
Strong Reductions and Isomorphism of Complete Sets∗

Ryan C. Harkins† John M. Hitchcock∗ A. Pavan ‡

Abstract

We study the structure of the polynomial-time complete sets for NP and PSPACE under
strong nondeterministic polynomial-time reductions (SNP-reductions). We show the following
results.

• If NP contains a p-random language, then all polynomial-time complete sets for PSPACE
are SNP-isomorphic.

• If NP ∩ co-NP contains a p-random language, then all polynomial-time complete sets for
NP are SNP-isomorphic.

1 Introduction

The celebrated Berman-Hartmanis isomorphism conjecture [BH77] states that all polynomial-time
NP-complete sets are polynomial-time isomorphic. This conjecture can be naturally extended to
other complexity classes. The isomorphism conjecture for a class C states that all polynomial-time
complete sets for C are p-isomorphic. The evidence in support of this conjecture comes from the
observation that for every natural complexity class, all known complete sets are polynomial-time
isomorphic. On the other hand, it has been hypothesized that if one-way functions exist, then the
isomorphism conjecture is false [JY85].

In spite of many years of research, we do not know of a single complexity class for which
the isomorphism conjecture is resolved. This naturally led to the study of several variants of the
conjecture that can be obtained by varying the resource bounds and types of the reducibilities. In
most general terms, the conjecture for a class C and reducibilities r and s can be phrased as follows:
“All r-complete sets for C are s-isomorphic.”

This question has been studied extensively for resource bounds that are much smaller than
polynomial-time that led to several exciting results. For example, we now know that all 1-L-
complete sets for NP and PSPACE are p-isomorphic [All88, AB93]. Allender, Balcazar, and Im-
merman showed that all sets that are complete under first-order projections are DLOG-uniform
AC0-isomorphic [ABI97]. This result set the stage to investigate the structure of sets complete
under AC0-reductions. Successive papers [AAR98, AAI+01, Agr01b] improved this result, and this

∗A preliminary version of this paper appeared in the proceedings of the 27th International Conference on Foun-
dations of Software Technology and Theoretical Computer Science.
†Department of Computer Science, University of Wyoming. This research was supported in part by NSF grants

0515313, 0652601, and 0917417.
‡Department of Computer Science, Iowa State University. This research was supported in part by NSF grants

0430807, 0830479, and 0916797.

1

line of research culminated with the result of Agrawal [Agr01a]. This result states that all DLOG-
uniform AC0-complete sets for many natural classes are DLOG-uniform AC0-isomorphic. Some of
these results are surveyed in [KMR90, BT94, All01].

All above mentioned results concern sets that are complete under weaker reductions (i.e., where
r has less resources than polynomial-time computation). In this paper, we study the isomorphism
conjecture for polynomial-time complete sets. In particular we consider the following question:
“Are the polynomial-time complete sets for a class s-isomorphic?”

For a long time, there was almost no progress on this question. Very recently Agrawal and
Watanabe [AW09] obtained some exciting results. It has been conjectured that if f is a one-one, one-
way function, then f(SAT) is not polynomial-time isomorphic to SAT. Recall that a polynomial-
time computable function f is one-way, if every polynomial-time algorithm that attempts to invert
f errs on a large fraction of instances. Agrawal and Watanabe observed that all known candidates
for one-way functions have the following easy property: Even though we do not know an efficient
algorithm that inverts on a large fraction of instances, they all admit easy to invert “cylinders”.
They showed that if every one-way function admits easy cylinders, then all polynomial-time NP-
complete sets are P/poly-isomorphic∗. We refer the reader to the original paper of Agrawal and
Watanabe for the definition of easy cylinders. Since then, Goldreich [Gol09] exhibited a candidate
one-way function that does not appear to have easy cylinders. This led Goldreich to conjecture
that easy cylinders conjecture does not hold.

Given that it is not clear whether the easy cylinders conjecture holds or not, can we provide some
additional evidence that polynomial-time complete sets admit (somewhat stronger) isomorphisms?
In this paper we consider strong nondeterministic isomorphisms and PNP isomorphisms.

Strong nondeterministic polynomial-time reductions (SNP-reductions for short) reductions were
introduced by Adleman and Manders [AM77]. They showed that certain number-theoretic prob-
lems, which are not known to be polynomial-time NP-complete, are complete under SNP-reductions.
Informally, these reductions can be thought as NP ∩ co-NP-reductions.

We show that if NP contains a p-random sequence, then all polynomial-time PSPACE-complete
sets are SNP-isomorphic. This result also holds for any class that is closed under complement and
union, in particular for all ∆-levels of the polynomial-time hierarchy. This hypothesis, which is
equivalent to “NP does not have p-measure 0,” is one of the most widely studied hypotheses in
computational complexity and many plausible consequences are known to follow from it [Lut97,
LM99]. From this result it follows that polynomial-time complete sets for PSPACE and all ∆-levels
of the polynomial-time hierarchy are PNP-isomorphic. With a stronger hypothesis we obtain similar
consequences for the NP-complete sets. We show that if NP∩co-NP contains a p-random sequence,
then all polynomial-time NP-complete sets are SNP-isomorphic.

To establish our isomorphism theorem, we first show that if NP does not have p-measure zero,
then all polynomial-time complete sets for PSPACE are also complete via one-one, length-increasing
SNP-reductions. This result could be of independent interest. We then use the resource-bounded
analogue of the Cantor-Bernstein theorem to exhibit the isomorphism [BH77].

Our proofs use a bound on the longest consecutive run of 0’s or 1’s in a p-random sequence.
In classical probability theory this result is proved using the Borel-Cantelli lemma [Dur04], but
the proof does not carry over to polynomial-time randomness. Wang [Wan96] overcame this same
problem for the law of the iterated logarithm. We use his technique to prove the bound on longest
runs in the polynomial-time setting.

∗Agrawal and Watanabe’s result also holds for P/poly-complete sets.

2

This paper is organized as follows. Section 2 contains preliminaries on SNP-reductions and
polynomial-time measure and randomness. In section 3 we present our main results. In section 4
we prove the longest runs bound. Section 5 concludes the paper with a discussion.

2 Preliminaries

In this paper we consider both single-valued and multi-valued functions. When f is a multi-valued
function, f(x) is a set. Recall that if f is a total, multi-valued function, then f(x) is a nonempty
set for all x. Unless otherwise mentioned all functions in this paper are total.

Definition. Let f be a multi-valued function. A function g is a single-valued refinement of f if g
is single-valued function, and for every x, g(x) ∈ f(x).

Definition. Let f be a multi-valued function. We say that f is strong nondeterministic polynomial-
time computable, SNP-computable for short, if there is a nondeterministic polynomial-time machine
M such that for every x, every path of M on x outputs a member of f(x) or outputs a special
symbol ⊥. At least one path of M(x) outputs a member of f(x).

Definition. Let f be a total, multi-valued function and A and B be two languages. We say A is
reducible to B via f if for every x the following conditions hold:

x ∈ A⇒ f(x) ⊆ B,

x /∈ A⇒ f(x) ∩B = ∅.

Remark. Since we require the function f to be total, f(x) can not be ∅ even when x /∈ A.

Definition. A language A is SNP-reducible to a language B, if there is a (possibly multi-valued)
function f that reduces A to B and f is SNP-computable.

Definition. A single-valued function f is an isomorphism from A to B, if f is a reduction from A
to B and f is a bijection.

Recall that two languages A and B are polynomial-time isomorphic if there is a function f such
that f reduces A to B, f−1 reduces B to A, both f and f−1 are polynomial-time computable, and
f is a bijection. We can extend this definition to strong nondeterministic isomorphisms. When f
is a multi-valued function f−1(y) is the set of all x for which y ∈ f(x).

Definition. Let A be B be two languages. We say that A is strong nondeterministic isomorphic
to B, SNP-isomorphic for short, if there is a (possibly multi-valued) function f such that following
conditions hold:

• A reduces to B via f .

• B reduces to A via f−1.

• Both f and f−1 are SNP-computable.

• There is a single-valued refinement g of f that is an isomorphism from A to B.

3

Observe that the definition implicitly requires f−1 to be a total function. We remark that there
are several alternate ways to define the notion of SNP-isomorphism. We discuss these in section 5.
We can define PNP-isomorphisms similarly.

Definition. Two languages A and B are PNP-isomorphic, if there is bijection f : Σ∗ → Σ∗ such
that both f and f−1 are FPNP-computable, f reduces A to B and f−1 reduces B to A.

We will also use the notion of honest reductions.

Definition. A function f : Σ∗ → Σ∗ is honest if there exists a constant k ≥ 1 such that for all but
finitely x ∈ Σ∗, |f(x)| ≥ |x|1/k.

We now review the definition of polynomial-time measure [Lut92]. The Cantor space C is the
set of all infinite binary sequences. Each language (a subset of {0, 1}∗) is identified with the element
of Cantor space that is its characteristic sequence according to the standard enumeration of {0, 1}∗.
In this way, each complexity class (a set of languages) is viewed as a subset of Cantor space.

Definition. A function d : {0, 1}∗ → [0,∞) is a supermartingale if for all w ∈ {0, 1}∗,

d(w) ≥ d(w0) + d(w1)

2
. (2.1)

A function d : {0, 1}∗ → [0,∞) is a martingale if for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2
. (2.2)

Intuitively, a martingale d starts with an initial amount d(λ) of capital. The goal is to attain
large values on sequences.

Definition. We say d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S �n) =∞.

Here S �n is the length n prefix of S. The success set of d is

S∞[d] = {S ∈ C | d succeeds on S}.

The averaging condition (2.2) allows d to succeed on only a small set of sequences. More
precisely, Ville [Vil39] showed that a class X ⊆ C has Lebesgue measure 0 if and only if there is
a martingale d with X ⊆ S∞[d]. Polynomial-time measure [Lut92] arises from requiring efficiently
computable martingales. As a martingale is a real-valued function, its values may not be exactly
computable. Instead we allow polynomial-time approximations. Intuitively, the approximation
computes d(w) to r bits of precision in time bounded by a polynomial in |w| and r.

Definition. We say d : {0, 1}∗ → [0,∞) is t(n)-time computable if there is an approximation
d̂ : N× {0, 1}∗ → Q such that

(i) for all r ∈ N and w ∈ {0, 1}∗, |d̂(r, w)− d(w)| ≤ 2−r and

(ii) d̂(r, w) is computable in t(r + |w|) time.

4

If d is q(n)-time computable for some polynomial q, then d is polynomial-time computable.

Definition. Let X ⊆ C.

1. X has p-measure 0, written µp(X) = 0, if there is a polynomial-time computable martingale
d with X ⊆ S∞[d].

2. X has p-measure 1, written µp(X) = 1, if µp(Xc) = 0.

Supermartingales give an equivalent definition: µp(X) 6= 0 if and only if there is a polynomial-time
computable supermartingale d with X ⊆ S∞[d] [Lut92]. We also use the notion of time-bounded
randomness [ASTZ97].

Definition. Let L be a language.

1. L is t(n)-random if no O(t(n))-time computable martingale succeeds on L.

2. L is p-random if for every polynomial p(n), L is p(n)-random.

The following result relates p-measure to p-randomness.

Lemma 2.1. ([ASTZ97, JL95]) If C is a class that is closed under polynomial-time many-one
reductions, then the following are equivalent.

1. C does not have p-measure 0.

2. C contains a p-random language.

3 SNP Reductions and Isomorphisms

We prove our main theorem in this section. In our proof we use certain properties of p-random
languages. Let R be a p-random language. Given a bit b and a finite string w, let lr(b, w) denote
the longest consecutive run of the bit b in w. Let R �n denote the first n bits of the characteristic
sequence of R.

Theorem 3.1. If R is a p-random language, then for each b ∈ {0, 1},

lim
n→∞

lr(b, R�n)

log n
= 1.

The proof of Theorem 3.1 is in section 4.
Given a string y, let r(y) be the rank (in lexicographic order) of y among strings of length |y|.

Given a length n and index i, let sni denote the string z such that |z| = n and r(z) = i. Given

a string y of length n, let by = sn
2

2r(y)n3 and ey = sn
2

2(r(y)+1)n3−1. The following observation follows
from Lemma 2.1 and Theorem 3.1.

Observation 3.2. Assume that NP does not have p-measure zero. Then there is a p-random
language R in NP such that for almost every y, the interval [by, ey] has at least one string from R.

5

We say that a multi-valued function f is length-increasing if the length of x is smaller than the
length of every string from f(x). We say that a multi-valued function f is one-one if for every x
and y with x 6= y, f(x) ∩ f(y) = ∅.

We first show that if NP does not have p-measure zero, PSPACE-complete sets are complete
via one-one, length-increasing, SNP-reductions.

Lemma 3.3. If NP does not have p-measure 0, then all PSPACE-complete sets are complete via
one-one, length-increasing SNP-reductions.

Proof. Let L be any PSPACE-complete language. Let K be the standard PSPACE-complete
language that is complete via one-one, length-increasing reductions. Observe that K can be decided
in time 2n. It suffices to show that K is reducible to L via a one-one, length-increasing SNP
reduction. We first define an intermediate language A in PSPACE, and describe a one-one, length-
increasing SNP reduction f from K to A. Then we describe a polynomial-time reduction from A
to L that is one-one and length-increasing on f(Σ∗). Combining these two reductions we obtain
the desired reduction from K to L.

By our hypothesis, there is a n4-random language R in NP.

A = {〈x, y〉 | |x| = |y|2, and x ∈ R⊕ y ∈ K = 0},

where ⊕ denotes the xor operation. Clearly, A is in PSPACE.

Claim 3.4. There is a one-one, length-increasing SNP reduction from K to A.

Proof. Since R is in NP, there is a polynomial-time computable function h and a polynomial q(.)
such that a string x is in R if and only if there is a witness w of length at most q(|x|) for which
h(x,w) = 1.

The following nondeterministic machine N is a reduction from K to A.

1. Input y, |y| = n.

2. Compute by and ey.

3. Guess a string xy between by and ey and a possible witness w of length at most q(n2).

4. If h(xy, w) = 0, then Output ⊥ and this branch stops. If h(xy, w) = 1, then output 〈xy, y〉
and stop.

Let f be the function computed by N . We first show that f is a valid reduction from K to A.
Observe that N outputs a tuple 〈xy, y〉 only if xy ∈ R. If xy ∈ R, then y belongs to K if and only
if xy ∈ R⊕ y ∈ K = 0. Thus y ∈ K if and only if 〈xy, y〉 ∈ A. Next we claim that at least one path
of N does not output ⊥.

By Observation 3.2, at least one string from the interval [by, ey] belongs to R. So at least one
path of N guesses such string and a valid witness of that string. The output along this path is not
⊥.

Thus f is a total, multi-valued function that reduces K to A. For every y, every element of
f(y) is of the form 〈xy, y〉, where xy is a string of length n2. Thus f is length-increasing. Let y
and z be two distinct strings. Every element of f(y) is of the form 〈., y〉 and every element of f(z)
is of the form 〈., z〉. Thus f(y) ∩ f(z) = ∅. Thus f is one-one.

This completes proof of Claim 3.4.

6

Since A is in PSPACE and L is PSPACE-complete, there is a polynomial-time many-one re-
duction g from A to L. We now show that g must be one-one and honest on f(Σ∗). Observe that
every string v in f(Σ∗) is of the form 〈x, y〉, where |x| = |y|2. We first observe that f satisfies the
following stronger one-one property.

Observation 3.5. Let y1 < y2, f(y1) = 〈x1, y1〉, and f(y2) = 〈x2, y2〉. Then x1 < x2.

Proof. Since y1 < y2, ey1 < by2 , the intervals [by1 , ey1] and [by2 , ey2] are disjoint. Observe that x1
belongs to the interval [by1 , ey1] and x2 belongs to the interval [by2 , ey2]. Thus x1 < x2.

We first show that g must be one-one on f(Σ∗).

Claim 3.6. For all but finitely many strings u and v in f(Σ∗), g(u) 6= g(v).

Proof. We have to show that the following set is finite.

S = {u ∈ f(Σ∗) | ∃v ∈ f(Σ∗), u 6= v, g(u) = g(v)}.

Suppose that u 6= v for two tuples u = 〈x2, y2〉 ∈ f(Σ∗) and v = 〈x1, y1〉 ∈ f(Σ∗). From
Observation 3.5 it follows that x1 6= x2. Therefore we can rewrite S as

S = {〈x2, y2〉 ∈ f(Σ∗) | ∃〈x1, y1〉 ∈ f(Σ∗), x1 6= x2, g(〈x1, y1〉) = g(〈x2, y2〉)}.

Assume that S is infinite. Then the set

T = {〈x2, y2〉 ∈ f(Σ∗) | ∃〈x1, y1〉 ∈ f(Σ∗), x1 < x2, g(〈x1, y1〉) = g(〈x2, y2〉)}

is also infinite. We will show that this contradicts the randomness of R.
Consider the following strategy for a martingale d that bets on R. Let d(n) denote the capital d

has after betting on strings on length n. If n is not a perfect square, then d does not bet on strings
of length n and we have d(n) = d(n − 1). Suppose that n is a perfect square. Before betting on
strings of length n, d searches for two tuples 〈x1, y1〉 and 〈x2, y2〉 with the following properties.

• |x2| = n = |y2|2.

• x1 < x2, |x1| = |y1|2.

• g(〈x1, y1〉) = g(〈x2, y2〉).

Because T is infinite, d will find such tuples for infinitely many n. If d does not find such
tuples, then it does not bet on any string at length n and we have d(n) = d(n − 1). Suppose d
finds such tuples. Then d does not bet on any string up to x2. Recall that when d is ready to
bet on x2, it has access to the partial characteristic sequence of R up to x2. Thus at this point
d knows the membership of x1 in R. Next d computes the membership of y1 and y2 in K. Since
g(〈x1, y1〉) = g(〈x2, y2〉),

(x1 ∈ R⊕ y1 ∈ K) = (x2 ∈ R⊕ y2 ∈ K)

Since d knows the values of x1 ∈ R, y1 ∈ K, and y2 ∈ K, it can determine the value of x2 ∈ R.
Thus d bets on x2 accordingly. This way d can double its capital. Thus we have d(n) = 2d(n− 1).

Thus for every n either d(n) = d(n − 1) or d(n) = 2d(n − 1), and for infinitely many n,
d(n) = 2d(n− 1). Thus d(n) approaches infinity as n tends to ∞ and d succeeds on R.

7

Observe that the time taken by d to search for the tuples with desired properties is bounded by
O(24n). In addition, d needs at most O(2

√
n) time to decide membership of y1 and y2 in K. This is

because K is in DTIME(2n) and lengths of y1 and y2 are bounded by
√
n. Recall that the running

time of d is measured with respect to the length of the partial characteristic sequence, thus d runs
in time O(n4).

Therefore if S is infinite, R is not n4-random. Thus g is one-one on strings from f(Σ∗) and the
proof of Claim 3.6 is complete.

Next we show that any reduction from A to L must be honest. Since the complete set L is in
PSPACE, there is a constant k such that L can be decided in time 2n

k
.

Claim 3.7. Let g be a reduction from A to L. Let T = {〈x, y〉 | |x| = |y|2}. For all but finitely
many strings w = 〈x, y〉 from T , |g(w)| ≥ |x|1/k.

Proof. Let U be the set of strings w = 〈x, y〉 from T for which |g(w)| < |y|1/k. We show that if U
is infinite, then R is not n4-random.

Consider the following strategy for a martingale d. Let d(n−1) be the capital that d has before
it starts to bet on strings of length n. Before betting on strings of length n, the martingale searches
for a tuple w = 〈x, y〉 in U with n = |x| = |y|2. If no such tuple exists, then d does not bet on any
strings at length n. In this case, d(n) = d(n− 1).

By our assumption that U is infinite, d finds such a tuple for infinitely many n. Upon finding a
tuple in w ∈ U , d determines the membership of w ∈ A by computing the membership of g(w) ∈ L.
Then d knows x ∈ R⊕y ∈ K. Now d can decide the membership of y in K and infer the membership
of x in R. Thus d(n) = 2d(n− 1).

If U is infinite, then d(n) = 2d(n − 1) for infinitely many n. Thus d succeeds on R. The time
taken by d can be bounded as follows. It takes O(22n) time to search for a tuple w in U . Once w is
found, it decides the membership of w in A by deciding the membership of g(w) in L. Since w ∈ U ,

|g(w)| < n1/k. Since L can be decided in 2n
k

time, this step takes O(2n) time. Since |y| =
√
n

and K is in DTIME(2n), membership of y ∈ K can be computed in O(2n) time. Thus the running
time of the martingale, when measured with respect to the length of the characteristic sequence, is
bounded by O(n2). Thus R is not n4-random.

This completes the proof of Claim 3.7.

Now we will complete the proof of Lemma 3.3. By Claim 3.4, there is a one-one, length-
increasing SNP-reduction f from K to A. By Claims 3.6 and 3.7, there is a polynomial-time
reduction g from A to L that is one-one and honest on strings from f(Σ∗). Combining the reduction
f with g, we obtain a one-one, honest reduction from K to L. Since K is paddable, we conclude
that there is a one-one, length-increasing, SNP reduction from K to L.

Thus all PSPACE-complete sets are complete via one-one, length-increasing, SNP-reductions
under the assumption NP does not have p-measure 0.

We are now ready to prove our isomorphism theorem for PSPACE. We start with the following
easy to prove observation.

Observation 3.8. Let f be a length-increasing SNP-computable function. There is a nondeter-
ministic polynomial-time machine M such that for every y that has an inverse, every path of M(y)
either outputs ⊥ or outputs a member of f−1(y), and at least one path outputs a member of f−1(y).
If f−1(y) does not exist, then every path of M outputs ⊥.

8

Theorem 3.9. If NP does not have p-measure zero, then all polynomial-time many-one complete
sets for PSPACE are SNP-isomorphic.

Proof. Let A and B be any two PSPACE-complete sets. By Lemma 3.3, there is a one-one,
length-increasing SNP-reduction f from A to B, and similarly there is a one-one, length-increasing
SNP-reduction g from B to A.

Consider the following multi-valued function h: If if g−1(x) exists, h(x) = f(x)∪{g−1(x)}, else
h(x) = f(x). Observe that since g is a one-one function, g−1(x), if it exists, is unique.

By Observation 3.8, there is a nondeterministic machine N that computes g−1. Consider the
following nondeterministic machine. On input x, it guesses a bit b ∈ {0, 1}. If b = 0, then it
simulates the SNP-machine that computes f . If b = 1, then it simulates N . If g−1(x) exists, then
the output set of this machine is exactly f(x)∪{g−1(x)}. If g−1(x) does not exist, then the output
set of this machine is f(x). Thus h is SNP-computable. Observe that h−1(x) = g(x) ∪ f−1(x).
Thus it follows that h−1 is also SNP-computable.

The value of h(x) is either f(x) or f(x) ∪ {g−1(x)}. Since f is a reduction from A to B and g
is a reduction from B to A, it follows that h is a reduction from A to B, and h−1 is a reduction
from B to A.

We now exhibit a single-valued refinement of h that is an isomorphism between A and B. Let
fs(x) denote the smallest element of f(x), and gs(x) denote the smallest element of g(x). Observe
the fs and gs are one-one, length-increasing, single-valued functions.

Given a string x of length n, consider the following sequence.

Sx = g−1s (x), f−1s (g−1s (x)), g−1s (f−1s (g−1s (x))), · · ·

The sequence stops when either g−1s or f−1s does not exist. Since both fs and gs are length-
increasing, f−1s and g−1s are length-decreasing. Thus the above sequence contains at most n strings.

Consider the following function e. If Sx has even number of elements then e(x) = fs(x), else
e(x) = g−1s (x). Clearly, e is single-valued. Consider the case Sx has odd number of elements. In this
case g−1(x) must exist. Thus h(x) = f(x) ∪ {g−1(x)}. Hence, if Sx has odd number of elements,
then e(x) ∈ h(x). Observe that for every x, f(x) ⊆ h(x). Thus if Sx has even number of elements,
then e(x) = fs(x) ∈ h(x). Thus e is a single-valued refinement of h.

It remains to show that e is an isomorphism from A to B. The proof of this is exactly the same
as the proof given by Berman and Hartmanis [BH77], so we omit the details here.

Thus A and B are SNP-isomorphic. This completes the proof of Theorem 3.9.

We observe that the isomorphism exhibited in the above proof can be computed in PNP. This
yields the following result.

Theorem 3.10. If NP does not have p-measure zero, then all polynomial-time PSPACE-complete
sets are PNP-isomorphic.

Observe that the above proof applies to any class that is closed under ⊕ operation. In particular,
it applies to all ∆-levels of the polynomial-time hierarchy.

Theorem 3.11. Assume that NP does not have p-measure zero. For every k ≥ 2, all sets that are
polynomial-time complete for ∆P

k are SNP-isomorphic and PNP-isomorphic.

We next consider whether we can prove a similar result for NP-complete sets. We need a
stronger hypothesis to do this.

9

Theorem 3.12. If NP ∩ co-NP does not have p-measure zero, then all polynomial-time complete
sets for NP are SNP-isomorphic.

For the most part, the the structure of the proof is similar to the proof of Theorem 3.9. We can
first prove that all NP-complete sets are complete via one-one, length-increasing, SNP-reductions.
For this we define an intermediate language A and argue that there is a one-one, length-increasing
reduction from SAT to A and a one-one, length-increasing reduction from A to the desired NP-
complete language. The main difference is in definition of the intermediate language A. Here we
define the intermediate language A as

A = {〈x, y, z〉 | |x| = |z| = |y|2,maj{x ∈ R, y ∈ SAT, z ∈ R} = 1}.

This ensures that A is also in NP. The remainder of the proof uses similar ideas.

4 Longest Runs and Polynomial-Time Randomness

In this section we establish bounds on the number of consecutive zeros or ones that appear in the
characteristic sequence of a p-random language and prove Theorem 3.1.

Define the function lr(b, w) as the function that, given a finite string w, returns the length of
the longest consecutive run of the bit b in w. For each bit b, let

Xb =

{
S ∈ {0, 1}∞

∣∣∣∣ lim
n→∞

lr(b, S �n)

log n
= 1

}
,

and let X = X0∩X1. The Borel-Cantelli lemma can be used to show that X has Lebesgue measure
1 [Dur04]. While there is a polynomial-time version of the Borel-Cantelli lemma [Lut92], it does
not apply to show that X has p-measure 1 because of problems with polynomial-time convergence.
Wang [Wan96] observed a similar problem with adapting the law of the iterated logarithm to p-
measure and developed another approach. We now use Wang’s technique to prove that X has
p-measure 1.

Theorem 4.1. µp(X) = 1.

Theorem 3.1 is immediate from Theorem 4.1.

Proof of Theorem 4.1. It suffices to show that µp(Xc
0) = 0 and µp(Xc

1) = 0. We will only show the
latter, as the other statement follows by a symmetric argument.

Let

X+ =

{
S ∈ {0, 1}∞

∣∣∣∣ lim sup
n→∞

lr(1, S �n)

log n
> 1

}
and

X− =

{
S ∈ {0, 1}∞

∣∣∣∣ lim inf
n→∞

lr(1, S �n)

log n
< 1

}
,

so that Xc
1 = X+ ∪X−.

For any S ∈ X+, there is an ε > 0 such that lr(1, S �n) > (1 + ε) log n for infinitely many n.
Therefore

X+ =
⋃
ε>0

X(1+ε) logn,

10

where
Xf = {S ∈ {0, 1}∞ | (∃∞n ∈ N) S �n ends in at least f(n) 1’s} .

More generally, we have X+ ⊆ Xlogn+2 log logn, so the following lemma implies µp(X+) = 0.

Lemma 4.2. Let f(n) = log n+ 2 log log n. Then µp(Xf) = 0.

Proof of Lemma 4.2. We define a sequence of martingales {dn}n≥2. The initial capital of dn is
dn(λ) = 2−f(n). For any string w with |w| < n− f(n) or |w| ≥ n,

dn(w0) = dn(w1) = dn(w).

For a string w with n− f(n) ≤ |w| < n,

dn(w0) = 0,

dn(w1) = 2dn(w)

In other words, each dn only bets on the last f(n) bits on a string of size n. For each of these
f(n) bits, dn bets its entire capital on 1. For any w of length n, we have dn(w) = 0 or dn(w) = 1:

dn(w) =

{
1 if lr(1, w) ≥ f(n),

0 otherwise.

It is clear that each dn is a p-martingale. Let

d(w) =
∞∑
n=2

dn(w).

For a sequence S ∈ Xf , since there are infinitely many n such that lr(1, S �n) ≥ f(n), there will
be infinitely many dn that reach a capital of 1 on S. Thus Xf ⊆ S∞[d]. However, we need to show
that d is a p-martingale. The averaging condition is immediate by linearity and

d(λ) =
∞∑
n=2

dn(λ) =
∞∑
n=2

2−f(n) ≤
∞∑
n=2

2− logn−2 log logn =
∞∑
n=2

1

n log2 n
<∞.

However, d is not p-approximable because this series converges too slowly to be p-convergent: the
number of terms required to approximate the sum within 2−r is not bounded by a polynomial
in r. We circumvent this problem by defining a supermartingale d̂ that is p-approximable and
S∞[d] ⊆ S∞[d̂].

Given any input length, only a finite number of the martingales dn bet on the next bit. Let
h(i) be the largest index such that dh(i) bets on the (i+ 1)th bit. In other words, h(i) is the largest

m such that dm(w1) 6= dm(w) when |w| = i. By definition, dm bets on the (i+ 1)th bit if and only
if m > i ≥ m− f(m). In particular, for sufficiently large i and all m ≥ i2, we have m− f(m) > i
and dm does not bet. Therefore h(i) ≤ i2 is an upper bound.

Note that if m > h(i) and |w| = i, then dm(w) = 2−f(m).
Because h(i) is bounded by a polynomial, we can directly calculate the sum of the first h(i)

martingales in polynomial time. As demonstrated by Wang [Wan96], the sum total of the other

11

martingales can be overestimated with an integral. If we consider each discrete value to be a
rectangular area in a Riemann sum, we have:

∞∑
n=h(i)+1

2−f(n) ≤
∫ ∞
h(i)

2− log x−2 log log xdx.

We then define our supermartingale d̂ by

d̂(w) =

h(|w|)∑
n=2

dn(w) +

∫ ∞
h(|w|)

1

x log2 x
dx.

The sum has a polynomial number of terms which can be approximated in polynomial time. The
integral evaluates to

ln 2

log h(|w|)
,

which can be approximated in polynomial time. Therefore d̂ has a polynomial-time approximation.
In order for d̂ to define a supermartingale, it must hold that 2d̂(w) ≥ d̂(w0) + d̂(w1), and in

order to be useful, it must hold that S∞[d] ⊆ S∞[d̂]. If

d̂(w)− d(w) =

∫ ∞
h(|w|)

1

x log2 x
dx −

∞∑
n=h(|w|)+1

1

n log2 n
> 0,

then whenever d is unbounded on a sequence, d̂ must also be unbounded. Since the sum is difficult
to evaluate, we instead consider the difference of a unit interval of the integral and a single term of
the sum: ∫ n

n−1

1

x log2 x
dx− 1

n log2 n
=

ln 2

log(n− 1)
− ln 2

log n
− 1

n log2 n
.

This difference is greater than zero, which is easily seen as each unit interval of the integral by
definition overapproximates each term of the sum. As the integral and the sum each evaluate
to finite amounts, the sum of the differences is also finite. Thus d̂(w) ≥ d(w). To show that
2d̂(w) ≥ d̂(w1) + d̂(w0), we have:

d̂(w0) + d̂(w1) =

h(|w|+1)∑
n=2

dn(w0) +

h(|w|+1)∑
n=2

dn(w1) + 2

∫ ∞
h(|w|+1)

1

x log2 x
dx

= 2

h(|w|+1)∑
n=2

dn(w) + 2

∫ ∞
h(|w|+1)

1

x log2 x
dx

= 2

h(|w|)∑
n=2

dn(w) + 2

h(|w|+1)∑
n=h(|w|)+1

dn(w) + 2

∫ ∞
h(|w|+1)

1

x log2 x
dx

≤ 2

h(|w|)∑
n=2

dn(w) + 2

∫ h(|w|+1)

h(|w|)

1

x log2 x
dx+ 2

∫ ∞
h(|w|+1)

1

x log2 x
dx

= 2

h(|w|)∑
n=2

dn(w) + 2

∫ ∞
h(|w|)

1

x log2 x
dx

= 2d̂(w).

12

(In the case when h(|w|) = h(|w|+ 1), the fourth line holds with equality.)
Therefore d̂ is a polynomial-time supermartingale such that S∞[d] ⊆ S∞[d̂] and the proof of

Lemma 4.2 is complete.

In a similar fashion, we define

Yf = {w ∈ {0, 1}∞ | (∃∞n ∈ N)lr(1, w �n) < f(n)} ,

and note that X− =
⋃
ε>0 Y(1−ε) logn. Also, for f > g, Yg ⊆ Yf , so the following is sufficient to show

µp(X−) = 0.

Lemma 4.3. Let f(n) = log n− 2 log log n. Then µp(Yf) = 0.

Proof of Lemma 4.3. We define a sequence of martingales {dn}n≥1 such that dn only bets on the
first n bits of a string via a simple polynomial-time computable betting strategy. Each martingale
dn divides the first n bits of the string into blocks of size f(n) (if there is a remainder, it is assumed
to be at the head of the string). For each block, dn divides its capital evenly among all possible
combinations of bits that are not all 1’s. Thus if that block somewhere contains a 0, dn will have
a small return, but if the block is all 1’s, dn will lose all of its capital.

Formally, for |w| ≥ n, if each block contains a 0, we have by definition that

dn(w) = dn(λ)

(
2f(n)

2f(n) − 1

) n
f(n)

.

Setting the initial capital to be

dn(λ) =

(
2f(n) − 1

2f(n)

) n
f(n)

,

we have dn(w) = 1. We then define

d(w) =
∞∑
n=2

dn(w).

For d to be a martingale, we need only show that
∑
dn(λ) converges. We have(

2f(n) − 1

2f(n)

) n
f(n)

=

(n
log2 n

− 1

n
log2 n

) n
logn−2 log logn

= 2
−n

[
logn−log(n−log2 n)

logn−2 log logn

]
.

We note that for 0 < ε < 1,

1

nε
∈ o

([
log n− log(n− log2 n)

log n− 2 log log n

])
so that

2
−n

[
logn−log(n−log2 n)

logn−2 log logn

]
≤ 2−

n
nε = 2−n

1−ε
= 2−n

δ
.

Since
∑∞

n=2 2−n
δ

converges for all δ > 0, we have
∑∞

n=2 dn(λ) <∞.
Thus d is a martingale, and it is clear that Yf ⊆ S∞[d]. It follows that d is p-computable,

because the series
∑∞

n=2 2−n
δ

is p-convergent [Lut92].
Thus µp(Yf) = 0, completing the proof of Lemma 4.3.

Since µp(X+) = 0 and µp(X
−) = 0, we have that µp(Xc

1) = 0, completing the proof of Theo-
rem 4.1.

13

5 Discussion

This paper initiates the study of structure of polynomial-time complete sets under more powerful
SNP reductions. We now briefly discuss a few interesting questions raised by our results.

As mentioned in the preliminaries, there are several ways of defining the notion of SNP-
isomorphism. Our current definition asks for a function h such that both h and h−1 are SNP-
computable and some single valued-refinement of h is an isomorphism. Perhaps a more natural
definition would the following: A set A is SNP-isomorphic to B if there is a (multi-valued) function
h such that h reduces A to B, h−1 reduces B to A, both h and h−1 are SNP-computable, and h
is bijection. A multi-valued function h : Σ∗ → Σ∗ is a bijection if every y ∈ Σ∗ has an inverse and
h(x)∩ h(y) = ∅ for every x that is not equal to y. Another way of defining SNP-isomorphism is to
require that h is a single-valued SNP-computable function.

Can we prove that PSPACE-complete sets or NP-complete sets are SNP-isomorphic using these
definitions? One way to achieve this is to strengthen Lemma 3.3 to the following: If the p-measure
of NP is not zero, then PSPACE-complete sets are complete via monotone, length-increasing, SNP
reductions.

We note that we can obtain an affirmative answer to this question for EXP. It is known that
polynomial-time EXP-complete sets are complete via one-one, length-increasing reductions [Ber77].
A function f is monotone if f(x) < f(y) whenever x < y. It is easy to modify Berman’s proof
to show that polynomial-time EXP-complete sets are complete via monotone, polynomial-time
reductions. Thus we unconditionally obtain that all EXP-complete sets are single-valued SNP-
isomorphic.

Ideally, we would like the resource bounds of isomorphisms and the reductions to be the
same. Can we show that all SNP-complete sets for PSPACE are SNP-isomorphic? How about
p-isomorphisms? Can we prove or disprove the isomorphism conjecture under the measure hypoth-
esis?

Finally, can we show that NP-complete sets or PSPACE-complete sets are complete via one-one,
length-increasing, polynomial-time computable reductions? There have been several partial results
on this question [Agr02, HP07, BHHT10, GHP12].

Acknowledgments. We thank the anonymous referees for helpful comments.

References

[AAI+01] A. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, and S. Rudich. Reducing the
complexity of reductions. Computational Complexity, 10:117–138, 2001.

[AAR98] M. Agrawal, E. Allender, and S. Rudich. Reductions in circuit complexity: An iso-
morphism theorem and a gap theorem. Journal of Computer and System Sciences,
57(2):127–143, 1998.

[AB93] M. Agrawal and S. Biswas. Polynomial-time isomorphism of 1-L complete sets. In
Proceedings of Structure in Complexity Theory, pages 75–80, 1993.

[ABI97] E. Allender, J. Balcazar, and N. Immerman. A first-order isomorphism theorem. SIAM
Journal on Computing, 26:557–567, 1997.

14

[Agr01a] M. Agrawal. The first-order isomorphism theorem. In Foundations of Software Tech-
nology and Theoretical Computer Science, pages 70–82, 2001.

[Agr01b] M. Agrawal. Towards uniform AC0-isomorphisms. In Proceedings of 16th IEEE Con-
ference on Computational Complexity, pages 13–20, 2001.

[Agr02] M. Agrawal. Pseudo-random generators and structure of complete degrees. In 17th
Annual IEEE Conference on Computational Complexity, pages 139–145, 2002.

[All88] E. Allender. Isomorphisms and 1-L reductions. Journal of Computer and System Sci-
ences, 36:336–350, 1988.

[All01] E. Allender. Some pointed questions concerning asymptotic lower bounds, and new
from the isomorphism front. In G. Paun, G. Rozenberg, and A. Salomaa, editors,
Current Trends in Theoretical Computer Science: Entering the 21st Century, pages
25–41. Scientific Press, 2001.

[AM77] L. Adleman and K. Manders. Reducibility, randomness, and intractability. In Pro-
ceedings of the 9th Annual ACM Symposium on Theory of Computing, pages 151–163,
1977.

[ASTZ97] K. Ambos-Spies, S. A. Terwijn, and X. Zheng. Resource bounded randomness and
weakly complete problems. Theoretical Computer Science, 172(1–2):195–207, 1997.

[AW09] M. Agrawal and O. Watanabe. One-way functions and Berman-Hartmanis conjecture.
In 24th IEEE Conference on Computational Complexity, pages 194–202, 2009.

[Ber77] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell Univer-
sity, 1977.

[BH77] L. Berman and H. Hartmanis. On isomorphisms and density of NP and other complete
sets. SIAM J. Comput., 6:305–322, 1977.

[BHHT10] H. Buhrman, B. Hescott, S. Homer, and L. Torenvliet. Non-uniform reductions. Theory
of Computing Systems, 47(2):317–341, 2010.

[BT94] H. Buhrman and L. Torenvliet. On the structure of complete sets. In 9th IEEE Annual
Conference on Structure in Complexity Theory, pages 118–133, 1994.

[Dur04] R. Durrett. Probability: Theory and Examples. Duxbury Press, third edition, 2004.

[GHP12] X. Gu, J. M. Hitchcock, and A. Pavan. Collapsing and separating completeness no-
tions under average-case and worst-case hypotheses. Theory of Computing Systems,
51(2):248–265, 2012.

[Gol09] O. Goldreich. A candidate counter example to the easy cylinders conjecture. Technical
Report TR09-028, ECCC, 2009.

[HP07] J. M. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets. Information
and Computation, 205(5):694–706, 2007.

15

[JL95] D. W. Juedes and J. H. Lutz. Weak completeness in E and E2. Theoretical Computer
Science, 143(1):149–158, 1995.

[JY85] D. Joseph and P. Young. Some remarks on witness functions for non- polynomial and
non-complete sets in NP. Theoretical Computer Science, 39:225–237, 1985.

[KMR90] S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman,
editor, Complexity Theory Retrospective, pages 108–146. Springer-Verlag, 1990.

[LM99] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. Bulletin
of the European Association for Theoretical Computer Science, 68:64–80, 1999. Also
in Current Trends in Theoretical Computer Science: Entering the 21st Century, pages
83–101, World Scientific Publishing, 2001.

[Lut92] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and
System Sciences, 44(2):220–258, 1992.

[Lut97] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and
A. L. Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-
Verlag, 1997.

[Vil39] J. Ville. Étude Critique de la Notion de Collectif. Gauthier–Villars, Paris, 1939.

[Wan96] Y. Wang. The law of the iterated logarithm for p-random sequences. In Proceedings of
the Eleventh Annual IEEE Conference on Computational Complexity, pages 180–189.
IEEE Computer Society, 1996.

16

