
Specifying and Checking Fault-tolerant
Agent-based Protocols using Maude

Jeffrey Van Baalen1, James L. Caldwell1, and Shivakant Mishra2

1 Department of Computer Science, University of Wyoming, Laramie, WY 82071
2 Department of Computer Science, University of Colorado, Boulder, CO 80309

1 Introduction

Fault tolerance is an important issue in mobile, agent-based computing systems.
However, most research in this area has focused on security and mobility issues.
The DaAgent (Dependable Agent) system [8] is similar to several other agent-
based computing systems including Agent-Tcl [6], Messengers [5], and Ajanta
[9]. However, unlike these systems DaAgent is being designed to address fault
tolerance issues. Within the DaAgent system several fault tolerant protocols
are being investigated. These protocols have been specified in natural language,
English prose, and a Java implementation within the DaAgent system is being
tested. This approach has proved to be extremely time-consuming and inflexible,
for example, it is difficult to rapidly change test conditions and fault injection is
extremely primitive involving physically halting or reseting a machine, pulling
network connections, or sending a kill message to the agent process. Testing the
implementation of course serves as a weak form of evidence of correctness, but
offers little real assurance of the correctness of the system.

In order to address these problems we are taking the approach of formalizing
the protocol specifications and debugging them at the specification level. We
are using the Maude executable specification language [2] for this purpose. We
are taking this approach knowing that a majority of defects in systems can
be traced back to specification errors. Also, much data supports the fact that
errors identified early in the development process are dramatically less expensive
to correct.

However, while simply specifying systems formally often identifies errors and
ambiguities early, formal specifications can also contain errors. We have chosen to
use an executable specification language so that we can debug our specifications
without necessarily resorting to formal proofs of correctness or massive testing
efforts. We have found that using Maude to specify our protocols has a number
of benefits:

1. The Maude system has clean extendable syntax so that it is straightforward
to create domain specific languages with appropriate abstractions that have
a clearly defined semantics. This is an often undervalued feature that is very
useful in a specification language, making it more understandable for the
intended user.

2. The resulting specifications are executable and, in fact, the Maude engine is
very fast (up to 1.3 million rewrites per second on a Pentium II). This enables
us to construct a variety of initial states and explore very extensively the
execution of the protocol from those states.

3. Maude is reflective. This enables us to separate a specification from the ex-
ecution of that specification. This has proved useful in three ways. First, it
has enabled different explorations from different initial states without chang-
ing our protocol specifications. Second, it has enabled a more sophisticated
model-checking analysis in which all behaviors from some initial state are
explored (up to some depth) via one of many possible search strategies (e.g.,
breadth first). Third, it has enabled us to specify fault models for our proto-
cols separately from the protocol specifications. This has enabled the testing
of the protocols, while injecting different types of faults.

The major contribution of this work is the separate specification of fault
models at the meta-level enabling testing of protocols under conditions where
faults are injected. Also, the fault injection technique can be combined with the
search strategies, enabling the exhaustive testing of a protocol, injecting faults
in all possible ways.

2 Rewriting Logic

The Maude language has a declarative semantics based on rewriting logic [2,
7]. Rewriting logic extends algebraic specification techniques to concurrent and
reactive systems by providing a natural model of concurrency in which local
concurrent transitions are specified as rewrite rules. The model is very flexible
allowing both synchronous and asynchronous models of concurrency as well as
a wide range of concurrent object systems. The flexibility of rewriting logic has
enabled Maude’s use for formalizing many different kinds of systems (see [4] for
descriptions of a few).

In rewriting logic the state space of a concurrent system is formally specified
as an algebraic data type by means of an equational specification consisting of
a signature and a set of conditional equations. The equations in the specifica-
tion of the system state define equivalence classes of terms over the signature.
Concurrent transitions are specified as rewrite rules of the form t ⇒ t′, where
t and t′ are terms in the signature (normally) containing variables. Rules de-
scribe concurrent transitions because they specify how a system state matching
t can change to a system state where the term matching t is replaced by t′

(appropriately instantiated).
More formally (following [2]), a theory in rewriting logic is a pair R =

((Ω,Γ), R), where (Ω,Γ) is an equational specification with signature Ω and
equational axioms Γ . The equations of Γ define the algebraic structure of the
theory, i.e., they define equivalence classes on terms with signature Ω. R is a
collection of labelled rewrite rules that specify concurrent transitions that can
occur in the system axiomatized by R. The rules in R are applied modulo the
equations in Γ .

The state space of a concurrent object system can be specified as an al-
gebra by means of an equational theory (Ω, Γ). The concurrent state of such
a system, often called a configuration, usually has the structure of a multi-
set (an unordered collection allowing duplicates) containing objects and mes-
sages. Therefore, we can view configurations as built up by a binary multi-set
union operator, which can be represented with empty syntax (i.e., juxtaposition)
as : Conf ×Conf ⇒ Conf . (Following the conventions of mix-fix notation,
under-bars indicate argument positions.) The multi-set union operator is de-
clared to satisfy the laws of associativity and commutativity and to have identity
∅. Objects and messages can then be specified as elements of sorts Object and
Msg respectively and these sorts can be given as subsorts of Conf so that a
single object or message is a singleton configuration.

An object is represented as a term 〈O : C | a1 : v1, . . . , an : vn〉, where O is the
object’s name, C is its class, the ai’s are the objects attribute identifiers, and the
vi’s are the corresponding attribute values. The set of an object’s attribute-values
pairs is formed by application of the binary operator , which is associative and
commutative, so that the order of the attributes of an object is immaterial.

A message is also represented as a term. So, for example, given an operator
from to hello : Oid×Oid → Msg and two Oids (object identifiers) A and B,
the term (from A to B hello) is a message.

Rules specify local transitions by describing how one configuration can be
transformed into another. In a concurrent object system, a rule might transform
a configuration containing an object and a message for that object into a config-
uration in which the message has been removed and the object has been updated
to reflect receipt of the message. Such a rule would have roughly the form:

rl[name] :
((from A to D some-message) 〈 D : Agent | some-attributes 〉 Conf)
⇒ (〈 D : Agent | updated-attributes 〉 Conf) .

where A and D are variables of sort f Oid and Conf is a variable of sort Con-
figuration. The left hand side of this rule matches any configuration containing
an object named D and a message to that object. The variable Conf is bound
to the other objects and messages in the matched configuration. The right hand
side of the rule specifies the transformed configuration which differs from the
original because the message has been removed and agent D’s attributes have
been updated to reflect the receipt of the message. The rest of the configuration
(Conf) is unchanged by this rule.

More generally, a rule can specify any combination of messages and objects
in its left and right hand sides and can specify a condition that the instantiated
left hand side must meet for the rule to be applicable [4].

r(x) : M1, . . . ,Mn, 〈O1 : F1 | atts1〉, . . . , 〈Om : Fm | attsm〉
⇒ 〈Oi1 : F ′

i1 | atts′i1〉 . . . , 〈Oik
: F ′

ik
| atts′ik

〉
〈Q1 : D1 | atts′′1〉, . . . , 〈Qp : Dp | atts′′p〉

M ′
1, . . . ,M

′
q

if C

where r is the rule’s label, x is a list of the variables occurring in the rule, the
M’s are message expressions, i1, . . . , ik are different numbers among the original
1, . . . ,m, and C is the rule’s condition.

If two or more objects appear in the left hand side of a rule, the rule is
synchronous. If there is only one object appearing on the left hand side, the rule
is asynchronous. A concurrent object rewrite theory is called a distributed object
theory if all of its rules are asynchronous [4].

Given a distributed object theory R, rewriting logic provides an inference
system [7] to deduce the finitary concurrent computations possible in R. These
computations are identified with proofs of the form α : C −→ C ′, where C and
C ′ are terms representing system configurations.

In Maude, a rewriting logic theory R = ((Ω,Γ), R) is specified as a module
with the syntax:

mod module-name is
including module-list
sorts sort-list
subsort subsort-specs
signatures
variable-declarations
equations
rules

endm

where sort-list is a list of sorts to be used in the module, subsort-specs
defines subset relationships between the sorts, signatures is a set of operator
signature definitions, variable-declarations defines a set of symbols to be
used as variables in the equations and rules of the module, equations is the set
of equations in Γ , rules is the set of rewrite rules in R, and module-list is a
list of module names whose rewrite theories get textually included in the module
being defined. A simple example of a Maude module is

mod ND-INT is
including MACHINE-INT .
sort NdInt .
subsort MachineInt < NdInt .
op ? : NdInt NdInt → NdInt [assoc comm] .
var N : MachineInt .
var ND : NdInt .
eq N ? N = N .
rl [choice]: N ? ND ⇒ N .

endm

The module ND-INT defines a sort NdInt (nondeterministic integer) as a su-
persort of MachineInt (a builtin sort). It defines a commutative associative

constructor of NdInts denoted by ?. Its one equation serves to remove duplicate
MachineInts from an NdInt. Because ? is commutative and associative, this
module’s single rule chooses an arbitrary MachineInt from an NdInt.

An example use of NdInt is to rewrite an expression such as
(1 ? 5 ? 2 ? 1 ? 5) + (3 ? 11 ? 7 ? 3 ? 11)
which results in the sum of a MachineInt nondeterminisically chosen from
the first NdInt and a MachineInt nondeterministically chosen from the second
NdInt.

In addition to modules declared with the keyword mod, Maude supports other
kinds of modules, including an object oriented module (omod) which we make
use of in our protocol specification. omods can declare classes and subclasses.
Each class is declared with the syntax class C | a1 : S1, · · · , an : Sn where C is
the class name and for each ai : Si, ai is an attribute identifier and Si is the sort
of values for that attribute. Objects in a class are terms of sort Object and are
written with the previously described syntax.

3 DaAgent in Maude

The DaAgent system runs on a network of processors. A DaAgent server runs on
every node in the network that might be visited by an agent or from which an
agent might be launched. A node in the DaAgent network consists of the compo-
sition of instances of three module types: an agent server, an agent consultant,
and some number of agent watchdogs, one per mobile agent.

The DaAgent server on a node services requests from local clients on that
node to launch their agents. In addition, it services an agent that migrates from
some other node to that node. Every mobile agent is associated with an agent
watchdog. Agent watchdogs oversee the functioning of their agents and control
the migration of agents to other nodes.

Additionally, there is one agent consultant on every node. An agent consul-
tant on a node determines if a new agent can be launched from that node or if
an agent can migrate to that node. Consultants implement an admission control
protocol to determine if new agents meet all of the security and computational
requirements to run on their nodes.

One of the protocols we have formally specified is called the watchdog-
controlled agent recovery protocol (WC-ARP). This protocol automates detec-
tion of node failure and the agent recovery process. The key idea is that it uses
agent watchdogs on the nodes that an agent visited earlier to monitor the execu-
tion of the agent on the current node. The earlier agent watchdogs detect node
failures and recover an agent in case of a failure.

In WC-ARP, each agent has an ordered set of the some fixed number (n) of
the most recent earlier watchdogs an agent visited. This ordered set of earlier
watchdogs is called the agent’s entourage. An agent’s current watchdog is (re-
ferred to as AW) and all members of the agents entourage (AW,AW1, · · · , AWn)
have associated weights (W0,W1 · · · ,Wn). These weights specify the priority of

that watchdog for ensuring that the agent continues to execute. Since AW con-
tains the most recently computed state of the agent it is the preferred watchdog
to ensure the continued execution of the agent. So, in a typical assignment of
weights, Wi > Wj , 0 ≤ i ≤ n, i < j ≤ n.

During normal execution, AW sends an ’agentAlive’ message to all members
of the entourage periodically (every t time units). A watchdog AWj concludes
that AW,AW1, · · · , AWi have failed if, in the last j ∗ sp time units, it has not
received an ’agentAlive’ message from AW , nor has it received a ’migration
support request’ (msr) message from any of watchdogs AW1, · · · , AWi. Here
sp = t ∗K, with K > 0 being a protocol parameter. Hence, an agent watchdog
concludes the failure of AW if it misses K consecutive ’agentAlive’ messages.

AW may migrate the agent upon request or a watchdog AWj may recover an
agent if it believes that AW,AW1, · · · , AWj−1 have failed. However, due to the
possibility of a communication partition, AWj can never be certain that another
watchdog has failed.

A threshold (th ∈ N) is a system parameter used to determine when an
agent watchdog is authorized to migrate or recover the agent. A so-called run-
away agent is a replicated instance of an agent incorrectly launched by an agent
watchdog (say Aj) based on incorrect information that all agents Ak, k > j have
failed. If th ≥ (W0+W1+· · ·+Wn)/2, runaway agents will never be launched, but
in this case the protocol tolerates fewer faults. If th < (W0 + W1 + · · ·+ Wn)/2,
runaway agents may be created, but fault tolerance may be increased.

To migrate an agent, AWj sends a ’migration support request’ to every mem-
ber of the agent’s entourage. Then AWj waits for ‘migration supported’ (ms)
messages in reply. On receiving a ‘migration support request’, AWi replies with
a ‘migration supported’ message if it has not yet sent a ‘migration supported’
message or a ‘migration support request’ to any other agent watchdog. AW
migrates the agent when it has received ’migration supported’ messages from
entourage members such that the sum of their Wi is greater than th.

An agent watchdog AWj sends ‘migration support request’ messages to
AWj+1, · · · , AWn when

1. AWj concludes that AW,AW1, · · · , AWj−1 have failed, and
2. AWj has yet to send a ’migration supported’ message to anyone.

Upon receiving a ‘migration support request’ message, a watchdog AWk, (k > j)
replies with a ‘migration supported’ message if

1. AWk concludes that AW,AW1, · · · , AWj−1 have failed, and
2. AWk has not yet sent a ‘migration supported’ or a ‘migration support re-

quest’ message to anyone.

AWj recovers the agent from its local checkpoint when it has received ‘migration
supported’ messages from entourage members such that the sum of their Wi is
greater than th.

We formalize the WC-ARP protocol as an omod in Maude that contains
classes for agents and agent controllers. These are defined as

class Agent-Controller |
agents-pending : AgentSet, agents-migrating : Spairs,
agents-fwd : Wtuples .

class Agent-Home .
class Agent-WatchDog | agents-running : AgentSet,

awtg-support : Mpairs .
subclasses Agent-Home Agent-WatchDog < Agent-Controller .
class Agent |

dsts : Principals, livTime : MachineInt, XTime : MachineInt,
ent : Entourage .

The agent class models a mobile agent. Instances of this class have attributes
dsts, which is a list of names of watchdogs to which the agent should be mi-
grated, livTime, which specifies how long the agent should live on each watch-
dog, XTime, which is used to count how long an agent has been running on its
current watchdog, and ent which is the agent’s entourage.

The sort of the dsts attribute is an ordered list of Principals (a subsort of
Oid) defined as

subsort Principal < Oid .
subsort Principal < Principals .
op none : → Principals .
op : Principals Principals → Principals [assoc id: none] .

An entourage is an ordered i-tuple, (i ≤ n) of agent watchdog names (Princi-
pals) defined as

subsort Principal < Entourage .
op emptyEnt : → Entourage .
op ‘, : Entourage Entourage → Entourage [assoc id: emptyEnt] .
op addEnt : Principal Entourage → Entourage .

The addEnt operator is used to add a new watchdog name to the front of an
Entourage, ensuring that the entourage is a tuple of at most n principals. AddEnt
is defines as

vars A B : Principal .
var Ent : Entourage .
eq addEnt(A,emptyEnt) = A .
eq addEnt(A,(Ent,B)) =

if (length((Ent,B)) == entSize) then (A,Ent) else (A,Ent,B) fi .

The agent controller class (and its subclasses) defines two kinds of agent con-
trollers: agent watchdogs and agent homes. Agent homes have a set of pending
agents (agents to be migrated), a set of agents that are in the process of mi-
grating, and a set of agents that have been forwarded. Agent watchdogs have, in

addition, a set of running agents and a set of agents awaiting support for migra-
tion. Agent homes do not require these two additional attributes because agents
only begin on agent homes. Therefore, there is no need for an agent-running
attribute, nor is there need for an awtg-support attribute because this is where
agents are placed when a watchdog is awaiting ’migration supported’ messages
from the agent’s entourage. When an agent starts out at its home, it has no
entourage.

Agents-pending and agents-running are AgentSets which are unordered
collections of Agent objects defined as

subsort Agent < Agents .
op ‘{ ‘} : Agents → AgentSet .
op none : → Agents .
op ‘, : Agents Agents → Agents [assoc comm id: none] .

The agents-migrating attribute is used to record, in an agent controller AW ,
the fact that a message has been sent to migrate an agent. Instances of the
agents-migrating attribute are pairs of Agents and MachineInts. The second
component of the pair is used to record the amount of time that has elapsed since
the migration message was sent. If a ‘migration accepted’ message is not received
after a fixed number of time units, AW concludes that the watchdog it attempted
to migrate the agent to is unreachable.

We also define the different types of messages of the protocol

msgs from to migrate from to ma
: Principal Principal Object → Msg .

msgs from to agentAlive from to msr from to ms
: Principal Principal Principal → Msg .

The ‘agentAlive’ message is the message that AW periodically sends to mem-
bers of the agents entourage. To migrate an agent from controller A to watchdog
B, A sends a ‘migrate’ message to B containing the agent. If B accepts the agent
it sends an ’ma’ message back to A. To obtain migration support for an agent
Ag, a watchdog sends an ’msr’ message to each member of Ag’s entourage. In
response, entourage members send an ’ms’ message to support an agent’s mi-
gration.

The awtg-support attribute records information used in the protocol after
AW sends ‘msr’ messages to an agent’s entourage. The sort of values for this
attribute is an unordered set of Mpairs. Each Mpair is an ordered pair consisting
of an Agent and an ordered set of Bpairs. Each Bpair is a Principal paired
with a boolean flag. When a watchdog sends ’msr’ messages for an agent Ag, it
places Ag along with a list of Bpairs for each watchdog in Ag’s entourage in the
value of the awgt-support attribute. The Bpairs are used to record whether or
not an ’ms’ message has been received from each member.

subsort Mpair < Mpairs .
subsort Bpair < Bpairs .
op ; : Principal Bool → Bpair .
op ; : Agent Bpairs → Mpair .
op none : → Bpairs . op none : → Mpairs .
op ‘, : Bpairs Bpairs → Bpairs [assoc id: none] .
op ‘, : Mpairs Mpairs → Mpairs [assoc comm id: none] .

The agents-fwd attribute of an agent controller is used to record the agents
that the controller has forwarded. This is an unordered set of triples consisting
of an agent, the number of hops the agent has taken since it was forwarded from
this watchdog, and the number of time units since the last alive message was
received from the forwarded agent.

The remainder of the WC-ARP omod is a collection of rewrite rules that
specify the protocol as manipulations of the Configuration. Space does not
allow the inclusion of the whole specification, but here are some examples. The
following rule initiates the run of an agent. It matches an agent home that con-
tains an agent in its agents-pending field. It places a migrate message into
the Configuration and modifies the agent home, moving the agent from the
agents-pending field to the agents-migrating field. It modifies the agent’s en-
tourage, initializes the migration timeout counter data structure, and increments
the timeout counters (incAll of any other agents in the agents-migrating field

vars A B D : Principal .
var Dsts : Principals .
var N : MachineInt .
var Sp : Spairs .
var Agts : Agents .
rl [BeginRun] :

(< A : Agent-Home | agents-pending :
{ < B : Agent | dsts : (D Dsts),

livTime : N,
ent : Ent >, Agts },

agents-migrating : Sp >
Conf)

⇒ ((from A to D migrate
< B : Agent | dsts : Dsts, XTime : 0,

livTime : N, ent : addEnt(A, Ent) >)
< A : Agent-Home | agents-pending : { Agts },

agents-migrating :
(< B : Agent | dsts : Dsts,

XTime : 0,
livTime : N,
ent : Ent > ; 0),

incAll(Sp) >
Conf) .

When the XTime = livTime for an agent, the next rule sends ‘migration
support messages’ to the agent’s entourage (the operator sendMsrs constructs
these), setting up the data structure (mkBpairs) to record ‘migration supported’
replies.

crl [requestMigrate] :
(< A : Agent-WatchDog | agents-running :

{ < Ag : Agent | XTime : N,
livTime : N,
dsts : Dsts,
ent : Ent >, Agts},

agents-fwd : Wp,
awtg-support : Mp >

Conf)
⇒ (sendMsrs(A,Ag,Ent)

< A : Agent-WatchDog | agents-running : { Agts },
agents-fwd : incAll(Wp),
awtg-support :
((< Ag : Agent | XTime : N,

livTime : N,
dsts : Dsts,
ent : Ent > ;

mkBpairs(Ent)), Mp) >
Conf)

if (Dsts =/= none) .

The formalization of WC-ARP as a theory in rewriting logic uncovered a
number of inconsistencies and unspecified conditions in the English specification.
For example, the English specification did not address the issue of what to do
if a migration message is never replied to. Also it did not address the migration
condition early in an agent’s tour before its entourage contains n watchdogs.

Most importantly, the formal Maude specification is executable: the result of
running the WC-ARP protocol on an initial configuration initConf is simulated
by rewriting initConf in the WC-ARP theory. The resulting configuration (as-
suming termination) is the term of sort Configuration that results. We have
simulated the protocol from a number of different initial situations and these
simulations have exposed additional errors and omissions in the protocol speci-
fication.

We have also formalized, as additional rewrite rules, properties that we would
like the WC-ARP protocol to have, for example, no duplicate agents are ever
created if the threshold and weights have appropriate values. These rules record
state information and halt the simulation if the properties are ever violated.
Notice that these simulations do not test that the protocol has desired properties
when faults occur. The real benefit of using Maude is realized when its reflective
capabilities are exploited.

4 Using Reflection in Maude

Informally, a reflective logic is one in which aspects of its meta-theory can be
represented at the object level in a consistent way, so that the object-level repre-
sentation correctly simulates the relevant meta-theoretic aspects. In other words,
a reflective logic is a logic which can be faithfully interpreted in itself [2].

In Maude’s formalization of reflection, terms are “quoted” to allow them
to be manipulated at the meta-level (one step up the reflective hierarchy).1

Maude provides operators to quote and unquote terms so that they can be
moved up and down the reflective hierarchy. Modules are terms which can be
manipulated just as all others terms. The operator up : ModuleName → Term,
produces the meta-level representation of the module whose name is given as
argument and the operator up : ModuleName × Term → Term, produces the
meta-level representation of its second argument in the module whose name is
given as its first argument. The meta-level representation of the NdInt module
given in section 2 is:

up(NdInt) =
mod ’ND-INT is

including ’MACHINE-INT .
sorts ’NdInt .
subsort ’MachineInt < ’NdInt .
op ’ ? : ’NdInt ’NdInt → ’NdInt [assoc comm] .
var ’N : ’MachineInt .
var ’ND : ’NdInt .
eq ’ ? [’N , ’N] = ’N .
rl [’choice] : ’ ? [’N , ’ND] ⇒ ’N .

endm .

Maude also enables meta-computation via the builtin operator meta-rewrite
which takes three arguments: the meta-level representation of a module M ,
the meta-level representation of a term t, and an integer n. Rewriting a meta-
rewrite expression of the form meta-rewrite(M ,t,n) produces the meta-level
representation of the term that results from performing n rewrites of the term
down(M ,t) in the module down(M). In the case where n is 0, an unbounded
number of rewrites are performed, halting when no rewrite rule applies, or loop-
ing forever if some rule is always enabled. For example, rewriting the expression:

meta-rewrite(
up(NdInt),
up(NdInt,(1 ? 5 ? 2 ? 1 ? 5) + (3 ? 11 ? 7 ? 3 ? 11)),
0)

results in ({’4} ’MachineInt) = up(4).

1 For details of the quoting process, see [2]

A common use of meta-computation, discussed extensively in [3, 1, 2], is to
explicitly specify a rewriting strategy. Maude rewrite theories are required to be
neither terminating nor Church-Rosser. Strategies are used to control evaluation
in such rewrite theories. It is possible to define a very wide variety of rewriting
strategies using rewrite rules at the meta-level and then to execute a specification
with one or more of these strategies.

In [4], this strategy mechanism is used to explore (in a breadth-first manner)
all the possible rewrite sequences in a theory beginning with some initial state.
Using this approach they were able to validate protocol specifications. We have
adopted a similar meta-level rewrite strategy to explore the possible execution
sequences of the WC-ARP protocol, also in a breadth-first manner.

5 Fault Models

We use the reflective facilities in Maude to inject faults into WC-ARP simulations
without changing the WC-ARP theory. This has enabled us to validate the WC-
ARP theory under different fault models. The fault modeling technique can be
used in conjunction with the breadth-first search strategy to inject faults into a
simulation at any desired point of the computation.

A basic strategy for injecting faults is to randomly interrupt a rewrite se-
quence in WC-ARP and modify the configuration being operated on to emulate
the fault. For example, to inject a crash of a watchdog AW into a WC-ARP
simulation, we interrupt the simulation at some random point and remove from
the configuration AW and all messages to AW .

Randomly interrupting and modifying a rewrite sequence is straightforward
to do at the meta-level. As a simple example, here is the partial specification
of a meta-level module that runs a WC-ARP simulation for a random number
of steps, removes a watchdog from the configuration at that point, and then
continues the simulation to completion.

(omod RUN-WC-ARP is
including META-LEVEL[WC-ARP] .
op oneCrash : Term Qid → Term .
op remWD : Term Qid → Term .
op rand : MachineInt → MachineInt .
var T : Term .
var W : Qid .
eq oneCrash(T,W) =

meta-rewrite(WC-ARP,
remWD(meta-rewrite(WC-ARP,T,rand(seed)),W),
0) .

endom)

The operator oneCrash meta-rewrites a random number of times the meta-level
representation of a configuration (T), removes the watchdog named W from the

resulting configuration (remWD), and meta-rewrites the modified configuration
until termination.

Clearly more general manipulations at the meta-level can be used to emulate
many different classes of faults. For example, we can also simulate a watchdog
crashing during a WC-ARP run and then recovering at some later point in the
run by (1) meta-rewriting an initial configuration a random number of times, (2)
removing the watchdog, (3) meta-rewriting the resulting configuration another
random number of times, (4) adding the watchdog back into the configuration,
(5) continuing meta-rewriting to completion.

Similarly, we simulate a communication partition by (1) meta-rewriting an
initial configuration a random number of times, (2) removing any messages be-
tween watchdogs in separate partitions, (3) partitioning the watchdogs in the
resulting configuration into two or more new configurations, (4) meta-rewriting
these new configurations separately for a random number of steps, (5) then
merging the configurations and meta-rewriting the merged configuration to ter-
mination.

So far we have modeled crashes, crashes with later recovery, and communi-
cation partitions as just described.

If, rather than generating a random number of meta-rewrite as described
above, we parameterize the number steps, we can choose a set of values for
these parameters and then apply the same fault scenario to all possible rewrite
sequences (up to some depth) from an initial state. This enables model checking
a simulation under a fixed fault scenario.

Note that the module implementing the breadth-first search executes at the
meta-level with respect to the WC-ARP module, a module implementing a fault
scenario must execute at the meta-meta-level with respect to the WC-ARP mod-
ule. Also note that by adding one additional level to this reflective tower it is
possible to vary the parameters controlling the number of steps in each part of
a fault scenario. This enables the systematic checking of fault scenarios in any
desired combination of rewrites and faults.

6 Conclusions and Future Work

We have proto-typed the fault-tolerant protocols used in the DaAgent system
by formally specifying them as systems of rules in Maude’s rewrite logic. Maude
has been used to model check the protocol, including fault-tolerant aspects,
by explicit state methods; this has been accomplished by using the powerful
reflective capabilities provided by Maude. The use of reflection to separate the
theory specifying the protocol from the execution and fault models is a powerful
abstraction technique that offers what we believe is an unprecedented level of
flexibility.

Currently, we are using Maude further explore the fault-tolerant protocols
used in the DaAgent system.

In future work, we intend to extend our methods to include support for
symbolic model checking. Maude also includes an inductive prover which we may
apply to the problem of formally verifying certain properties of the protocols.

References

1. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, , and J. Meseguer. Met-
alevel computation in Maude. In C. Kirchner, , and H. Kirchner, editors, 2nd Intl.
Workshop on Rewriting logic and its Applications, volume 15. Elsevier, 1998.

2. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and Programming in Rewriting Logic. Technical report,
SRI International, Menlo Park, CA, Jan 1999.

3. M. Clavel and J. Meseguer. Reflection in rewriting logic and its applications in
the Maude language. In Proceedings of IMSA-97, pages 128–139, Japan, 1997.
Information-Technology Promotion Agency.

4. G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of active
networks and communication protocols: The Maude experience. In DARPA Infor-
mation and Survivability Conference and Exposition (DISCEX’00), pages 251–265,
Hilton Head, South Carolina, Jan 2000. IEEE Computer Society Press.

5. M. Dillencourt, L. F. Bic, and M. Fukuda. Distributed computing using autonomous
agents. IEEE Computer, 28(8), Aug 1996.

6. R. S. Gray. Agent tcl: A transportable agent system. Technical report, Dartmouth
College, November 1995.

7. J. Meseguer. Membership algebra as a semantic framework for equational specifi-
cation. In F. Parisi-Presicce, editor, Proceedings WADT’97, volume 1376 of LNCS,
pages 18–61. Springer Verlag, 1998.

8. S. Mishra, Y. Huang, and H. Kuntur. Daagent: A dependable mobile agent system
(fastabstract). In Proceedings of the 29th International Symposium on Fault-tolerant
Computing, Madison, WI, June 1999. IEEE.

9. A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R Singh. Mobile agent program-
ming in Ajanta. In Proceedings of the 19th International Conference on Distributed
Computing Systems, Austin, TX, 1999.

