
Toward a machine-certified correctness proof of
Wand’s type reconstruction algorithm

Presented by Sunil Kothari
Joint work with Prof. James Caldwell

Department of Computer Science,
University of Wyoming, USA



Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Wand’s Algorithm
Substitution

3 Correctness Proof
Issues In Formalization
Soundness and Completeness Proofs

4 Conclusions and Future Work

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 2 / 31



Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Wand’s Algorithm
Substitution

3 Correctness Proof
Issues In Formalization
Soundness and Completeness Proofs

4 Conclusions and Future Work



Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).

Automated type reconstruction is possible.
Substitution-based algorithms.

Intermittent constraint generation and constraint solving.
Constraint-based algorithms.

Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 3 / 31



Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).
Automated type reconstruction is possible.

Substitution-based algorithms.
Intermittent constraint generation and constraint solving.

Constraint-based algorithms.
Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 3 / 31



Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).
Automated type reconstruction is possible.

Substitution-based algorithms.
Intermittent constraint generation and constraint solving.

Constraint-based algorithms.
Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 3 / 31



Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).
Automated type reconstruction is possible.

Substitution-based algorithms.
Intermittent constraint generation and constraint solving.

Constraint-based algorithms.
Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 3 / 31



Overview Type Reconstruction Algorithms

Substitution-based Algorithms

Examples
Algorithm W, J by Milner, 1978.
Algorithm M by Leroy, 1993.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 4 / 31



Overview Type Reconstruction Algorithms

Substitution-based Algorithms

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99, NN96].

Nominal verification of Algorithm W (in Isabelle/HOL) [UN09].
The formalization in Coq is not available online.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 5 / 31



Overview Type Reconstruction Algorithms

Substitution-based Algorithms

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99, NN96].
Nominal verification of Algorithm W (in Isabelle/HOL) [UN09].

The formalization in Coq is not available online.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 5 / 31



Overview Type Reconstruction Algorithms

Substitution-based Algorithms

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99, NN96].
Nominal verification of Algorithm W (in Isabelle/HOL) [UN09].
The formalization in Coq is not available online.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 5 / 31



Overview Type Reconstruction Algorithms

Constraint-based Frameworks/Algorithms

Examples
Wand’s algorithm [Wan87].
HM(X) [SOW97] by Sulzmann et al. 1999, Pottier and Rémy 2005
[PR05], Qualified types [Jon95].
Top quality error messages [Hee05].

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 6 / 31



Overview Type Reconstruction Algorithms

Constraint-based Algorithms/Frameworks

Machine-Certified Correctness Proof
We know of no correctness proof of Wand’s type reconstruction
algorithm not verified in any theorem prover.

We want to verify our extension of Wand’s algorithm for
polymorphic let.
POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 7 / 31



Overview Type Reconstruction Algorithms

Constraint-based Algorithms/Frameworks

Machine-Certified Correctness Proof
We know of no correctness proof of Wand’s type reconstruction
algorithm not verified in any theorem prover.
We want to verify our extension of Wand’s algorithm for
polymorphic let.

POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 7 / 31



Overview Type Reconstruction Algorithms

Constraint-based Algorithms/Frameworks

Machine-Certified Correctness Proof
We know of no correctness proof of Wand’s type reconstruction
algorithm not verified in any theorem prover.
We want to verify our extension of Wand’s algorithm for
polymorphic let.
POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 7 / 31



Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Wand’s Algorithm
Substitution

3 Correctness Proof
Issues In Formalization
Soundness and Completeness Proofs

4 Conclusions and Future Work



Introduction Wand’s Algorithm

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 8 / 31



Introduction Wand’s Algorithm

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 8 / 31



Introduction Wand’s Algorithm

Substitution
A substitution (denoted by σ) maps type variables to types.

Unifier

We write σ |= (τ1
c
= τ2), if σ(τ1) = σ(τ2).

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 9 / 31



Introduction Wand’s Algorithm

Substitution
A substitution (denoted by σ) maps type variables to types.

Unifier

We write σ |= (τ1
c
= τ2), if σ(τ1) = σ(τ2).

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 9 / 31



Introduction Wand’s Algorithm

Substitution
A substitution (denoted by σ) maps type variables to types.

Unifier

We write σ |= (τ1
c
= τ2), if σ(τ1) = σ(τ2).

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 9 / 31



Introduction Wand’s Algorithm

Substitution
A substitution (denoted by σ) maps type variables to types.

Unifier

We write σ |= (τ1
c
= τ2), if σ(τ1) = σ(τ2).

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 9 / 31



Introduction Wand’s Algorithm

Wand’s Algorithm

Let G denote a set of goals. And E a set of equations.
Input. A term M of Λ.

Initialization. Set E = ∅ and G = {(Γ,M, α0)}.

Loop Step. If G = ∅ then return E else choose a subgoal (Γ,M, τ)
from G and add to E and G new verification conditions and
subgoals by looking at the action table.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 10 / 31



Introduction Wand’s Algorithm

Wand’s Algorithm

Action Table

Case (Γ, x , τ ). Generate the equation τ c
= Γ(x).

Case (Γ,MN, τ ). Generate subgoals (Γ,M, τ ′ → τ ) and (Γ,N, τ ′).

Case (Γ, λx .M, τ ). Generate equation τ c
= τ ′ → τ ′′ and subgoal

([x : τ ′] :: Γ,M, τ ′′).

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 11 / 31



Introduction Wand’s Algorithm

Wand’s Algorithm

Action Table

Case (Γ, x , τ ). Generate the equation τ c
= Γ(x).

Case (Γ,MN, τ ). Generate subgoals (Γ,M, τ ′ → τ ) and (Γ,N, τ ′).

Case (Γ, λx .M, τ ). Generate equation τ c
= τ ′ → τ ′′ and subgoal

([x : τ ′] :: Γ,M, τ ′′).

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 11 / 31



Introduction Wand’s Algorithm

Wand’s Algorithm

Action Table

Case (Γ, x , τ ). Generate the equation τ c
= Γ(x).

Case (Γ,MN, τ ). Generate subgoals (Γ,M, τ ′ → τ ) and (Γ,N, τ ′).

Case (Γ, λx .M, τ ). Generate equation τ c
= τ ′ → τ ′′ and subgoal

([x : τ ′] :: Γ,M, τ ′′).

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 11 / 31



Introduction Wand’s Algorithm

Wand’s Algorithm - Example

{(∅, λx .λy .λz.xz(yz), α0)}; {}
{((x : α1), λy .λz.xz(yz), α2)}; {α0

c
= α1 → α2}

{((x : α1, y : α3), λz.xz(yz), α4)}; {α2
c
= α3 → α4}

{((x : α1, y : α3, z : α5), xz(yz), α6)}; {α4
c
= α5 → α6}

{(((x : α1, z : α5), xz, α7 → α6), ((y : α3, z : α5), yz, α7))}; {}
{((x : α1), x , α8 → (α7 → α6)), ((z : α5), z, α8), ((y : α3, z : α5), yz, α7)}; {}
{(((z : α5), z, α8), ((y : α3, z : α5), yz, α7))}; {α1

c
= α8 → α7 → α6}

{((y : α3, z : α5), yz, α7)}; {α8
c
= α5}

{((y : α3), y , α9 → α7), ((z : α5), z, α9)}; {}
{((z : α5), z, α9)}; {α9 → α7

c
= α3}

∅; {α9
c
= α5}

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 12 / 31



Introduction Wand’s Algorithm

Wand’s Algorithm Example - Alternate View

{x : α1}
{α8→α7→α6

c
= α1}

` x : α8 → α7 → α6 {z : α5}
{α8

c
= α5}
`z : α8

{x : α1, z : α5}
{}
` xz : α7 → α6

{y : α3}
{α9→α7

c
= α3}

` y : α9 → α7 {z : α5}
{α9

c
= α5}
`z : α9

{y : α3, z : α5}
{}
` yz : α7

{x : α1, y : α3, z : α5}
{}
` xz(yz) : α6

{x : α1, y : α3}
{α4

c
= α5→α6}
` λz.xz(yz) : α4

{x : α1}
{α2

c
= α3→α4}
` λy.λz.xz(yz) : α2

{}
{α0

c
= α1→α2}
` λx.λy.λz.xz(yz) : α0

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 13 / 31



Introduction Wand’s Algorithm

Example - Solution

α0
c
= α1 → α2

α2
c
= α3 → α4

α4
c
= α5 → α9

α1
c
= α8 → α7 → α9

α8
c
= α5

α9 → α7
c
= α3

α9
c
= α5

After unifying the above constraints,
α0 7→ (α5 → α7 → α6)→ (α5 → α7)→ (α5 → α6)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 14 / 31



Introduction Substitution

Finite maps in Coq

Representing substitutions
Substitution represented as a list of pairs, set of pairs, and normal
function.
We represent a substitution as a finite function.

Substitution as a finite map
Used the Coq’s finite maps library Coq.FSets.FMapInterface (ver.
8.1pl3).
Axiomatic presentation.
Provides no induction principle.
Forward reasoning is often required.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 15 / 31



Introduction Substitution

Finite maps in Coq

Representing substitutions
Substitution represented as a list of pairs, set of pairs, and normal
function.
We represent a substitution as a finite function.

Substitution as a finite map
Used the Coq’s finite maps library Coq.FSets.FMapInterface (ver.
8.1pl3).
Axiomatic presentation.
Provides no induction principle.
Forward reasoning is often required.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 15 / 31



Introduction Substitution

Substitution

Related Concepts
Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
= τ2)

def
= σ(τ1)

c
= σ(τ2)

Assumption: Idempotent substitution.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 16 / 31



Introduction Substitution

Substitution

Related Concepts
Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
= τ2)

def
= σ(τ1)

c
= σ(τ2)

Assumption: Idempotent substitution.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 16 / 31



Introduction Substitution

Substitution

Substitution Composition
Substitution composition definition using Coq’s finite maps is
delicate.
But the following theorem holds

Theorem 1 (Composition apply)

∀σ, σ′.∀τ.(σ ◦ σ′)τ = σ′(σ(τ))

Substitution representation determines the reasoning.
A list of pairs: 600 proof steps [DM99].
Finite maps: 100 proof steps.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 17 / 31



Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Wand’s Algorithm
Substitution

3 Correctness Proof
Issues In Formalization
Soundness and Completeness Proofs

4 Conclusions and Future Work



Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
Raise exceptions, but that’s not possible.

We choose an option type.

Freshness is now explicit.
The W-App rule now generates a constraint.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 18 / 31



Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
Raise exceptions, but that’s not possible.

We choose an option type.

search_type_env(x, Γ) = Some τ

Wand(Γ, x, n0) = (Some {Tvar(n0)
c
= τ}, n0 + 1)

(W-Var)

Wand(((x : Tvar(n0 + 1)) :: Γ),M, n0 + 2) = (Some C, n1)

Wand(Γ, λx.M, n0) = (Some {Tvar(n0)
c
= Tvar(n0 + 1)→ Tvar(n0 + 2)} ∪ C, n1)

(W-Abs)

Wand(Γ,M, n0 + 1) = (Some C′, n1) Wand(Γ,N, n1) = (Some C′′, n2)

Wand(Γ,MN, n0) = (Some {Tvar(n0 + 1)
c
= Tvar(n1)→ Tvar(n0)} ∪ C′ ∪ C′′, n2)

(W-App)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 19 / 31



Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
Freshness is now explicit.

search_type_env(x, Γ) = Some τ

Wand(Γ, x, n0) = (Some {Tvar(n0)
c
= τ}, n0 + 1)

(W-Var)

Wand(((x : Tvar(n0 + 1)) :: Γ),M, n0 + 2) = (Some C, n1)

Wand(Γ, λx.M, n0) = (Some {Tvar(n0)
c
= Tvar(n0 + 1)→ Tvar(n0 + 2)} ∪ C, n1)

(W-Abs)

Wand(Γ,M, n0 + 1) = (Some C′, n1) Wand(Γ,N, n1) = (Some C′′, n2)

Wand(Γ,MN, n0) = (Some {Tvar(n0 + 1)
c
= Tvar(n1)→ Tvar(n0)} ∪ C′ ∪ C′′, n2)

(W-App)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 20 / 31



Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
The W-App rule now generates a constraint.

search_type_env(x, Γ) = Some τ

Wand(Γ, x, n0) = (Some {Tvar(n0)
c
= τ}, n0 + 1)

(W-Var)

Wand(((x : Tvar(n0 + 1)) :: Γ),M, n0 + 2) = (Some C, n1)

Wand(Γ, λx.M, n0) = (Some {Tvar(n0)
c
= Tvar(n0 + 1)→ Tvar(n0 + 2)} ∪ C, n1)

(W-Abs)

Wand(Γ,M, n0 + 1) = (Some C′, n1) Wand(Γ,N, n1) = (Some C′′, n2)

Wand(Γ,MN, n0) = (Some {Tvar(n0 + 1)
c
= Tvar(n1)→ Tvar(n0)} ∪ C′ ∪ C′′, n2)

(W-App)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 21 / 31



Correctness Proof Soundness and Completeness Proofs

Overview

Correctness is given w.r.t the Hindley-Milner type system:
〈x , τ〉 ∈ Γ is the leftmost binding of x in `

Γ B x : τ
(HM-Var)

(x , τ) :: Γ B M : τ ′

Γ B λx .M : τ → τ ′ (HM-Abs)

Γ B M : τ ′ → τ Γ B N : τ ′

Γ B MN : τ
(HM-App)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 22 / 31



Correctness Proof Soundness and Completeness Proofs

Soundness Proof

Informally

If Wand’s algorithm returns a unifiable constraint set, then there is a
Hindley-Milner proof.

Our Statement
∀Γ,∀M,∀σ, ∀n,∀n′,∀C.
Wand(Γ,M,n) = (Some C, n′) ∧ unify C = Some σ

⇒ ` σ(Γ)BHM M : σ(τ)

Wand’s Statement

∀σ.σ |= (E ,G)⇒` σ(Γ0)BHM M0 : σ(τ0)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 23 / 31



Correctness Proof Soundness and Completeness Proofs

Completeness Proof

Informally

If there is a Hindley-Milner proof (that a term has some type), then Wand’s
algorithm returns a solvable constraint set that will return the given type.

Our Statement
∀Γ′, ∀M, ∀τ.
` Γ′ BHM M : τ
⇒ ∀Γ, ∀n.(∃σ. σ(Γ) = Γ′) ∧ fresh_env n Γ
⇒ ∀C, ∀n′.Wand(Γ,M, n) = (Some C, n′) ∧
∃σ′.unify C = Some σ′

⇒ ∃σ′′.(σ′ ◦ σ′′)(Tvar(n)) = τ ∧
(σ′ ◦ σ′′)(Γ) = Γ′

Wand’s Statement
` ΓBHM M0 : τ ⇒ (∃ρ. ρ |= (E ,G) ∧ Γ = ρΓ0 ∧ τ = ρτ0)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 24 / 31



Correctness Proof Soundness and Completeness Proofs

Modeling MGU

The most general unifier (MGU) is often a first-order unification
algorithm over simple type terms.

In machine checked correctness proofs, the MGU is modeled as a
set of four axioms:

(i) mgu σ (τ1
c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃σ′′.σ′ ≈ σ ◦ σ′′

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 25 / 31



Correctness Proof Soundness and Completeness Proofs

Modeling MGU

The most general unifier (MGU) is often a first-order unification
algorithm over simple type terms.
In machine checked correctness proofs, the MGU is modeled as a
set of four axioms:

(i) mgu σ (τ1
c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃σ′′.σ′ ≈ σ ◦ σ′′

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 25 / 31



Correctness Proof Soundness and Completeness Proofs

MGU Axioms

Old Axioms
(i) mgu σ (τ1

c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃δ.σ′ ≈ σ ◦ δ

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

New Generalized Axioms

(i) unify C = Some σ ⇒ σ |= C
(ii) (unify C = Some σ ∧ σ′ |= C)⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′

(iii) unify C = Some σ ⇒ FTVS(σ) ⊆ FVC (C)
(iv) σ |= C ⇒ ∃σ′. unify C = Some σ′

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 26 / 31



Correctness Proof Soundness and Completeness Proofs

MGU Axioms

Old Axioms
(i) mgu σ (τ1

c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃δ.σ′ ≈ σ ◦ δ

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

New Generalized Axioms

(i) unify C = Some σ ⇒ σ |= C
(ii) (unify C = Some σ ∧ σ′ |= C)⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′

(iii) unify C = Some σ ⇒ FTVS(σ) ⊆ FVC (C)
(iv) σ |= C ⇒ ∃σ′. unify C = Some σ′

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 26 / 31



Correctness Proof Soundness and Completeness Proofs

Functional Induction in Coq

Axioms proved in Coq [KC09].
Important first step in proof of the axioms.
Requires an induction principle generated before.

functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 27 / 31



Correctness Proof Soundness and Completeness Proofs

Functional Induction in Coq

Axioms proved in Coq [KC09].
Important first step in proof of the axioms.
Requires an induction principle generated before.
functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 27 / 31



Correctness Proof Soundness and Completeness Proofs

Functional Induction in Coq

Axioms proved in Coq [KC09].
Important first step in proof of the axioms.
Requires an induction principle generated before.
functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 27 / 31



Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Wand’s Algorithm
Substitution

3 Correctness Proof
Issues In Formalization
Soundness and Completeness Proofs

4 Conclusions and Future Work



Conclusions and Future Work

Conclusions and Future Work

Used Coq’s finite maps library to represent substitution.
MGU is not axiomatized in our verification.
Completeness is work in progress, but so far 8000 lines of Coq
tactics and specification.
The final goal is to have a machine certified correctness proof of
our extension of Wand’s algorithm to polymorphic let.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 28 / 31



Conclusions and Future Work

Catherine Dubois and Valerie M. Morain.
Certification of a Type Inference Tool for ML: Damas–Milner within
Coq.
J. Autom. Reason., 23(3):319–346, 1999.

Bastiaan Heeren.
Top Quality Type Error Messages.
PhD thesis, Universitiet Utrecht, 2005.

J. Roger Hindley and Jonathan P. Seldin.
Introduction to Combinators and λ-Calculus.
Cambridge University Press, 1986.

Mark P. Jones.
Qualified Types: Theory and Practice.
Distinguished Dissertations in Computer Science. Cambridge
University Press, 1995.

Sunil Kothari and James Caldwell.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 28 / 31



Conclusions and Future Work

A machine checked model of MGU axioms: applications of finite
maps and functional induction.
In Proceedings of the 23rd International Workshop on Unification,
pages 17–31, 2009.

Dieter Nazareth and Tobias Nipkow.
Theorem Proving in Higher Order Logics, volume 1125, chapter
Formal Verification of Alg. W: The Monomorphic Case, pages
331–345.
Springer Berlin / Heidelberg, 1996.

Wolfgang Naraschewski and Tobias Nipkow.
Type inference verified: Algorithm w in isabelle/hol.
J. Autom. Reason., 23(3):299–318, 1999.

F. Pottier and D. Rémy.
The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 28 / 31



Conclusions and Future Work

Martin Sulzmann, Martin Odersky, and Martin Wehr.
Type inference with constrained types.
In Fourth International Workshop on Foundations of
Object-Oriented Programming (FOOL 4), 1997.

Christian Urban and Tobias Nipkow.
From Semantics to Computer Science, chapter Nominal
verification of algorithm W.
Cambridge University Press, 2009.

Mitchell Wand.
A simple algorithm and proof for type inference.
Fundamenta Informaticae, 10:115–122, 1987.

Andrew K. Wright and Matthias Felleisen.
A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

Kothari Caldwell (U. of Wyoming) Machine-certified proof of Wand’s type reconstruction algorithm WMM’09 28 / 31


	Overview
	Type Reconstruction Algorithms

	Introduction
	Wand's Algorithm
	Substitution

	Correctness Proof
	Issues In Formalization
	Soundness and Completeness Proofs

	Conclusions and Future Work

