
Toward a machine-certified correctness proof of Wand’s
type reconstruction algorithm

Sunil Kothari
Department of Computer Science

University of Wyoming
Laramie, USA

skothari@uwyo.edu

James L. Caldwell
Department of Computer Science

University of Wyoming
Laramie, USA

jlc@cs.uwyo.edu

ABSTRACT
Although there are machine-certified proofs of correctness of
Alg. W and Alg. J, the correctness proof of Wand’s type re-
construction has never been machine checked. We give here
a brief description of our attempt at machine-certified proof
of correctness of Wand’s algorithm. The correctness is es-
sentially given in terms of completeness and soundness with
respect to the Hindley-Milner type system. Unlike other
works, we do not axiomatize MGUs.

1. INTRODUCTION
Type reconstruction algorithms can be broadly categorized
into two categories: substitution-based and constraint-based.
This categorization is based on whether the algorithms gen-
erate and solve constraints intermittently (substitution-based)
or separately (constraint-based). There is now a trend to-
ward constraint-based algorithms/frameworks [7, 3, 5, 9].

Although there are various formalizations of the correctness
of Alg. W [6, 2, 8], we know of no previous formaliza-
tions of any constraint-based algorithms. This is the first
attempt at machine-checked proof of correctness of Wand’s
algorithm[9] in Coq [1]. Our current work is a step toward
machine-certified proof of correctness of our extension to
Wand’s algorithm to polymorphic let [5].

We have adopted the following conventions in this paper:
atomic types (of the form Tvar x) are denoted by α, β, α′

etc.; compound types by τ, τ ′, τ1 etc.; substitutions by σ, σ′, σ1

etc.

We consider the language of pure untyped lambda terms
given by the following grammar:

Λ ::= x | MN | λx.M

where x ∈ Var and M, N ∈ Λ.

The types for the terms of the above language is given by
the following grammar:

τ ::= Tvar x | τ1 → τ2
where x ∈ N and τ1, τ2 ∈ τ .

And the constraints are given by the following grammar:

C ::= τ
e
= τ

where τ1, τ2 ∈ τ .

A type environment is a list of pairs of type Var × τ . A
substitution is a finite function from N to types. Application
of a substitution to a type is defined as:

σ (Tvar (n))
def
= if 〈n, τ〉 ∈ σ then τ else Tvar(n)

σ (τ1 → τ2)
def
= σ(τ1) → σ(τ2)

Thus, if a variable x is not in the domain of the substitution,

the substitution application lifts that variable to Tvar(n).
Application of a substitution to a constraint and type envi-
ronment are defined similarly:

σ(τ1
e
= τ2)

def
= σ(τ1)

e
= σ(τ2)

σ((x, τ) :: Γ)
def
= (x, σ(τ)) :: σ(Γ)

Two type terms τ1 and τ2 are unifiable if there exists a sub-
stitution σ such that σ(τ1) = σ(τ2). In such a case, σ is
called a unifier. More formally, we denote solvability of a
constraint by |= (read “solves”). We write σ |= (τ1

e
= τ2),

if σ(τ1) = σ(τ2). We extend the solvability notion to a list
of constraints and we write σ |= C if and only if for every
c ∈ C, σ |= c. A unifier σ is the most general unifier (MGU)
if there is a substitution σ′ such that for any other unifier
σ′′, σ ◦ σ′ ≈ σ′′, where substitution composition (◦) is de-
fined as:

σ ◦ σ′ def
= λτ.σ′(σ(τ))

and squiggle extensionality(≈) is defined as:

σ ≈ σ′ def
= ∀α. σ(α) = σ′(α)

One of the most important issue in machine checked correct-
ness proofs of the type reconstruction algorithms is the rep-
resentation used for substitutions and most general unifiers.
To a large extent, this representation determines the kind
of reasoning needed for substitutions. The type reconstruc-
tion verification literature has substitutions represented as
normal functions, list of pairs, and as a set of pairs. We rep-
resent substitution as finite functions and use the Coq finite
map library (Coq.FSets.FMapInterface) which provides an
axiomatic presentation of finite maps and a number of sup-
porting implementations. The Coq finite map library (ver.
8.1.pl3) that we used does not provide an induction principle
and forward reasoning is often needed for reasoning about
some simple lemmas. Despite these limitations, the library
is powerful and expressive.

2. CORRECTNESS PROOF OVERVIEW
The correctness is essentially given in term of completeness
and soundness with respect to the Hindley-Milner type sys-
tem. But first we describe the rules in the HM type system.
We use the syntax-directed formulation of the Hindley Mil-

ner type system mentioned in Table 1. Our experience shows
that the above presentation of type system is easier to rea-
son than the standard representation of Hindley-Milner type
systems, where the existing binding of x is removed from the
type environment in the rule HM-Abs. Though not shown
here but in the rule HM-Var, we consider the most recent
binding in the environment as the binding for the identifier.



search type env(x, Γ) = τ

Wand(Γ, x, n0) = ({Tvar(n0)
e
= τ}, n0 + 1)

Wand(((x : Tvar(n0 + 1)) :: Γ), M, n0 + 2) = (C, n1)

Wand(Γ, λx.M, n0) = ({Tvar(n0)
e
= Tvar(n0 + 1) → Tvar(n0 + 2)} ∪ C, n1)

Wand(Γ, M, n0 + 1) = (C′, n1) Wand(Γ, N, n1) = (C′′, n2)

Wand(Γ, MN, n0) = ({Tvar(n0 + 1)
e
= Tvar(n0) → Tvar(n1)} ∪ C′ ∪ C′′, n2)

Table 2: Wand’s algorithm description by cases

Γ � x : τ
where x : τ ∈ Γ (HM-Var)

{x : τ} :: Γ � M : τ ′

Γ � λx.M : τ → τ ′ (HM-Abs)

Γ � M : τ ′ → τ Γ � N : τ ′

Γ � MN : τ
(HM-App)

Table 1: Modified Hindley-Milner type system

Wand’s original description of the algorithm does not eas-
ily lend itself to formalization (induction hypothesis is not
quite right). We had to make many changes to the origi-
nal description. The modified version of Wand’s algorithm
is shown in Table 2. The above description ensures that
1) Starting with an empty type environment, the algorithm
always makes the least assumption about the type of an
identifier. But if the type environment is not empty then
those assumptions are not discarded. 2) Freshness is now
explicit - a freshness counter is threaded through the entire
algorithm to keep track of the variables introduced so far.
Note that the application case results in a constraint apart
from the constraints generated by the recursive calls, unlike
Wand’s original description.

In Wand’s original paper, the correctness of his algorithm is
stated as an invariant preservation in all steps of the algo-
rithm. Our soundness and completeness theorem (w.r.t. the
Hindley Milner type system as shown in Table 1) are stated
rather differently:

Theorem 1 (Soundness). ∀Γ, ∀M, ∀σ, ∀n n′, ∀C.
Wand(Γ, M, n) = (Some C, n′) ∧ unify C = Some σ ⇒
` σ(Γ) �HM M : σ(τ)

The completeness theorem is more involved, and also in-
volves a notion of freshness of type variables (with respect
to the type environment):

Theorem 2 (Completeness). ∀Γ′, ∀M, ∀τ.
` Γ′ �HM M : τ ⇒ ∀Γ, ∀n, ∀τ1, (∃σ. σ(Γ) = Γ′) ∧
fresh env n Γ ⇒ ∀C, ∀n′, Wand(Γ, M, n) = (Some C, n′) ⇒
∃σ′.Some σ′ = unify C ⇒ ∃σ′′.σ′′(σ′(Tvar n)) = τ ∧
σ′′(σ′(Γ)) = Γ′

A little note about the notations used in the two statements

above: Coq provides an option type (also available in OCaml
as a standard data type) to allow for failure.
Inductive option (A : Set) : Set := Some ( : A) | None.

We use the option None to indicate failure and in the result
Some(σ), σ is the resulting substitution. Similarly, Wand’s
algorithm may fail if the search typ env is unable to find a
binding. In Wand’s original description, the failure aspect of
the unification or the constraint generation is left implicit.

The unify used in both the theorems above refers to the
first-order unification algorithm. Existing literature on ma-
chine checked proofs of correctness of type reconstruction
algorithm have axiomatized the behavior of unification al-
gorithm as a set of four axioms. We have generalized the
standard presentation of those axioms to specify the MGU
of a list of equational constraints and we have formally veri-
fied that the unification algorithm does satisfies those axioms
[4].

3. CURRENT STATUS AND FUTURE WORK
The entire exercise has exceeded 8000 lines of Coq specifi-
cation and tactics. So far we have proved the soundness.
Interestingly, the concept of freshness is not needed in the
soundness. The completeness proof turns out to be much
more complicated to reason about. We are sure about the
proof argument, but it remains incomplete. We believe the
proofs of MGU axioms will come handy. As of now, the types
do not require binders. Therefore, binding has been less of
an issue. This will change when we do the correctness proof
of an extension of Wand’s type reconstruction algorithm.
Other important steps in the correctness proof of our ex-
tension are a formalization of the replacement lemma [10]
and verifying that the ptol transformation, a polymorphic
let desugaring that preserves type and value, is correct.

4. REFERENCES
[1] T. Coq development team. The Coq proof assistant

reference manual. INRIA, LogiCal Project, 2007.
Version 8.1.3.

[2] C. Dubois and V. M. Morain. Certification of a type
inference tool for ML: Damas–milner within Coq. J.
Autom. Reason., 23(3):319–346, 1999.

[3] B. Heeren. Top Quality Type Error Messages. PhD
thesis, Universitiet Utrecht, 2005.

[4] S. Kothari and J. Caldwell. A machine checked model
of MGU axioms: applications of finite maps and
functional induction. 2009. Submitted to UNIF’09.

[5] S. Kothari and J. L. Caldwell. On extending wand’s
type reconstruction algorithm to handle polymorphic



let. Local Proceedings of the Fourth Conference on
Computability in Europe, 15(5):795–825, June 2008.

[6] W. Naraschewski and T. Nipkow. Type Inference
Verified: Algorithm W in Isabelle/HOL. J. Autom.
Reason., 23(3):299–318, 1999.

[7] F. Pottier and D. Rémy. The essence of ML type
inference. In B. C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 10, pages
389–489. MIT Press, 2005.

[8] C. Urban and T. Nipkow. From Semantics to
Computer Science, chapter Nominal verification of
algorithm W. Cambridge University Press, Not yet
published 2009.

[9] M. Wand. A Simple Algorithm and Proof for Type
Inference. Fundamenta Informaticae, 10:115–122,
1987.

[10] A. K. Wright and M. Felleisen. A Syntactic Approach
to Type Soundness. Information and Computation,
115(1):38–94, 1994.


