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Abstract. Peer-to-peer technology implemented in systems like Nap-
ster allowed sharing of digitized music across the web in an incredibly
easy to use system. This paper describes a prototype peer-to-peer system
for networking distributed and heterogeneous databases of formalized
mathematics. We also propose a general framework for deductive search
in heterogeneous libraries of formal content. As participants in this con-
ference well know, a significant body of mathematics has been formalized
in theorem provers. We believe that a truly distributed mechanism for
sharing formal content will multiply efforts of individual users of theo-
rem proving systems, will invigorate ongoing formalization efforts, and
will spur new research in deductive search and content-based addressing.
Interactive sharing has the potential to be a significant new methodology
for theorem proving. A basic tenet of our approach is that users of the
system must be able to account for results and methods for accountabil-
ity are incorporated into the proposed methods.

1 Introduction

We imagine a future in which the web plays an integral role in theorem proving
efforts. Where theorems and proofs of diverse systems are interactively searched
by developers across the web and where sharing is used to discharge significant
numbers of proof obligations.

There is a diverse array of theorem proving systems representing many hun-
dreds of man-years of effort, they range from those that completely automate
the proof search to interactive proof checkers. A list of these systems would in-
cludes ACL2, Coq, Elf, HOL, Isabelle, MetaPrl, Mizar, Nuprl, PVS and others.
The number of extant theorems that have been proved in these systems is as-
tounding. (The reader is invited to make his own estimate). Currently, the costs
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of sharing formal material are so high that little sharing takes place, sometimes
even within communities of users of the same tool. Much of the sharing that
does take place requires personal communication between the parties involved.

In this paper we describe a vision of the future and argue that it need
not merely be a fantasy. Toward this end we describe the implementation of
a prototype peer-to-peer framework for connecting distributed libraries of math-
ematics [17]. The prototype implementation also supports a query language for
content and name based searching. We go further in proposing a general frame-
work for deductive search methods in a collection of logically heterogeneous
databases1. Our approach is guided by our experiences in the Formal Digital
Libraries project [8], a joint project between Cornell, Caltech and Wyoming.

1.1 Vision

We imagine a system in which proof obligations may be discharged by existing
results, that have perhaps been verified in different logics, and recorded in a
distributed and heterogeneous database. Consider the following scenario.

A user, sitting in Laramie Wyoming on a blustery winter evening,
is constructing a proof in the Nuprl system2. At various points in the
process, suspecting that surely someone else has already proved the re-
sult required to complete her proof, she initiates an interactive query.
Moments before the Wyoming user issued her query, an early rising
HOL user in the warm summer morning of Canberra Australia has just
proved a lemma having the required semantic import. Upon completing
his proof it was automatically committed to his local online database.
Our Wyoming users query returns the HOL result together with a proce-
dure for translating HOL terms into Nuprl terms and includes evidence
that the proof actually was completed in HOL. This information is in-
corporated into her local database and used to complete her proof. Once
completed, her new result is recorded into her data-base thereby making
it immediately available to other proof efforts distributed across the web.

In this paper we argue that this scenario is both theoretically feasible and
practically realizable with existing technologies (circa 2004). We present evidence
for this argument by describing a prototype implementation of a peer-to-peer
network for interconnecting databases of formal mathematical content. We con-
tinue by outlining a general theoretical framework for deductive searching in
distributed networks libraries of heterogeneous formalized mathematics.

We reckon that the following are the necessary components for such a system.
1 Throughout the paper, the words “library” and “database” should be considered

synonymous, though perhaps the word “database” emphasizes implementation.
2 By inclination, our hypothetical user is interested in extracting programs from proofs

but has no philosophical objections to incorporating classical results into her proofs
if it does not impinge on the constructive content. For a discussion of just such a
methodology for incorporating classical results into constructive proofs see [5].



i.) Individual databases of formalized mathematics.
ii.) A framework for connecting individual databases into a distributed network

including methods for finding databases of formal material and a protocol
for communicating between them.

iii.) Methods of translating between logical theories.
iv.) Methods of searching across the distributed network.

There are independent research efforts underway on all these topics. What does
not currently exist is an effort to pull these technologies together into an unified
approach. In this paper we address items (ii), (iii) and (iv). We do not propose to
constrain (i) other than to require that databases participating in the network
implement the protocol described as part of (ii). We believe that a successful
implementation of items (i), (ii) and (iv) will create a market that will further
stimulate the development of translations (iii).

We remark that, perhaps surprisingly, scientific communities other than com-
puter science seem to be better at sharing results in a significant way; by which
we mean that information is shared so that it can be used directly in establish-
ing new results, not simply in a secondary form. For example, the databases of
genetic structures are remotely accessible and remote access forms a crucial part
of the methodology used by researchers working in that field. On the homepage
for the National Center for Biotechnology Information [22] it says: “Most jour-
nals now expect that DNA and amino acid sequences that appear in articles will
be submitted to a sequence database before publication.” As a community, we
could take a lesson here.

1.2 Relating theories

The ability to soundly combine theorems proved in different logics within the
same framework is a deep mathematical problem. Institutions [10, 11] provide
a category theoretic framework in which the formal relations between differ-
ent theories can be established. Although institutions provide a mathematical
framework within which relations between logics can be understood, they have
been little used in practice. The hard part of relating theories is establishing the
semantic map. Howe [15, 14] has provided the semantic foundations for a map
between HOL and a classical variant of Nuprl. An implementation of the trans-
lation is described in [21]. Naumov [20] has related Isabelle and classical Nuprl
and a semantic justification for translating PVS results into classical Nuprl has
recently been completed [19]. Staples has related ACL2 and HOL [25] providing
a mechanism to incorporate results of ACL2 into HOL proofs. Applications for
sharing results (even the use of classical results from PVS in constructive Nuprl
proofs) are discussed in [5]. In each case, a semantically justified translation from
the language of one logic into the language of another is required.

Applying an economic model, we note that translations between theories are
implemented by individuals who value the incorporation of results from one the-
ory into their own highly enough to do the required work. Part of the calculation
of the worth of such an effort is based on the amount of and type of material that



will be made accessible by a translation and the ease with which it will be used
by the developer and others. The framework proposed here lessens the effort
required to apply such translations, i.e. it provides a market for such tools. By
providing a such a market, we believe that a framework such as the one described
here for integrating multiple provers will motivate further developments.

1.3 Accountability

A guiding principle of our framework and of the Formal Digital Library [8] (FDL)
is one of accountability. Consumers of theorems and other formal objects have a
right to know what assumptions, facts and methods an object depends on; this
problem has seen previous study [12]. Only with this knowledge can users make
epistemic judgments whether to accept results and to incorporate them into their
own work. As part of the FDL effort, Allen [2] has designed a novel mechanism
to certify facts about objects in a database of terms. These certifications carry
epistemic weight in that: users may create new certificate kinds, they may request
than an existing kind of certification be run on a particular object, or they may
examine existing certificates. Users may not create certification objects, only the
system can do so by evaluating the computational part of a certificate kind. Users
can determine exactly what has been certified by examining the code used to
create a certificate. In the scheme of the FDL, there are a plethora of certificates
generated by many users; some may be as simple as a claim that some individual
created the certified object, others may certify that a proof has been accepted by
some formal tool or that some object originated from a particular database. This
certification mechanism can be used to build sets of dependencies and properties
of objects and to track them. Users can inspect certificates and, by evaluating
the methods used to generate a particular certificate kind, can determine the
epistemic weight they accord to the certified object.

Accounting for the correctness of a formal object (let’s say a proof) depends
on a complex set of facts that at least include which tools (and version) were
used to produce the proof; the lemmas, tactics, and methods of proof the the-
orem itself depends on; global settings in the environment when the proof was
done; and perhaps other facts. This list must be open-ended since the evidence
required for an individual to accept a result ultimately depends on that indi-
viduals personal criteria. The criteria for believing something can vary from
individual to individual and thus, the threshold of evidence may be higher or
lower, depending on the individual. In an extreme case, users may accept results
based on authority e.g. ‘Caldwell said “Constable said φ is a theorem.”.’ But
even this form of evidence3 may carry epistemic weight with users and our goal
is to include even this kind of evidence. Every kind of formal object potentially
requires some form of evidence (formal or informal) to justify its use in certain
contexts.

3 Evidence like this may actually be easy to account for using certificates based on
digital signatures.



1.4 Searching

We intend to search in heterogeneous databases, i.e. databases containing results
from a number of logical systems. The effectiveness of existing search technologies
would seem to be the principal technical obstacle to true integration of these
ideas into proof engines.

There are two aspects to the search problem. The first is to find the available
databases of formal content on the web that are open to pubic search; the sec-
ond is to search those databases for formal content (definitions, theorems, proofs,
translations, tactics, etc.) in a semantically robust way. The first problem is ad-
dressed (and solved) by our prototype peer-to-peer network. The second problem
is theoretically challenging and open ended in that we expect new search meth-
ods will constantly be developed. Below we describe a framework for deductive
search within which we believe new methods can be couched.

Formalized mathematical proofs and theories are fragile objects4 and al-
though the semantic import of a theorem may well match or subsume a lemma
being searched for, the shape of the theorem may not trivially match the search
pattern. Trivial syntactic differences in theorems having little or no semantic
content (e.g. ∀x.φ ∧ ψ vs. ∀y.ψ ∧ φ) can make naively implemented search fail,
users would be disappointed with such failures. Also, the equivalence of formu-
las in different logics differ, e.g. classically, φ ⇒ ψ and ¬φ ∨ ψ are equivalent
while they are not equivalent in the constructive setting; this must be taken into
account in a heterogeneous setting by specifying the logic to use for deduction
in search.

Methods for searching formal content might be based on unification5 [7], but
other strategies are possible as well. Of course, the problem of determining if a
previously verified lemma (or collection of lemmas) subsumes a query target is
undecidable in general.

2 A Peer-to-peer framework

The second author has built a prototype peer-to-peer network for sharing infor-
mation between FDL’s. The details of the architecture and of the implementation
are described in [17]. Figure 1 gives an overview of the architecture. Peer-to-peer
applications are becoming ubiquitous; they are used to share files, CPU cycles,
and other resources. A principal advantage of the technology is its inherent fault-
tolerance, there is no centralized component to fail. Peer-to-peer networks also
4 Even tyros have first hand experience of this fragility. Small changes, e.g. adding

an antecedent to the statement of a putative theorem, will often break a partial
derivation that may have already been constructed. In fact, the most experienced
users of such tools distinguish themselves from novices in that they build proofs in
such a way as to avoid failure under minor perturbations to the statement being
verified.

5 Higher-order unification is undecidable but unification based methods can still be
used since a user only needs a non-empty approximation to the complete search to
satisfy a query.



support distributed discovery mechanisms. Sun has developed an open source
peer-to-peer framework called JXTA [18] that is platform and programming
language independent. Our system is built on JXTA.

2.1 A Prototype Implementation

The prototype is implemented in Java. It consists of about 6000 lines of code
and includes a name and content based search engine for FDLs. The JXTA
framework is used to provide the peer-to-peer network functionality.
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Server 1 and Server 2 advertise the existence of the libraries FDL 1 and FDL 2 to the
P2P network (step1). An interested client discovers these libraries (step 2). The client
then queries the servers over the P2P network (step 3).

Fig. 1. P2P architecture

The FDL provides a TCP/IP based mechanism that allows clients to con-
nect to the library and to issue simple search requests. The current interface
to the library is limited to a search by name request and a search by content
request. The search by name request returns a set of all theorems that contain
a given string as a substring of their names. The search by content request re-
turns the set of all theorems whose statements contain operators specified in
the search. We developed a Boolean query language using the logical operations
‘and’, ‘or’, and ‘not’ to create more powerful expressions. While the query lan-
guage is very simple it is surprisingly useful and serves to prove the mechanisms
for searching remote libraries work. Indeed we found many new theorems in the
Cornell libraries while testing our tool. Within the prototype, the search engine
is implemented modularly and can easily be replaced if extensions are required.

To share theorems between groups we not only need to be able to search
libraries but we also we need to discover the libraries themselves. In peer-to-
peer networks, servers and clients have equal rights and responsibilities and are



connected in a mesh topology. Peer-to-peer networks support mechanisms for
discovering other peers and exchanging information between them. The JXTA
framework provides a high level abstraction of these mechanisms. In our pro-
totype, the libraries offering search services advertise it in the network. Clients
can use those advertisements to invoke the services. All communication between
peers is done within the peer-to-peer network having the advantage that prob-
lems with firewalls can be avoided (see [17] for details.) Since databases are
not designed to participate directly in the peer-to-peer network a small server
application was developed which is deployed in front of each library. Not only
does this provide the interface for application libraries to join the peer-to-peer
network, the server could also be used to provide additional functionality like
authentication, authorization, and accounting.

3 A Framework for Deductive Search

In this section we describe the framework within which we address the problem of
searching in distributed heterogeneous databases of formalized mathematics. The
proposed framework is intended to be independent of the underlying individual
databases; although we have in mind the FDL. The proposed framework does
not make assumptions about the underlying databases but assumes that they
provide a uniform interface; we (partially) specify that interface here.

The framework consists of the following components.

i.) A term structure used to communicate information across the network, the
class of terms is denoted TermI .6

ii.) An application programmers interface (API) supported by databases in the
network.

iii.) A peer-to-peer architecture for the interconnection of the databases sup-
porting functions for dynamically integrating new databases into the network
and the protocol for communication between them.

iv.) A logical framework imposed on terms for describing the methods of de-
ductive search. This is based on a concept of formal languages as decidable
subclasses of terms in TermI . These languages include the languages of the
various logics together with the other extra-logical languages; e.g. repre-
sentations of executable code (e.g. tactics, translations and others) together
with all the other components necessary for the representation and manipu-
lation of formalized mathematics. We also intend that informal content will
be representable in the database as well.

The communication between systems is facilitated by a uniform and extensi-
ble term structure. This is the same term structure used internally by the FDL
to represent formalized mathematics though we do not assume it is the internal
representation used by all databases connected in the network; simply that they
can translated their internal representations into the specified form. We also use
the term structure in the description of the framework for deductive searching.
6 The term structure described here is based on Nuprl’s term structure [1] and is the

one used internally within the FDL; we use it as an interface language.



3.1 Terms and Languages

The issues related to the representation of formalized mathematics are extraor-
dinarily complex, especially as related to binding structures7. In this section
we present the term structure used in the FDL which offers some generality in
binding.

TermI is the class of recursive tree structures of the form

opid{parameters}(bterms)

where opid is the operator name, parameters is a list of value-type pairs and
bterms is a list pairs consisting of a list of variables and a term. The parameter
I is the class of abstract atomic identifiers allowing terms to refer to other terms
in TermI .

〈TermI〉 ::= D | 〈opid〉{〈parameter〉∗}(〈btermI〉∗)
〈opid〉 ::= 〈C〉〈C〉∗
〈btermI〉 ::= 〈vars〉∗. 〈termI〉
〈parameter〉 ::= 〈value〉, 〈type〉
〈C〉 ::= any character

Parameters are constants or other arguments not constituent in the subterms
e.g. within the FDL representation of Nuprl and PVS terms, the number 1 is a
constant term of the form natural{1:num}(), the string “xyzzy” is represented
by the term string{"xyzzy":string}(). The class of parameters is not fixed
and can be extended to accommodate new languages and logics.

The bterms are the subterms of a term, possibly containing bound variables.
A bterm consists of a list of variables (the bound variables) and a term (the
body). Occurrences of variables included in the list of bound variables are bound
in the body of the bterm. The use of bterms to encode binding operators can be
seen by considering the encoding of the lambda abstraction in this structure. The
term λx.M is encoded as lambda{}(x.M). The opid of this term is lambda, it
has no parameters, and it has one subtermM in which occurrences of the variable
x are bound. The universal quantifier ∀x :T.P is encoded as all{}(T;x.P). The
operator id is all, there are no parameters, and the operator has two subterms, T
(the domain from which the bound variable x is chosen, and the bound term x.P
where P is a term possibly containing free occurrences of the variable x. The fact
that there may be multiple variables bound simultaneously in a subterm allows
for the specification of an operator like Nuprl’s spread operator, a generalized
destructor for pairs; it is defined as spread{}(p;x,y.t). The computation rule
for spread makes clear how the simultaneous binding is used when the subterm
p is a pair.

spread(<a,b>; x,y.t) → t[a, b/x, y]

7 For an interesting discussion of alternative binding structures see [13] and references
therein.



i.e. if the first argument to spread is a pair of the form 〈a, b〉, spread simulta-
neously substitutes the first element of the pair for x in t and the the second
element of the pair for y in t.

The index set I is not necessary for representing individual terms of a logic.
By providing a means for terms to refer to other terms, the identifiers in the
set I allow arbitrarily complex structures to be embedded within a collection
of terms. Formal libraries are such structured collections. Allen has argued in
detail elsewhere [2] that the references between terms should be abstract and
atomic, thus the identifiers in I have no discernible structure and simply serve to
refer. Indeed, within the conception of the FDL, the only significant property of
the indices in a structured collection of terms is the topology of the constituent
components induced by the references between the terms. More precisely, if I is
the set of abstract identifiers used in TermI and I ′ is a set of abstract identi-
fiers of equal or greater cardinality, then the process of uniformly replacing the
abstract identifiers in a database of terms in TermI (under any injective map
from I to I ′) results in a database of terms in TermI′ which carries the same
semantic import as the original.

This term structure has been used to represent both Nuprl, HOL and PVS
terms in the FDL [8, 3].

A language is a decidable subset of terms i.e. L is a language if L ⊆ TermI

and for every t ∈ TermI , we can decide if t ∈ L. We assume interesting languages
have names and abuse our own notion by identifying L both with the set of terms
in the language and as a name of the set of terms. If L is a language we also
use the name L to denote the property of membership in L, thus if L occurs as
a property it denotes the property (λt. t ∈ L). We note here that many of the
languages we are interested in will be the terms of some logic, though not all
interesting languages are logical.

3.2 Databases and Filters

In our model, libraries are collections of terms that refer to one another via the
abstract atomic identifiers together with collections of certificates making claims
about the stored terms.

Every individually stored term has an index i ∈ I and terms may contain
indexes to other terms. There is no requirement that every subterm of a term
be indexed, though it is possible to build terms by storing subterms individually
and referring to them by their abstract identifiers.

The evidence associated with a term is carried in the certificates for the term.
We use the Greek ‘ε’, possibly decorated, as meta-variables denoting evidence.
Terms retrieved from databases are packaged with the evidence associated with
them and we call such packages eterms. We denote the type of evidentiary terms
TermIE and write tε to denote elements of this type. Evidence can be erased
from an evidentiary term, dtε

e = t, i.e. d·e : TermIE → TermI and similarly,
evidence can be garnered from an eterm btεc = ε. No mechanism is provided for
evidentiary terms to be composed (except by the database itself) and we expect



to apply encryption mechanisms to enforce the constraint that only the database
can deliver an eterm.

Once exported from a database, every term has at least one piece of evidence
associated with it which an identifier of the database it originated in. Of par-
ticular practical interest and current research is the problem of how evidence in
the form of certificates can be transferred from one database to another without
forcing the re-verification of the certificates. We expect that methods based on
digital signatures, like that described in [12], can be applied to this problem.

Within a database, term indexes (either stored as data or computed as
needed) are used to select objects satisfying some property e.g. the terms of the
PVS logic, or the Nuprl tactics. Term indexing is a tool to pair down the search
space before the computationally expensive part of the search is performed by
filtering objects that are unlikely to match. See [24] for efficient data-structures
and algorithms for term indexing of first-order terms. We imagine many such
indexing operations will be defined and provide the framework for specifying
them here.

Given a database D of terms and a property (ϕ : TermIE → B) of terms,
D↓ϕ is the set of eterms in D satisfying ϕ:

D ↓ϕ def
= {tε ∈ D | ϕ[tε] }

If P = {ϕ1, · · · , ϕn} is a set of properties of eterms, we write D ↓ P to denote
the set of terms satisfying at least one of the properties in P i.e. {ϕ1, · · · , ϕn}
is a notation for the property (λtε. ϕ1[tε] ∨ · · · ∨ ϕn[tε]). Note that the fact that
properties are defined on eterms means we can filter databases by syntactic
properties of the terms and/or by the evidence the terms carry.

If D is any set of databases and if ϕ is any property of terms, then:

D ↓ ϕ def
=

⋃
D∈D

D ↓ ϕ

Individual databases may vary in their underlying implementations though
they must all support translations from their internal representations into the
term representation that serves as the medium of communication between sys-
tems. A framework like the one proposed here, characterized by operations on
terms, allows for specification of search methods in terms of the interface lan-
guage.

3.3 Translations

Our methodology for sharing results rests on the idea that there may be effective
translations between logics. In [26], an application similar to the one here is given
which accounts for the use of multiple logics within a single specification.

If there is a partial function f mapping terms to terms (f : TermI → TermI)
such that the domain of f is L′ and the codomain of f is L we call 〈f,L′,L〉
a translation. Note that since the domains of translations may intersect, we



explicitly carry the domain and codomain with the translation8. If f is a function
from L′ to L and t ∈ L′ then f(t) evidently denotes the translation of t ∈ L′
into a term in the language L.

We are typically interested in translations that make some kind of guaran-
tee, e.g. that some property is preserved by the translation. The evidence for
guarantees are represented in certificates9 and so, a translation which generates
evidence for its own correctness must generate certificates. Only the database
can generate certificates and so evidentiary translations must carry references to
certificate kinds (a certificate generator) and make requests to the database to
execute them. A translation certificate kind (of type CK) takes an eterm tε whose
term part is of type L′ and returns a new eterm t′ε′ where ε′ is the new evidence
for the translated term t′. As a side effect it adds the new term (t′ = f(dtεe)) to
the database and creates new certificates for t′ both preserving the old certifi-
cates btεc (noting that they belonged to the untranslated term tε) and generating
a new certificate certifying that t′ was indeed generated by the translation of tε.
If C is a reference to a certificate kind we write C∗(tε) to denote the result of a
request for the database to apply certificate kind C to tε.

Thus,the type of evidentiary translations is defined to be the four-tuple:

Tr
def
= (TermI → TermI)× (TermI Set)× (TermI Set)× CK

If τ = 〈f,L,L′, C〉 is in Tr then:

τ(tε)
def
= C∗(tε) dom(τ)

def
= L codom(τ)

def
= L′

We define the composition of evidentiary translations (τ ◦ τ̂) as follows.
If τ = 〈f,L′, L̂, C〉 and τ̂ = 〈g, L̂,L, Ĉ 〉 are compatible translations (i.e. if
codom(τ) = dom(τ̂)) then:

τ ◦ τ̂ = 〈f ◦ g, L′, L, C ◦ Ĉ〉

The notation (f ◦ g) denotes ordinary function composition defined
as (f ◦ g)(x) = g(f(x)).

The identity translation on a language L is defined as IdL = 〈λx.x,L,L, CId〉,
where CId is the certificate kind that has no side effects and C∗Id(tε) simply returns
the value tε.

In practice the syntactic translations between the formal languages may be
straightforward, the hard part for nontrivial translations between logics is the
justification that the translation preserves intended meanings. The justification
that the intended meaning is preserved by a translation may be informal or

8 This is consistent with formalizations of category theory [16, 6] in which each arrow
has a dom and codom function and so arrows in non-trivial categories are triples.
With this in mind, we see that languages are the objects of the category, translations
are the arrows and composition is defined as below.

9 Certificates justifying a translation may refer to an informal argument (a paper)or
they may refer to other formal content.



formal. To the extent that a user believes the justification for a translation,
he will include it (or not) in the set of translations he wants considered when
calculating a set of candidates for a search.

3.4 Stratification of Languages by Translations

To consider the relationships between objects in different languages in a het-
erogeneous database, we stratify terms relative to a fixed language L by their
distance from that language via some sequence of translations in a specified10

set T. For the purposes of search, we are ultimately interested terms that can be
effectively translated from one language (logic) to another. Based on this idea,
we provide the following definition of the n-closure of a translation set T relative
to a language L.

T0
L

def
= {τ : Tr | τ = IdL}

Tn+1
L

def
= {τ : Tr | ∃τ ′ ∈ T. ∃τ̂ ∈ Tn

L. codom(τ ′) = dom(τ̂) ∧ τ = (τ ′ o τ̂)}

The class Tn
L consists of all translations mapping terms of languages L′ to the

language L by a sequence of n translations from the set T.
We define the closure of the stratification to be the union of all the levels.

T∗
L

def
=

⋃
i∈N

Ti
L

This is the set of all terms interpretable as terms in L by some sequence of
translations in T.

The languages at level k in Tk
L can be retrieved by projecting them from the

translations in that level.
||Tn

L||
def
= π2(Tn

L)

where the projection functions are lifted to sets of tuples point-wise in the natural
way (i.e. if S ⊆ S1 × · · · × Sn then πi(S) = {xi : Si|〈x1, · · · , xi, · · · , xn〉 ∈ S}
where 0 < i ≤ n}).

The distance of a language L′ from L under the translations set T is defined
if and only if L′ ∈ ||Tk

L|| for some k and is the minimum k such that L′ ∈ ||Tk
L||.

The languages included in the closure T∗
L determine the potential search

space (and translations to use) to satisfy a query in the language L.
The set of terms from a collection of databases D under translation set T

at distance k from L is the set D ↓ ||Tk
L||. We call this set the k-step candidate

terms. The full set of candidate terms are the terms in D ↓ ||T∗
L||. These sets are

sets of terms in the languages L′, that can be translated into terms in L. We are
of course not only interested in the sets of terms which can be translated into
the language L but are interested in their translations. The effective candidate

10 We specify the set of allowable translations T because it is a basic tenet of our
approach that users must be able to account for the results they receive.



terms of L from D under T is the set of terms from the languages in D ↓ ||T∗
L||

paired with their translations.
The following property states that if τ is in set of translations in T∗

L, then
every term t in dom(τ) actually is mapped to a term in L by τ .

∀T :TrSet. ∀L ⊆ TermI . ∀τ ∈ T∗
L. ∀t ∈ dom(τ). τ(t) ∈ L

The proof of this property is by induction on the level k at which τ occurs in T∗
L

and then follows directly from the definition and the properties of composition.
The fact that translations are not necessarily invertible determines how

search is done in the languages that are one or more translation steps from
L; we apply the search methods implemented for L to terms in 〈t, τ〉 ∈ T∗

L by
searching against the translated term τ(t).

As an example of these definitions, consider the following. There are extant
translations of HOL terms to classical Nuprl terms (τ1), a translation of Isabelle
terms to classical Nuprl terms (τ2) and a translation of ACL2 terms into HOL
terms (τ3).

||{}0
Nuprl)|| = {Nuprl}

||{τ1, τ2, τ3}1
Nuprl|| = {HOL, Isabelle}

||{τ1, τ3}1
Nuprl|| = {HOL}

||{τ1, τ2, τ3}2
Nuprl|| = {ACL2}

||{τ1, τ2}2
Nuprl|| = {}

Note that the levels as specified here are not cumulative; e.g. Nuprl ∈
||{τ1, τ3}0

Nuprl|| but Nuprl 6∈ ||{τ1, τ3}1
Nuprl||. Thus a user interested in searching

HOL theorems but excluding theorems of Nuprl to satisfy a Nuprl proof can
specify the domain of search as ||{τ1, τ3}1

Nuprl||.
Note that the translations between these different logical theories preserve

validity of theorems but do not necessarily translate proofs. Translations are
justified somehow, formally or informally. But such justifications may be based
on semantic arguments and the translation of proofs is unknown.

3.5 Deductive Searching

Based on these ideas we propose the following general framework for search in
heterogeneous databases of theorems from multiple logics. We cast our descrip-
tion in terms of sequents, though it should be obvious how to recast these ideas
in non-sequent based logics.

We are interested in searching the library to complete a proof of some sequent
of the form Γ `L ∆. Should some φ ∈ ∆ already be proved in L and stored in
the library, then Γ, φ `L ∆ can be trivially proved in L by cutting in φ and
then invoking the axiom rule. Less directly, perhaps there is some translation
mapping a theorem of some other logic into the term φ in the language of L.

Search will be performed using procedures that are, in most cases, incomplete.
Our framework assumes that a search procedure used to find results within the



context of some logic L can construct a “proof” in L when a search is successful
e.g. a search procedure to be used in the context of an HOL theorem will return
both the lemmas found in the database and tactic to apply them in the context
of sequent being searched for.

Let Γ `L ∆ be a sequent in the logical language L, let D be a collection
of databases {D1,D2, · · · ,Dn} and let S be a proof search procedure for L. We
define [[Γ `L ∆]]D,S as follows:

[[Γ `L ∆]]D,S
def
= {〈Γ ′, ρ〉|Γ ′ ⊆ ∪D ∧ ρ proves Γ, Γ ′ `L ∆}

where ∪D is the set of all terms in the databases in the set D. Thus [[Γ ` ∆]]D,S
is a set of pairs consisting of lists of theorems Γ ′ from the databases in D,
paired with a method of proof ρ which proves the sequent Γ, Γ ′ `L ∆. The proof
ρ (together with the theorems in Γ ′) is the information needed by the prover for
the logic L to complete the proof of the sequent Γ `L ∆. We write [[∆]]D,S for
[[` ∆]]D,S and [[φ]]D,S for [[` φ]]D,S .

Now we discuss some consequences and applications of the definition.
Typically, the actual answer set [[Γ `L ∆]]D,S is infinite; to see this note that

once some list of terms is enough to prove the desired result, any extension
of that list will also do11. However, note that non-empty approximations to
[[Γ `L ∆]]D,S are usually satisfactory answers to queries i.e. any answer provides
a means to prove Γ `L ∆ from the contents of databases in D. Indeed, although
[[Γ `L ∆]]D,S is defined as a complete answer, only one answer is ever required
to discharge the proof obligation. Multiple answers may provide the requester
with options allowing them to make choices based on any number of criteria. We
can imagine that one criteria might be to choose the answer that requires the
minimum update to the local database. Others might be based on elegance.

To search a collection of databases D for an individual theorem φ, one
searches for an approximation of [[φ]]D,S . Note that if any theorem φ of L is
in the database, then 〈{φ}, Axiom{φ}〉 ∈ [[φ]]D,S where Axiom{φ} is the axiom
rule for L i.e. the rule justifying sequents of the form

Γ1, φ, Γ2 `L ∆1, φ,∆2

Thus, we have defined a framework for deductive search in a way that users
can both account for the results they receive and can apply the results in proofs.

Name and Content based Search in the Deductive Framework We
note here that name and content based searches can be fit into the framework
just described for deductive search. For name searches, we assume that there
is a function name mapping library objects to user specified names (strings of
characters) and returning the empty string if a name does not exist. We define
a logic of names LN , where the language of the logic of names is TermI (all

11 Of course we are excluding various resource-bounded and substrutural logics from
this consideration.



terms, including strings, are in the language of the logic of names). The logic
LN has one proof rule.

t `LN s
Ax if s ∈ string ∧ s ⊆ name(t)

Here, s is a string and s ⊆ s′ if and only if s is a substring of s′. Thus, a name
search for all objects in some collection of databases D is computed as [[s]]D,LN .
To search the names of the terms of some language L for a particular string s
can be specified as [[s]]D↓L,LN ; e.g. to search Nuprl terms having the string “list”
as a substring of their name is specified as [[“list”]](D↓Nuprl),LN . The result of
the search would be a set of pairs {(t1, Ax), · · · , (tn, Ax)}.

We can cast content-based search in the deductive framework by similarly
defining a logic of content.

4 Apologia and Conclusion

In this paper we have described an implementation of a peer-to-peer framework
for connecting databases of formalized mathematics [17] and the term structures
used to communicating between them. We have proposed a framework for de-
ductive searching in distributed collections of heterogeneous databases and have
described how name and content based searchers can be cast into the deduc-
tive framework. We have emphasized that both evidence and effective methods
of translation and proof should be included as part of the results of searches.
There is obviously significant work that remains to be done, most features of
the proposed framework have not been implemented. Work on representing ev-
idence using Allen’s certificate mechanism continues at Cornell and Wyoming.
We have only implemented name and content based searching and intend to
further explore more powerful deductive methods based on heuristic search.

In a number of ways this paper is unsatisfactory: some aspects of the proposed
framework for sharing and searching have been elaborated in too much detail;
while a number of aspects of the presentation are too vague. However, we believe
that the proposed approach has several advantages. We do not propose to impose
any particular logic or any absolute criteria for correctness on users. To us, any
attempt to make such impositions will result in failure, perhaps not for technical
reasons but for social ones12. Choice of logic and the criteria for correctness
are matters for individual deliberation. Instead, we have proposed a framework
within which mechanisms for translating between logics can be implemented and
where mechanisms to account for results is embedded within the framework. The
only imposition we reluctantly make is one of syntax, of term structure. And
although we can imagine that XML or some other structured notation would
work as well as the one presented here, we can not imagine how to avoid such
an imposition. In any case, matters of syntax require far less commitment than
12 One might reasonably claim that the QED project [4] ended prematurely down for

precisely this reason.



matters of semantics. We believe that something very much like the system
proposed here, if not this one, will eventually provide a practical means for
seamless sharing formal mathematics.
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