [16].

∗Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu
†Department of Mathematics, Computer Science & Physics, Roanoke College. sekoni@roanoke.edu
‡Department of Mathematics and Computer Science, Northern Michigan University. hshafei@nmu.edu

1

We investigate whether this extends to individual polynomial-time random oracles [16, 2]. To
show that PA 6= NPA for p-random oracles A, we need to show that if PA = NPA, then there is a
polynomial-time martingale that succeeds on A. This means that if A makes PA = NPA, then A
is somehow predictable or simple.

Allender and Strauss [1] proved that {A | PA 6= BPPA} has p-measure 0, which implies that
PA = BPPA for every p-random oracle A. This strengthens another result of Bennett and Gill [5]
that PA = BPPA holds for a random oracle A, with probability 1. Allender and Strauss’s proof
relies on derandomization [22] and is a different approach than Bennett and Gill used. For P vs
NP oracles, the best known is the pspace-randomness result of Lutz and Schmidt [18]. Because the
class {A | PA = NPA} has Hausdorff dimension 1 [13], there is a fundamental limit to how strongly
a martingale can succeed on the class [14].

Each oracle A is associated with a test language LA. This language is tally and 0n ∈ LA if and
only if in the 2n tribes of n strings following 0n, there is at least one tribe contained in A. (See
Section 3 for a precise definition of LA. Bennett and Gill used a slightly different, but equivalent
formulation of the test language.) It is clear that LA ∈ NPA. From [5], we know that {A | LA ∈ PA}
has Lebesgue measure 0. Since PA = NPA implies LA ∈ PA, it follows that {A | PA = NPA} has
measure 0. We would like to show {A | LA ∈ PA} has p-measure 0.

Intuitively, if LA ∈ PA, we would like to predict membership of strings in A. This would be
relatively simple if the PA algorithm asked only nonadaptive queries. However, since the queries
may be adaptive, there are potentially exponentially many queries – too many to be considered by
a polynomial-time martingale.

The difficulty is that martingales are forced to bet on strings in lexicographic order. Buhrman
et al. [8] introduced an extension of resource-bounded measure using betting games. Betting games
are similar to martingales but they may adaptively choose the order in which they bet on strings.
Whether betting games are equivalent to martingales is an open question [8]. The adaptiveness in
betting games allows us to simulate PA algorithms. We show in Section 3 that there is a p-betting
game succeeding on {A | LA ∈ PA}. Therefore PA 6= NPA for every p-betting-game random oracle
A.

In Section 6, we consider whether there are limitations to extending the betting games result.
We show that determining whether or not {A | PA = NPA} has polynomial-time measure 0 (with
respect to martingales) would imply a separation of complexity classes:

• If {A | PA = NPA} has p-measure 0, then BPP 6= EXP.

• If {A | PA = NPA} does not have p-measure 0, then P 6= PSPACE.

This shows that determining the p-measure of {A | PA = NPA}, or resolving whether PA 6= NPA

for all p-random A, is likely beyond current techniques.
Bennett and Gill [5] also showed that NPA 6= coNPA for a random oracle A, with probability 1.

Rossman, Servedio, and Tan [23] answered a longtime open question [12] by extending Bennett and
Gill’s result to separate every level of the polynomial-time hierarchy. They proved an average case
depth hierarchy theorem for Boolean circuits which implies that the polynomial-time hierarchy is
infinite relative to a random oracle. In Section 4, we show that PH is infinite relative to space-
bounded random oracles. Can we show that PH is infinite relative to polynomial-time random
oracles as well? We show that extending our main result to separate PHA at even the first level
would separate NP from EXP:

2

• If {A | NPA = coNPA} has p-betting-game measure 0, then NP 6= EXP.

• If PHA is infinite relative to every p-random oracle A, then PH 6= EXP.

In Section 5, we consider time versus space. Bennett and Gill [5] showed that LA 6= PA and
PSPACEA 6= EA relative to a random oracle A. We show these separations also hold relative to
p-betting game random oracles.

This paper is organized as follows. Section 2 contains the preliminaries, particularly on resource-
bounded measure and betting games. Section 3 contains the results on random oracles for P vs.
NP, as well as extensions to P vs. UP. The results on random oracles for PH are in Section 4.
Random oracles for time vs. space are addressed in Section 5. We present limitations to improving
our results in Section 6.

2 Preliminaries

We use standard notation. The binary alphabet is Σ = {0, 1}, the set of all binary strings is Σ∗,
the set of all binary strings of length n is Σn, and the set of all infinite binary sequences is Σ∞.
The empty string is denoted by λ. We use the standard enumeration of strings, s0 = λ, s1 =
0, s2 = 1, s3 = 00, s4 = 01, . . ., and the standard lexicographic ordering of strings corresponds to
this enumeration. The characteristic sequence of a language A is the sequence χA ∈ Σ∞, where
χA[n] = 1 ⇐⇒ sn ∈ A. We refer to χA[sn] = χA[n] as the characteristic bit of sn in A. A
language A can alternatively be seen as a subset of Σ∗, or as an element of Σ∞ via identification
with its characteristic sequence χA. Given strings x, y we denote by [x, y] the set of all strings z
such that x ≤ z ≤ y. For any string sn and number k, sn + k is the string sn+k; e.g. λ + 4 = 01.
Similarly we denote by A[x, y] the substring of the characteristic sequence χA that corresponds to
the characteristic bits of the strings in [x, y].

2.1 Martingales and Betting Games

We now give a brief overview of martingales and betting games, and how they are applied in com-
putational complexity to define resource-bounded measures and randomness notions. For further
details, we refer to [16, 17, 2, 8, 11].

Betting games, which are also called nonmonotonic martingales, originated in the field of al-
gorithmic information theory. In that setting they yield the notion of Kolmogorov-Loveland ran-
domness (generalizing Kolmogorov-Loveland stochasticity) [21, 20]. The concept was introduced
to computational complexity by Buhrman et al. [8]. First, we recall the definition of a martingale:

Definition. A martingale is a function d : Σ∗ → [0,∞) such that for all w ∈ Σ∗, we have the
following averaging condition:

d(w) =
d(w0) + d(w1)

2
.

Intuitively, a martingale is betting in order on the characteristic sequence of an unknown lan-
guage. The martingale starts with finite initial capital d(λ). The quantity d(w) represents the
current capital the martingale has after betting on the first |w| bits of a sequence that begins with
w. The quantities π(w, 0) = d(w0)/2d(w) and π(w, 1) = d(w1)/2d(w) represent the fraction of its
current capital that the martingale is wagering on 0 and 1, respectively, being the next bit of the

3

sequence. This next bit is revealed and the martingale has d(w0) = 2π(w, 0)d(w) in the case of a
0 and d(w1) = 2π(w, 1)d(w) in the case of a 1.

Betting games are a generalization of martingales and have the additional capability of selecting
which position in a sequence, or equivalently, which string in a language, to bet upon next. A betting
game is permitted to select strings in a nonmonotone order, that is, it may bet on longer strings,
then shorter strings, then longer strings again (with the important restriction that it may not bet
on the same string twice). Like martingales, betting games must also satisfy the averaging law, i.e.
the average of the betting game’s capital after betting on a string s when s belongs and when s
doesn’t belong to the language is the same as its capital before betting on s. We use the following
definition of a betting game from [8].

Definition. A betting game G is an oracle Turing machine that maintains a “capital tape” and
a “bet tape,” in addition to its standard query tape and worktapes. The game works in rounds
i = 1, 2, 3, . . . as follows. At the beginning of each round i, the capital tape holds a nonnegative
rational number Ci−1. The initial capital C0 is some positive rational number. G computes a
query string xi to bet on, a bet amount Bi, 0 ≤ Bi ≤ Ci−1, and a bet sign bi ∈ {−1,+1}. The
computation is legal so long as xi does not belong to the set {x1, · · · , xi−1} of strings queried in
earlier rounds. G ends round i by entering a special query state. For a given oracle language A, if
xi ∈ A and bi = +1, or if xi 6∈ A and bi = −1, then the new capital is given by Ci := Ci−1 +Bi, else
by Ci := Ci−1 − Bi. We charge G for the time required to write the numerator and denominator
of the new capital Ci down. The query and bet tapes are blanked, and G proceeds to round i+ 1.

It is easy to see from the above definition that bi and Bi can easily be computed from the
current capital Ci := Ci−1 + biBi of the betting game. Therefore, we can equivalently define a
betting game by describing the computation of the current capital Ci without explicitly specifying
the computation of bi and Bi. We do this because it is clearer and more intuitive to describe the
computation of the current capital of the betting game presented in the next section.

Definition. If a betting game G earns unbounded capital on a language A (in the sense that for
every constant c there is a point at which the capital exceeds c when betting on A), we say that G
succeeds on A. The success set of a betting game G, denoted S∞[G], is the set of all languages on
which G succeeds. A betting game G succeeds on a class X of languages if X ⊆ S∞[G].

Intuitively, a betting game can be viewed as the strategy of a gambler who bets on infinite
sequence of strings. The gambler starts with initial capital C, then begins to query strings to
bet on. The gambler’s goal is to grow the capital C without bound. The same view holds for
martingales with the restriction that the gambler must bet on the strings in the standard ordering.

By adding a resource bound ∆ on the computation of a betting game or martingale, we get
notions of resource-bounded measure on Σ∞. For this paper the resource bounds we use are

p = DTIMEF(nO(1)), p2 = DTIMEF(2(lgn)
O(1)

), p3 = DTIMEF(22
(lg lgn)O(1)

), and the analogous
space bounds pspace, p2space, and p3space. We say a class X ⊆ Σ∞ has ∆-betting-game measure
0, if there is a ∆-computable betting game that succeeds on every language in it. It has ∆-measure
0 if the betting game is also a martingale [16]. A class X has ∆-betting-game measure 1 if Xc has
∆-betting-game measure 0. Similarly, X has ∆-measure 1 if Xc has ∆-measure 0. A language A is
∆-betting-game random if there is no ∆-computable betting game that succeeds on A. Similarly,
A is ∆-random if there is no ∆-computable martingale that succeeds on A.

4

The ability of the betting game to examine a sequence nonmonotonically makes determining
its running time complicated, since each language can induce a unique computation of the betting
game. In other words, the betting game may choose to examine strings in different orders depending
upon the language it is wagering against. Buhrman et al. [8] looked at a betting game as an infinite
process on a language, rather than a finite process on a string. They used the following definition:

Definition. A betting game G runs in time t(2n) if for all languages A, every query of length n
made by G occurs in the first t(2n) steps of the computation.

Specifically, once a t(2n)-time-bounded betting game uses t(2n) computational steps, it cannot
go back and select any string of length n. Most importantly, no polynomial-time betting game can
succeed on the class EXP = DTIME(2n

O(1)
).

3 Random Oracles for P vs. NP

In this section we show that PA 6= NPA for every p-betting-game random oracle.

Theorem 3.1. The class {A | PA 6= NPA} has p-betting-game measure 1. In particular, PA 6= NPA

for every p-betting-game random oracle A.

Proof. Given a language A we define the test language

LA = {0n | Tribes2n,n(A[0n + 1, 0n + n2n]) = 1},

where Tribes2n,n : {0, 1}n2n −→ {0, 1} is defined as follows. Given w ∈ {0, 1}n2n , first we view w
as a concatenation of 2n length n strings w1, w2, · · · , w2n ; i.e. w = w1w2 · · ·w2n . Tribes2n,n(w) is 1
if and only if wi = 1n for some i. Secondly, we view w as the substring A[0n + 1, 0n + n2n] of the
characteristic sequence of some language A. With both views in mind, we define a tribe to be the
set of strings whose characteristic bits are encoded by some wi. For example, given any i ∈ [1, 2n],
the set of strings [0n + (i − 1)n + 1, 0n + in] is a tribe because its characteristic bits are encoded
by wi. Since the n strings in any tribe have length O(n), an NP oracle machine can easily verify
the membership of any 0n, therefore LA ∈ NPA. Now we define a betting game G that succeeds
on the set X = {A | PA = NPA}, thereby proving the theorem. Our betting game G is going to
simulate oracle Turing machines on some strings in the set {0n | n ∈ N}. Let M1,M2, · · · be an
enumeration of all oracle TMs, where Mi runs in time at most nlg i + i on inputs of length n. The
initial capital of G is 2 and we view it as composed of infinitely-many “shares” ai = bi = 2−i, i ∈ N
that are used by G to bet on some of the strings it queries.

Before we go into the details of the implementation of G, we give a high level view. The strategy
of G to succeed on X is quite simple. For any language A, the cardinality of {0n | 0n /∈ LA} is
either finite or infinite. When it is finite, after querying a finite number of strings all following
strings will belong to LA. G uses “shares” ai reserved at its initialization to bet in this situation.
On the other hand, when it is infinite and A ∈ X, we can find an oracle TM Mi that decides LA.
Most importantly this TM rejects its input infinitely often and it is only in this situation that we
bet with the bi “shares”. Details follow.

First we specify the order in which G queries strings followed by which strings it bets on. G
operates sequentially in stages 1, 2, · · · . In stage j, G queries 0nj , where nj is the smallest integer
such that all the strings queried in stage j − 1 have length less than nj . G then runs the oracle

5

TM Mi+1 on 0nj , where i is the number of TMs simulated in the previous stages whose output was
inconsistent with LA in one of the previous stages. During the simulation of Mi+1, G answers any
queries made by the TM either by looking up the string from its history, or if the string isn’t in its
history, then G queries it. After the simulation, G queries in the standard lexicographic order all
the strings in the 2nj tribes that follow 0nj that haven’t already been queried. Finally, to complete
stage j, G queries all the remaining strings of length at most the length of the longest string queried
so far by G.

Now we specify which strings G bets on and how it bets with the ai’s and bi’s. In stage j, let i
and nj be such that Mi is the Turing machine simulated in this stage and 0nj is the input it will be
simulated on. The only strings G bets on will be the nj2

nj strings following 0nj ; i.e. the tribes. We
use al and bi, two of the infinite “shares” of our initial capital reserved by G for betting, where l is
the smallest positive integer such that al 6= 0. As will be shown later we do this because G loses all
of al whenever 0nj 6∈ LA. The “shares” al and bi are dynamic and may have their values updated
as we bet with them. Therefore, the current capital of G after each bet is

∑∞
i=1(ai + bi). Though

we describe separately how G bets with al and bi, we may bet with both simultaneously. We bet
with some al for every stage, but with the bi’s we bet only when the output of the simulated TM
is 0. Therefore every time we bet with bi we also simultaneously bet with al. First let us see how
G bets in stage j using the al and then with bi.

Betting with al: Our choice of l ensures that al 6= 0. In fact, al will either increase, or reduce
to 0 after betting. If we lose al in the current stage, then we use al+1 = 2−(l+1) to bet in the next
stage. G uses al to bet that at least one of the 2nj tribes that follow 0nj is completely contained in
A; i.e. 0nj ∈ LA. Call this event Bnj . It is easy to see that for sufficiently large nj , when strings
are included independently in A with probability 1/2, the probability of event Bnj is

Pr(Bnj) = 1− (1− 2−nj)2
nj ≈ 1− 1/e.

G bets in such a way that whenever the sequence of strings seen satisfies the event Bnj , al increases
by a factor of approximately 1/(1− 1/e). If the sequence of strings does not satisfy event Bnj then
G loses all of al and will bet with al+1 in the next stage.

We now elaborate on how al increases by a factor of approximately 1/(1− 1/e) when event Bnj

occurs. Let ω ∈ {0, 1, ?}nj2
nj

represent the current status of strings in [0nj + 1, 0nj + nj2
nj], ω[i] is

the status of string 0nj + i, ? indicates the string has not been queried by G yet, for queried strings,
bits 0 and 1 have their usual meaning. Define

Gal(ω) =
al

Pr(Bnj)
Pr(Bnj |ω),

where Pr(Bnj) is the probability a random language satisfies event Bnj , and Pr(Bnj |ω) is the
conditional probability of the event Bnj given the current status of the strings as encoded by ω,
i.e. given the strings in [0nj + 1, 0nj + nj2

nj] whose membership in A has already been revealed,
what is the probability that randomly assigning membership to other strings causes event Bnj to
occur. This probability is rational and easy to compute in O(22n) time by examining the status of
the strings in each of the 2n tribes in [0n + 1, 0n + n2n]. Gal is essentially a martingale. Whenever
the membership of any string in [0nj + 1, 0nj + nj2

nj] is revealed, al is then updated to Gal(ω).

Given ω ∈ {0, 1, ?}nj2
nj

and b ∈ {0, 1, ?}, let ωi→b denote ω with its ith symbol set to b. It is easy
to see that

Gal(ω
i→?) =

Gal(ω
i→0) +Gal(ω

i→1)

2
.

6

For all sufficiently large nj ,

Gal(ω) =
al

Pr(Bnj)
≈ al/(1− 1/e)

for any string ω ∈ {0, 1}nj2
nj

that satisfies event Bnj and 0 for those that do not satisfy Bnj . It
is important to note that G can always bet with al no matter the order in which it requests the
strings in [0nj + 1, 0nj + nj2

nj] that it bets on. But as will be shown next the ordering of these
strings is important when betting with bi.

Betting with bi: Finally, we specify how G bets with “share” bi which is reserved for betting
with Mi. G only bets with bi when the simulation of Mi on 0nj returns 0. In this situation G
bets that at least 2nj − (nlg ij + i) tribes of the 2nj tribes that follow 0nj are not contained in A.
For simplicity, G does not bet on the tribes that Mi queried. We denote by Cnj the event that
all the tribes unqueried by Mi are not contained in A. Event Cnj occurs with probability at most

(1− 2−nj)2
nj−(nlg i

j +i) ≈ 1/e, and is almost the complement of Bnj . In this case G bets similarly to
how it bets with al and increases bi by a factor of 1/Pr(Cnj) ≈ e whenever the sequence of strings
that follow 0nj satisfies Cnj . If the sequence does not satisfy Cnj then G loses all of bi.

We now argue that G succeeds on X. Suppose A ∈ X and S ⊆ 0∗ is the set of input strings G
simulates on some TMs in stages 1, 2, Then there are two possibilities:

1. Finitely many strings in S do not belong to LA,

2. Infinitely many strings in S do not belong to LA.

Denote by sk the kth string in S. In the first case, there must be a k such that for every stage
j ≥ k, sj ∈ LA. Once we reach stage k, G uses a “share” of its capital ai 6= 0 to bet on sj belonging
to LA for all j ≥ k. Therefore, G will increase ai by a factor of approximately 1/(1 − 1/e) for all
but finitely many stages j ≥ k. Therefore, the capital of G will grow without bound in this case.

In the second case, we must reach some stage k at which we use the correct oracle TM Mi that
decides LA on inputs in S. From this stage onward G will never change the TM it simulates on
the strings in S we have not seen yet. In this case we are guaranteed this simulation will output
0 infinitely often. It follows by the correctness of Mi and the definition of G that whenever the
output of Mi is 0 the “share” of the capital bi reserved for betting on Mi will be increased by a
factor of approximately e. Since this condition is met infinitely often, it follows that the capital of
G increases without bound in this case also.

Finally, we show that G can be implemented as a O(22n)-betting game; i.e. after O(22n) time,
G will have queried all strings of length n. First, we bound the runtime of each round of the betting
game; i.e. the time required to bet on a string. This should not be confused with the stages of G
which include several rounds of querying. In each round, we have to compute

∑∞
i=1(ai + bi) the

current capital of G. This sum can easily be computed in O(2n) time. This is because for each
round we change at most two “shares” al and bi to some rational numbers that can be computed in
O(2n) time. Also, the remaining a and b “shares” with indices greater than l = O(n) and i = O(n)
respectively retain their initial values, so the sum is easily computable. We may also simulate a
TM in each round. Since each simulated TM Mi has i ≤ n it takes O(nlgn) time for the simulation
of Mi on 0n. Therefore, each round is completed in O(2n) time. After the simulation G requests all
the remaining strings in [0n + 1, 0n + n2n] that were not queried during the simulation. Therefore,
it takes O(22n) time for G to have requested all strings of length n.

7

Next, we consider random oracles for P vs. NP relative to martingales rather than betting
games. Note that Theorem 3.2 is incomparable with Theorem 3.1 because it’s not known whether
either of the two classes p-betting-game-random oracles and p2-random oracles is a subset of the
other class.

Theorem 3.2. PA 6= NPA for every p2-random oracle A.

Proof. The proof follows from a few observations from the proof of the previous theorem. We want
to show that there is a p2-martingale that succeeds on any oracle A such that, PA = NPA. In the
previous theorem, we partition the set X = {A | PA = NPA}. Let us denote these partitions as
X1 and X2, where X1 and X2 are the set of oracles for which {0n | 0n /∈ LA} is finite and infinite,
respectively. We designed a p-betting-game that succeeded on any oracle in X1. Furthermore,
we argued that the betting-game succeeds on X1 no matter the order in which it bets on strings.
Therefore, we can bet on the strings of such oracles in the standard ordering of strings. Thus, there
is a p2-measure 0 oracle that succeeds on X1.

It remains to show that there is a p2-martingale that succeeds on any A ∈ X2. Our strategy for
succeeding on a A is modification of the strategy of the betting-game used to succeed on X2 in the
previous theorem. But in this situation we are trying to succeed on a single oracle rather than an
infinite set of oracles. Let MA be a polynomial time oracle TM that decides LA. In the betting-
game of the previous theorem, we used the order of the polynomially many queries made by MA

on input 0n to request some of the strings we bet on. Once MA(0n) made all the queries, we could
easily recognize an event that occurred infinitely often with probabilities that guaranteed success.
We can achieve the same with a p2-martingale. A p2-martingale has enough time to recognize and
compute the probability of the aforementioned event. Instead of requesting the strings queried by
MA(0n), the martingale tries all the possible responses to the polynomially many queries made by
the TM. This can be done in p2-time. The success of the martingale follows from essentially the
same argument presented in the proof of previous theorem.

Corollary 3.3. {A | PA 6= NPA} has p3-measure 1.

Proof. From Theorem 3.2, for each A with PA = NPA, there is a p2-martingale that succeeds on
A. The sum of all p2-martingales is a p3-martingale [16]. Therefore the class {A | PA = NPA} has
p3-measure 0.

Whether Corollary 3.3 can be improved to p2-measure is an open problem that we address in
Section 6.

3.1 Random Oracles for P vs. UP

We now show that Theorem 3.1 extends to oracles for P vs. UP.

Theorem 3.4. The class {A | PA 6= UPA} has p-betting-game measure 1. In particular, PA 6= UPA

for every p-betting-game random oracle A.

Proof. The proof of this theorem is similar to Theorem 3.1. So we only focus on the main differences.
For any oracle A we use the test language

L′A = {0n | Tribes2n,n+lgn(A[0n + 1, 0n + (n+ lg n)2n]) = 1}.

8

Note the change in the size of each tribe, from n used in Theorem 3.1 to n+lg n used here. Consider
the set X of oracles A such that, A[0n + 1, 0n + (n+ lg n)2n] has at most one tribe with all 1s for
all but finitely many n. It is easy to see that L′A ∈ UPA for any oracle A ∈ X. A UP machine
simply has to guess the address of the unique tribe and then verify the membership of n + lg n
strings. We will first show that the set Xc of oracles A such that A[0n + 1, 0n + (n + lg n)2n] has
more than one tribe with all 1s infinitely often, has p-measure zero. In particular we can succeed
on Xc no matter the order in which a p-betting game queries strings. We also describe a p-betting
game that succeeds on X. Therefore, we will be able to combine these two p-betting games just
like we did in Theorem 3.1 and the theorem will follow.

Succeeding on Xc: Our betting game has initial capital
∑∞

n=0 1/n1.5. For each n, the betting
game reserves 1/n1.5 to bet on the strings in the range [0n + 1, 0n + (n + lg n)2n]. As before, we
view these strings as tribes, each tribe consisting of n+ lg n strings. There are fewer than 22n pairs
of tribes. Our betting game simply bets on every possible pair of tribes being contained in A, the
oracle being bet on. We bet on each pair of tribes with capital 1/n1.522n. For every correct guess,
the capital reserved for the pair grows from 1/n1.522n to 22(n+lgn)/n1.522n = Ω(n0.5). Since any
oracle in Xc will have its capital increase by Ω(n0.5) infinitely often, it follows that our betting
game succeeds on Xc. It is easy to see that this betting game can be implemented in p and also
doesn’t depend on the order in which strings are queried.

Succeeding on X ∩ {A | PA = UPA}: Let A be in this class. There is some polynomial time
oracle TM MA

i that decides L′A. To complete the proof, we need to design a p-betting-game that
succeeds on the intersection. The design of the betting game is almost identical to that of Theorem
3.1.

Analogously, Theorem 3.2 extends to P vs. UP:

Corollary 3.5. PA 6= UPA for every p2-random oracle A.

4 Betting Game Random Oracles for the Polynomial-Time Hier-
archy

Rossman et al. [23] defined Sipsernd , a family of n-variable read-once monotone depth-d circuits for
which the following theorem holds.

Theorem 4.1 (Rossman, Servedio, and Tan [23]). Let 2 ≤ d ≤ c
√
logn

log logn , where c > 0 is an absolute

constant. Then any circuit C of depth at most d− 1 and size at most 2n
1

6(d−1)
over {0, 1}n agrees

with Sipsernd on at most 2n(12 + n−ω(1/d)) inputs.

This theorem implies that the polynomial hierarchy is infinite relative to a random oracle
[12, 23]. We strengthen this result to show that the polynomial hierarchy is infinite relative to any
p2space random oracle.

The following lemma is a combination of two lemmas from [12].

Lemma 4.2 (H̊astad [12]). Let MA be a
∑P,A

k oracle TM which runs in time nc on input x of
length n, and Qn(M) be the set of boolean variables that represent answers to queries that can be
made by M on input 0n. Then there is a depth k + 2 circuit C of size 2n

c
with input set Qn(M)

that computes MA(0n) for any oracle A.

9

Lemma 4.3. For any oracle A, and its test language LA, if the following conditions hold, then A
is not p2space random.

1. The membership of 0n in LA depends on the membership of the strings of length at most nk.

2. LA is decided by an oracle TM M that queries only strings of length at most nk.

3. For any string w of length at most 2n
k+1, the conditional probability Pr(B|w) of MB(0n) =

LB[0n] given that w v B is computable in O(2n
k
) space, where B ∈ {0, 1}∞ is a randomly

selected oracle with prefix string w.

4. For some constant ε > 0, Pr(B|A[λ, 0n]) ≤ 1− ε for all but finitely many n.

Proof. We will show any oracle A as described in the statement of the theorem is not p2-random
by defining a p2space martingale that succeeds on A. Consider the following sequence of integers,

nj =

{
2, j = 0

(nj−1 + 1)k, j > 0.

For sufficiently large j, MB cannot query any string of length nj when running on input 0nj−1 .
Also, the membership of 0nj−1 does not depend on the membership of any string of length greather
than nj . We now define our martingale d.

d(w) =

{
1 , |w| ≤ 2c+1 − 1
d(w[λ,0nj−1])

Pr(B|w[λ,0nj−1])
Pr(B|w) , 2c+1 ≤ 2nj−1 < |w| ≤ 2nj+1 − 1

.

The constant c is any nj such that Pr(B|A[λ, 0n]) ≤ 1 − ε for all n > c. It is easy to verify
that d is a martingale. In fact, by the third condition in the statement of the theorem, d is p2space
computable. We now argue that d succeeds on any oracle A that satisfies the statement of the
theorem. Given such an oracle A and nj > c then,

d(A[λ, 0nj]) =
d(A[λ, 0nj−1])

Pr(B|A[λ, 0nj−1])
Pr(B|A[λ, 0nj])

≤ d(A[λ, 0nj−1])

1− ε
.

Pr(B|A[λ, 0nj]) = 1 because, MB(0nj−1) = LB[0nj−1] for every random oracleB such thatA[λ, 0nj]) v
B. This follows because, MA(0nj−1) = LA[0nj−1], M can only query strings of length less than nj
on input 0nj−1 , and LB[0nj−1] only depends on the membership of strings of length less than nj .
Consequently, the random bits of any oracle B with A[λ, 0nj] v B do not affect either MB(0nj) or
LB[0nj]. If we apply the same argument to d(A[λ, 0nj−1]), we see that d succeeds on A.

Theorem 4.4. For any k ∈ N,
∑P,A

k 6=
∑P,A

k+1 for every p2space-random oracle A.

Proof. The result will follow by applying Lemma 4.3. We show that there is a p2space betting
game that succeeds on any oracle A such that

∑P,A
k =

∑P,A
k+1. Given such an A we define a test

language
LA = {0n|Sipsernk+3(A[0n + 1, 0n +Nn]) = 1}.

10

Where, Nn = Θ((n2n)k+2) is the number of variables of Sipsernk+3. We do not present the complete
definition of Sipsernk+3 because of its complexity. Implicit in its definition in [23], is the fact that

LA ∈
∑P,A

k+3. It easy to see that the first two conditions of Lemma 4.3 are now satisfied.

We now show that the last two conditions are also satisfied. Since
∑P,A

k =
∑P,A

k+1, it follows

that LA ∈
∑P,A

k . Let MA be a
∑P,A

k oracle TM that decides LA. By Lemma 4.3 there is a depth
k+ 2 circuit of size 2n

c
that computes Sipsernk+3. Theorem 4.1 tells us that the probability of a this

circuit agreeing with Sipsernk+3 is at most 2/3 for all but finitely many n. Therefore the probability
of MB(0n) = LB[0n] for a randomly selected oracle is at most 2/3 for all but finitely many n.

In fact, for any string w (|w| < 2n
k
) we can easily compute, in O(2n

k
) space, the probability of

MB(0n) = LB[0n] where w v B is a randomly selected oracle. This is done by a brute force search

which only requires O(2n
k
) space. These facts show that the last two conditions of the Lemma 4.3

also hold. Therefore it follows that A is not p2-random.

Corollary 4.5. {A | PHA is infinite} has p3space measure 1.

5 Random Oracles for Time vs Space

In this section we deal with space bounded TMs. We follow the convention of not counting the
space used by queries to the write-only tape of the space-bounded TM.

Theorem 5.1. The class {A | LA 6= PA} has p-betting-game measure 1. In particular, LA 6= PA

for every p-betting-game random oracle A.

Proof. For any oracle A we define the test language LA as follows:

LA = {x|A(x1)A(x10) · · ·A(x10|x|−1) ∈ A}

i.e. x ∈ LA if and only if the string x[A] = A(x1)A(x10) · · ·A(x10|x|−1) belongs to A. It is easy
to see that LA ∈ PA since any length n string can be decided with n + 1 queries to the oracle.
We now describe a p-betting game that succeeds on X = {A | LA = PA}. Let M1,M2, · · · be an
enumeration of all logspace TMs such that Mi uses at most lg i lg n space. A lg i lg n space-bounded
oracle TM on input 0n has nO(lg i) configurations and thus can query at most nO(lg i) strings. We
denote by Qn(Mi) the set of strings that can be queried by Mi when running on input 0n.

In order to succeed on every A ∈ X our betting game goes through the list of logspace TMs until
it finds one that decides LA on some tally set. At every stage of betting our betting game is directed
by some Mi. Two cases arise while simulating MA

i on input 0n. Either 0n[A] is queried or it isn’t. If
0n[A] is queried then we use its bits to predict the membership of the strings 0n1, 0n10, · · · , 0n10n−1,
otherwise we use the output of MA

i (0n) to predict the membership of 0n[A]. Details follow.
The betting game operates in stages, similar to the betting game of Theorem 3.1. So we omit

some of the minor details. The betting game starts with initial capital 2. It reserves ai = bi = 1/i2

of its initial capital to bet with TM Mi.
At the beginning of stage j, the betting game selects a logspace TM Mi, where i is the smallest

index of a TM that hasn’t made a mistake. What it means for a TM to make a mistake will be
specified shortly. The betting game then computes Qn(Mi), where n is the smallest integer that is
greater than the length of all the strings queried in the previous stage. Recall that Qn(Mi) is the
set of the nO(lg i) strings that can be queried by Mi on input 0n. The betting game then simulates

11

Mi on input 0n and answers any query by either looking up already queried strings or requesting
unqueried strings. The strings we are interested in betting on are 0n1, 0n10, · · · , 0n10n−1 and 0n[A].
The portion an is used to bet on 0n1, 0n10, · · · , 0n10n−1 while the bi portion is used to bet on 0n[A].

Betting with an: the betting game splits an equally among the length n strings in Qn(Mi).
We use each w ∈ Qn(Mi) to predict the membership of the n strings
0n1, 0n10, · · · , 0n10n−1 i.e., the ith bit of each w is used to predict the membership of 0n10i−1. The
entire portion of an reserved for betting with each w is used to bet on each prediction of w. This
doubles the portion reserved for each w by a factor of two for every correct prediction. If Qn(Mi)
contains

0n[A] = A(0n1)A(0n10) · · ·A(0n10n−1),

the betting-game makes n correct predictions when betting with 0n[A]. Therefore, the betting-
game’s capital reserved for betting on 0n[A] grows from

1/n22O(lg i) lgn

to
Ω(2n/n22lg

2 n)

by the end of this stage.
Betting with bi: once the betting game is done simulating Mi on 0n and requesting the

strings 0n1, 0n10, · · · , 0n10n−1, if 0n[A] wasn’t queried, then the betting game bets with bi that the
characteristic bit of 0n[A] is Mi(0

n). We say Mi makes a mistake if MA
i (0n) 6= A(0n[A]). If Mi

makes a mistake then bi becomes 0, otherwise it doubles.
To round up this stage of betting, the betting game requests all unqueried strings of length up

to the length of the longest string queried by the betting game so far. It is easy to see that this
betting game can be implemented in p. The longest step is computing the set Qn(Mi) of all strings

that can be queried. This can be done by examining the O(2lg
2 n) = o(2n) configurations of any

Mi on input 0n, where i ≤ n.
Finally we argue that the betting game succeeds on any A ∈ X. For such an oracle A the

betting game must eventually select some TM Mi? that correctly decides the test language LA
on all the inputs we run it on. Therefore, for every stage of betting, Mi? either queries 0n[A]

or it doesn’t. When it does then an grows to Ω(2n/n22lg
2 n), when it doesn’t then b?i doubles.

The betting game succeeds because, b?i never decreases and ak grows to Ω(2n/n22lgn) whenever b?i
doesn’t increase.

Theorem 5.2. LA 6= PA for every p2-random oracle A.

Proof. This proof is similar to that of Theorem 5.1. We need to design a martingale, rather than
a betting game, that succeeds on any oracle A such that LA = PA. The martingale bets the same
way as the betting game in the previous theorem, the difference being the order in which strings are
queried. In order to convert the betting game into a martingale, we try all possible query answers
in parallel instead of actually querying the desired string. This way, we can query strings in the
standard ordering. Details follow.

Let X and LA be as defined in Theorem 5.1. Given A ∈ X, let Mi be a logspace TM that decides
LA in lg i lg n space. Recall that Qn(Mi) is the set of nO(lg i) strings that can be queried by Mi

when it is run on input 0n. Two cases arise, either 0n[A] = A(0n1)A(0n10) · · ·A(0n10n−1) ∈ Qn(Mi)
infinitely often, or 0n[A] 6∈ Qn(Mi) for all but finitely many n.

12

In the first case we describe a martingale that succeeds any oracle A such that, 0n[A] ∈ Qn(Mi)
infinitely often. Similar to Theorem 5.1, the martingale bets in stages and breaks its initial capital
into infinite portions aj = 1/j2, with some ak used for betting in stage j. At the beginning of stage
j the martingale computes Qn(Mi), where n is the length of the smallest integer greater than all
the strings seen in the previous stage. The martingale then splits an equally among all the length
n strings in Qn(Mi). Each of these length n strings along with its portion of an is used to predict
the membership of the strings 0n1, 0n10, · · · , 0n10n−1. These are the only strings the martingale
bets on. To complete stage j the martingale queries all the remaining strings of length at most
2n = |0n10n−1|. It is easy to see that whenever 0n[A] ∈ Qn(Mi), the capital reserved for betting

on some length n string in Qn(Mi) grows from at least 1/n22lg
2 n to 2n/n22lg

2 n = ω(1). Therefore
our martingale succeeds on all oracles A such that 0n[A] ∈ Qn(Mi) infinitely often.

In the second case we design a martingale that succeeds on any oracle A such that, 0n[A] 6∈
Qn(Mi) for all but finitely many n. This martingale also bets on strings in stages. It starts betting
on strings of length n0, which is the length at which 0n[A] 6∈ Qn(Mi) holds for all n ≥ n0. The
martingale starts with initial capital 1 and operates in each stage as follows. Let Q≥n(Mi) denote
the set of strings in Qn(Mi) with length at least n . At the beginning of stage j, the martingale

simulates Mi on input 0n for each of the O(2n
lg i+n) subsets of Q≥n(Mi)∪ {0n1, 0n10, · · · 0n10n−1}.

The martingale’s current capital cj is split up equally among each subset and 0n[A] is also computed
for each subset. For each subset, whenever the martingale queries a string in s ∈ Q≥n(Mi) ∪
{0n1, 0n10, · · · 0n10n−1}, the martingale bets the entire capital reserved for the subset according
to the membership of s in the subset. Also, the martingale bets on the string 0n[A] associated
with each subset. For each subset the martingale computes 0n[A] and simulates Mi on 0n with
queries answered according to the subset. The martingale then bets the entire capital reserved for
each subset on Mi(0

n) being the characteristic bit of 0n[A]. The stage ends by querying all the
remaining strings of length at most the length of the longest string queried so far.

Clearly this martingale can be implemented in time polynomial in 2n. We now show that this
martingale succeeds on any oracle A such that 0n[A] 6∈ Qn(Mi) holds for all n ≥ n0. In each stage
j, the capital at the beginning of the stage cj doubles. This is because cj is divided into an equal
portion for every subset of Q≥n(Mi)∪ {0n1, 0n10, · · · 0n10n−1}. Since there is only one subset that
is consistent with the oracle A we are betting on, the share reserved for this subset will grow back
to cj after betting on the strings in Q≥n(Mi) ∪ {0n1, 0n10, · · · 0n10n−1}. Finally, the martingale
will bet according to the output Mi(0

n), on the string 0n[A] associated with this subset. Since MA
i

decides LA and 0n[A] 6∈ Qn(Mi) for all sufficiently large inputs, the output of the TM is correct,
therefore the current capital reserved for the correct subset is doubled. Therefore, our martingale’s
capital is doubled after every stage of betting, thus it succeeds on A.

Corollary 5.3. {A | LA 6= PA} has p3-measure 1.

Using a result of Book [6], we extend Theorems 5.1 and 5.2 to random oracles for PSPACE vs
E.

6 Limitations

In this section we examine the possibility of extending Theorem 3.1. We show that it cannot be
improved to p-random oracles or improved to separate the polynomial-time hierarchy without sep-
arating BPP or NP from EXP, respectively. On the other hand, showing that Theorem 3.1 cannot

13

be improved to p-random oracles would separate PSPACE from P. We also consider limitations of
our other results.

6.1 Does PA 6= NPA for every p-random oracle A?

We showed in Theorem 3.1 that PA 6= NPA for a p-betting-game random oracle. It is unknown
whether p-betting games and p-martingales are equivalent. If they are, then BPP 6= EXP [8].
This is based on the following theorem and the result that ≤P

T-complete languages for EXP have
p-betting-game measure 0 [8].

Theorem 6.1 (Buhrman et al. [8]). If the class of ≤P
T-complete languages for EXP has p2-measure

zero then BPP 6= EXP.

We show that improving Theorem 3.1 to p-random oracles would also imply BPP 6= EXP.
First, we prove the following for p2-measure.

Theorem 6.2. If {A | PA 6= NPA} has p2-measure 1, then BPP 6= EXP.

Proof. If L is any ≤P
T-complete language for EXP, then

NPL ⊆ EXP ⊆ PL ⊆ NPL.

Therefore the class of ≤P
T-complete languages for EXP is a subset of {A | PA = NPA}. If {A |

PA = NPA} has p2-measure 0 then so does the class of ≤P
T-complete languages of EXP. Theorem

6.1 implies that BPP 6= EXP.

We have the following for p-random oracles by the universality of p2-measure for p-measure [16].

Corollary 6.3. If PA 6= NPA for every p-random oracle A, then BPP 6= EXP.

Proof. The hypothesis implies that every A with PA = NPA is not p-random, i.e. there is a p-
martingale that succeeds on A. Let d′ be a p2-martingale that is universal for all p-martingales
[16]: S∞[d] ⊆ S∞[d′] for every p-martingale d. Then d′ succeeds on {A | PA = NPA}.

6.2 Is it possible that PA = NPA for some p-random oracle A?

Given Theorem 6.2, we consider the possibility of whether {A | PA = NPA} does not have p-
measure 0. Because Lutz and Schmidt [18] showed that this class has pspace-measure 0, it turns
out that if it does not have p-measure 0, then we have a separation of PSPACE from P.

Theorem 6.4 (Lutz and Schmidt [18]). The class {A | PA = NPA} has pspace-measure 0.

We note that because every p-betting game may be simulated by a pspace-martingale [8], Theorem
6.4 follows as a corollary to Theorem 3.1.

Lemma 6.5. If P = PSPACE, then for every pspace-martingale d, there is a p-martingale d′ with
S∞[d] ⊆ S∞[d′].

Proof. Let d : {0, 1}∗ −→ [0,∞) be a pspace-martingale. Without loss of generality also assume
that d is exactly computable [15] and its output is in {0, 1}≤p(n), for some polynomial p. Consider
the language Ld = {〈w, i, b〉 | the ith bit of d(w) is b}. Clearly Ld ∈ PSPACE and hence also in P
by our hypothesis. We can therefore compute d(w) in polynomial time using Ld.

14

Theorem 6.6. If {A | PA = NPA} does not have p-measure 0, then P 6= PSPACE.

Proof. Assume P = PSPACE. Theorem 6.4 and Lemma 6.5 imply that {A | PA = NPA} has
p-measure 0.

Corollary 6.7. If there is a p-random oracle A such that PA = NPA, then P 6= PSPACE.

6.3 Is PH infinite relative to p-betting-game random oracles?

Bennett and Gill [5] showed that NPA 6= coNPA for a random oracle A, with probability 1. Thus
PHA does not collapse to its first level. Rossman, Servedio, and Tan [23] showed that PHA is
infinite relative to a random oracle, with probability 1.

Can we improve Theorems 3.1 and 4.4 to show that PHA does not collapse for a p-betting-game
random oracle? This also has complexity class separation consequences:

Theorem 6.8. For k > 0, let Xk = {A |
∑P,A

k =
∏P,A
k }. If Xk has p2-betting-game measure zero,

then
∑P

k 6= EXP.

Proof. We prove the contrapositive. Suppose
∑P

k = EXP, then
∏P
k = EXP. Given A ∈ EXP, then

the following containments hold:

ΣP
k ⊆ ΣP,A

k ⊆ EXP = ΠP
k ⊆ ΠP,A

k ⊆ EXP = ΣP
k .

Therefore
∑P,A

k =
∏P,A
k , which in turn implies that EXP ⊆ Xk. Since EXP does not have p2-

betting-game measure zero [8] then neither does Xk. Hence, the Theorem follows.

In particular, we have the following for the first level of PH:

Corollary 6.9. If {A | NPA 6= coNPA} has p2-betting-game measure 1, then NP 6= EXP.

Because it is open whether betting games have a union lemma [8], it is not clear whether
Corollary 6.9 may be extended to show that if NPA 6= coNPA for every p-betting-game random
oracle A, then NP 6= EXP. This extension would hold if there is a p2-betting game that is universal
for all p-betting games. However, we do have the following for p-random oracles.

Corollary 6.10. If NPA 6= coNPA for every p-random oracle A, then NP 6= EXP.

Corollary 6.11. If PHA is infinite for every p-random oracle A, then PH 6= EXP.

6.4 Further Limitations

The technique used in Section 6.3 may be used to establish additional limitation results for other
classes. In the next lemma, we abstract the argument used in Theorem 6.8.

Lemma 6.12. Let C,D ⊆ EXP be relativizable classes such that CA ⊆ EXP for every A ∈ EXP.
Let

X = {A | CA ⊆ DA}.

If EXP 6⊆ X, then D 6= EXP. In particular, if X has p2-betting-game measure 0, then D 6= EXP.

15

Proof. Assume D = EXP. Let A ∈ EXP. Then

CA ⊆ EXP = D ⊆ DA.

Therefore EXP ⊆ X, so X doesn’t have p2-betting-game measure 0.

Corollary 6.13. 1. If {A | NPA 6= coNPA} has p2-betting game measure 1, then NP 6= EXP.

2. If {A | PHA is infinite} has p2-betting game measure 1, then ΣP
k 6= EXP for every k.

3. If {A | PHA 6= PSPACEA} has p2-betting game measure 1, then PH 6= EXP.

4. If {A | IPA 6= PSPACEA} has p2-betting game measure 1, then IP 6= EXP.

5. If {A | UPA 6= NPA} has p2-betting game measure 1, then UP 6= EXP.

6. If {A | NPA 6⊆ BPPA} has p2-betting game measure 1, then BPP 6= EXP.

Proof. 1. Apply the lemma with C = coNP and D = NP.

2. Apply the lemma with C = ΣP
k+1 and D = ΣP

k .

3. Apply the lemma with C = PSPACE and D = PH.

4. Apply the lemma with C = PSPACE and D = IP.

5. Apply the lemma with C = NP and D = UP.

6. Apply the lemma with C = NP and D = BPP.

All of the classes in Corollary 6.13 are known to have classical measure 1 [5, 23, 3, 9, 10, 4].
Improving these results to betting game measure (or to resource-bounded measure) would have
significant consequences for separating complexity classes.

7 Conclusion

We have shown that PA 6= NPA for every p-betting-game random oracle A (Theorem 3.1). Estab-
lishing whether this also holds for p-random oracles would imply either BPP 6= EXP (Corollary
6.3) or P 6= PSPACE (Corollary 6.7). These results, together with Theorems 4.4, 6.4, and 6.8,
motivate investigating the status of PH relative to pspace-random oracles. In particular:

1. Does {A | NPA = coNPA} have pspace-measure 0?

2. More generally, does {A | PHA collapses} have pspace-measure 0?

16

References

[1] E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP.
In Proceedings of the 35th Symposium on Foundations of Computer Science, pages 807–818.
IEEE Computer Society, 1994.

[2] K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi,
editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied Mathe-
matics, pages 1–47. Marcel Dekker, New York, N.Y., 1997.

[3] L. Babai. Random oracles separate PSPACE from the polynomial-time hierarchy. Information
Processing Letters, 26:51–53, 1987.

[4] R. Beigel. On the relativized power of additional accepting paths. In Proceedings of the Fourth
Annual Structure in Complexity Theory Conference, pages 216–224. IEEE Computer Society,
1989.

[5] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with
probability 1. SIAM JOURNAL ON COMPUTING, 10:96–113, 1981.

[6] R. V. Book. Tally languages and complexity classes. Information and Control, 26:186–193,
1974.

[7] R. V. Book, J. H. Lutz, and K. W. Wagner. An observation on probability versus randomness
with applications to complexity classes. Mathematical Systems Theory, 27:201–209, 1994.

[8] H. Buhrman, D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss. A generalization
of resource-bounded measure, with application to the BPP vs. EXP problem. SIAM Journal
on Computing, 30(2):576–601, 2001.

[9] J. Cai. With probability one, a random oracle separates PSPACE from the polynomial-time
hierarchy. Journal of Computer and System Sciences, 38:68–85, 1989.

[10] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. H̊astad, D. Ranjan, and R. Rohatgi. The
random oracle hypothesis is false. Journal of Computer and System Sciences, 49(1):24–39,
1994.

[11] R. C. Harkins and J. M. Hitchcock. Exact learning algorithms, betting games, and circuit
lower bounds. ACM Transactions on Computation Theory, 5(4):article 18, 2013.

[12] J. H̊astad. Computational Limitations for Small-Depth Circuits. The MIT Press, 1986.

[13] J. M. Hitchcock. Hausdorff dimension and oracle constructions. Theoretical Computer Science,
355(3):382–388, 2006.

[14] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity classes.
SIGACT News, 36(3):24–38, September 2005.

[15] D. W. Juedes and J. H. Lutz. Weak completeness in E and E2. Theoretical Computer Science,
143(1):149–158, 1995.

17

[16] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992.

[17] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L.
Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.

[18] J. H. Lutz and W. J. Schmidt. Circuit size relative to pseudorandom oracles. Theoretical
Computer Science, 107(1):95–120, March 1993.

[19] P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619, 1966.

[20] W. Merkle, J. S. Miller, A. Nies, J. Reimann, and F. Stephan. Kolmogorov-Loveland random-
ness and stochasticity. Annals of Pure and Applied Logic, 138(1–3):183–210, 2006.

[21] A. A. Muchnik, A. L. Semenov, and V. A. Uspensky. Mathematical metaphysics of randomness.
Theoretical Computer Science, 207(2):263 – 317, 1998.

[22] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

[23] B. Rossman, R. A. Servedio, and L.-Y. Tan. An average-case depth hierarchy theorem for
Boolean circuits. In Proceedings of the 56th Symposium on Foundations of Computer Science,
pages 1030–1048. IEEE Computer Society, 2015.

18

