
DECIDABILITY EXTRACTED:

SYNTHESIZING “CORRECT-BY-CONSTRUCTION”

DECISION PROCEDURES FROM CONSTRUCTIVE PROOFS.

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

James L. Caldwell II

August 1998

c© James L. Caldwell II 1998

ALL RIGHTS RESERVED

DECIDABILITY EXTRACTED:

SYNTHESIZING “CORRECT-BY-CONSTRUCTION”

DECISION PROCEDURES FROM CONSTRUCTIVE PROOFS.

James L. Caldwell II, Ph.D.

Cornell University 1998

The topic of this thesis is the extraction of efficient and readable programs from

formal constructive proofs of decidability. The proof methods employed to generate

the efficient code are new and result in clean and readable Nuprl extracts for two

non-trivial programs. They are based on the use of Nuprl’s set type and techniques

for extracting efficient programs from induction principles.

The constructive formal theories required to express the decidability theorems

are of independent interest. They formally circumscribe the mathematical knowl-

edge needed to understand the derived algorithms. The formal theories express

concepts that are taught at the senior college level. The decidability proofs them-

selves, depending on this material, are of interest and are presented in some detail.

The proof of decidability of classical propositional logic is relative to a semantics

based on Kleene’s strong three-valued logic. The constructive proof of intuitionistic

decidability presented here is the first machine formalization of this proof. The

exposition reveals aspects of the Nuprl tactic collection relevant to the creation of

readable proofs; clear extracts and efficient code are illustrated in the discussion

of the proofs.

BIOGRAPHICAL SKETCH

James Caldwell was born September 25, 1956.

The earliest manifestation of the impulse to create something permanent oc-

curred about 1961 when he discovered a bag of concrete mix in the woods and,

dragging it to a nearby stream, tore it open, and added water, building his first

site sculpture. To his own amazement, the sculpture was still extant in 1962.

He graduated from Clarkstown High School in New City, New York in 1974

and attended the State University of New York Cortland, studying painting with

Jim Thorpe. In 1976, on the recommendation of his mentors, Caldwell moved to

New York City to study in the Empire State College studio art program run by

Irving Kriesberg at Westbeth1.

He met Penelope Potter in the Westbeth studio; building her a wall and then

crossing the Brooklyn bridge with her on foot. Together they moved to Boston,

to continue studies at the Boston Museum School of Fine Arts, living in Back

Bay at first, and later behind a painting in a Congress Street loft. In 1978 they

were married and moved to Second Street in NYC. Their daughter Clea Caldwell

was born in NYC. Taxi driving, cabinetry work in SoHo lofts, and picture framing

supported the Caldwell family.

In 1979 he was hired and trained as a draftsman on a an early computer aided

drafting system, beginning his computer career. Soon after writing his first com-

puter program, a routine to generate random drawings, Caldwell realized that

the concerns of theoretical computer science and logic appealed to his aesthetic

sensibilities.

1Ironically, during his tenure at Cornell, one of Kriesberg’s paintings, on loan
from the permanent collection of the Johnson Museum, hung in Upson 4160.

iii

In 1984 he received an undergraduate degree in Computer Science from State

University of New York at Albany. By 1985 he was employed at the General

Electric Research and Development Center in Schenectady, New York and spent

his time pondering design synthesis and formal correctness. Penelope gave birth to

their second child, James Garrett, at home in Albany in 1986. Caldwell completed

his masters degree in Computer Science at SUNY Albany in 1988 under Dan

Rosenkrantz’s tutelage.

Also in 1988, Caldwell accepted a position at NASA Langley Research Center

in Hampton, Virginia, joining a newly formed theorem proving group. Supported

by NASA, he attended Cornell in 1990 to pursue his Ph.D. in Computer Science.

In 1993 he returned to Langley, but returned to Ithaca again in 1997 to complete

his degree.

In the summer of 1998 he accepted a position as Assistant Professor in Com-

puter Science at the University of Wyoming in Laramie.

iv

To my parents.

v

ACKNOWLEDGEMENTS

Bob Constable has encouraged and supported me throughout my Cornell career

and I owe him truly great thanks. He is also responsible for creating and nurturing

the intellectual environment in which the Nuprl group works, a great achievement

that others who have gone before me, and those who follow can best appreciate.

Thank you Bob.

Fred Schneider has been a fair-minded and deeply critical mentor who has

always insisted on the highest standards. I am proud to have had him serve on my

committee.

Anil Nerode has always seemed to me to be the happy Buddha (although he

denies any Buddhist affiliation) and I have always enjoyed his conversation and

insights. I never got enough of his company. Time spent with Richard Platek,

both at Cornell and at his company Odyssey Research Associates, has always

been similarly enjoyable.

At Cornell, Stuart Allen has been a great friend and has taught me many of

the intricacies of constructive type theory to boot. Thanks to Stuart and Tamiko

for all their help and support in getting this thesis out the door. Aswin van den

Berg volunteered to do the leg-work to get this thesis submitted and I thank him.

Paul Jackson and Doug Howe often helped me understand details of the system

which were beyond my ken. Judith Underwood and her husband Ian Gent proved

to be wonderful collaborators and friends. Jon Beck offered me his friendship

and, always ready to challenge accepted mathematical practice, proved to be a

good sounding-board for ideas. Aside from relieving me from the dubious honor

vi

of being the most senior grad-student in the department, David Pearson was both

a good friend and great climbing partner.

At NASA, my manager Chuck Meissner supported my application for graduate

study leave. Ricky Butler, although a staunch believer of excluded-middle, gave

me leave to pursue my work unfettered by NASA cares. Paul Miner and Victor

Carreño were colleagues and friends who shared the same path for many years.

Bernice Weinstein provided friendship. Special thanks go to Mike Lowry at NASA

Ames who showed genuine enthusiasm for my work and spurred me on to the finish.

Finally, greatest thanks go to my wife Penelope who has supported me uncon-

ditionally. Also, thanks to my children, Garrett and Clea, who did without me

more than they should have had to.

vii

TABLE OF CONTENTS

1 Introduction 1
1.1 Goals . 1
1.2 Background and Related Work . 3

1.2.1 History and Related Systems 3
1.2.2 Related Work . 5

1.3 Results . 7

2 Nuprl 10
2.1 The Nuprl Type Theory . 10

2.1.1 The computation system . 11
2.1.2 The types . 12
2.1.3 Judgements, Sequents, Rules, and Proofs 17

2.2 The Nuprl system . 20
2.2.1 The Library . 20
2.2.2 Display Forms . 21
2.2.3 Definitions . 22

3 Programming in Nuprl 24
3.1 Proofs and Extracts . 25
3.2 Existential Types . 30
3.3 Decidability, Stability, the Squash Type, and Squash Stability . . . 32

3.3.1 A discussion of the set type 35
3.4 General Recursive Definitions in Nuprl 37

3.4.1 An example definition . 39
3.5 Extraction of general recursive content 43

3.5.1 A first specification . 43
3.5.2 Minimization of the logical content 46
3.5.3 A Refined Specification . 46
3.5.4 List Induction Extracting letrec 47

viii

3.5.5 A proof and extract . 49
3.5.6 Display forms, abstractions, and well-formedness theorems . 52

3.6 Efficient Induction Schemes . 53
3.7 Related Work . 56
3.8 Remarks . 57

4 Decidability of Classical Propositional Logic 59
4.1 Type Theoretic Formalization . 60

4.1.1 Variables and Formulas . 61
4.1.2 Semantics . 65
4.1.3 Sequents . 81

4.2 Decidability . 86
4.2.1 A Sequent Proof System for Classical Propositional Logic . . 88
4.2.2 A strategy for the proof . 92
4.2.3 Decidability proof . 94
4.2.4 Deciding atomic sequents . 97
4.2.5 The Normalization Proof . 99

4.3 Analysis of the Normalization Proof and
Extract . 108
4.3.1 Applications . 109

5 Decidability of Intuitionistic Propositional Logic 112
5.1 Introduction . 112

5.1.1 Intuitionistic proof systems 113
5.1.2 The Tableau Construction 116
5.1.3 Kripke Counter-examples as Evidence of

Unprovability . 118
5.1.4 Statement of the Theorem 121

5.2 Type Theoretic Formalization . 122
5.2.1 Variables and Formulas . 123
5.2.2 Sequents, Nodes, and Systems 124
5.2.3 Kripke Semantics . 125
5.2.4 A Formal Proof Type . 130
5.2.5 Eligible Systems and System Completeness 134
5.2.6 Termination . 138

5.3 The Formal Proof . 141
5.3.1 An Informal Account . 141
5.3.2 Intuitionistic Decidability 144
5.3.3 The Base Case . 163

5.4 Remarks on the proof and Extract 166

ix

6 Conclusion 169

A Stipulated Lemmas 172

B Extract of intuitionistic decidabilty proof 175

BIBLIOGRAPHY 179

x

LIST OF FIGURES

3.1 Extract of list all exists lemma . 45

4.1 Proof System for Classical Propositional Logic 88
4.2 Extract of the Normalization Lemma 111

5.1 System MJ . 114
5.2 A Proof of ¬¬(P ∨ ¬P) in system MJ 168

xi

Chapter 1

Introduction

1.1 Goals

This thesis addresses two topics: the first is the problem of formally synthesiz-

ing decision procedures as a way to ensure the correctness of their claims; this

involves the formalization of mathematical knowledge and the application of those

formalisms in potentially large proofs. The second topic, largely motivated by the

search for methods to accomplish the first, is the development of methods to make

programming by synthesizing code from constructive proofs a practical endeavor.

This thesis presents type theoretic formalizations of, and constructive proofs of

decidability for, classical and intuitionistic propositional logics. Doing so addresses

the goals noted above quite concretely. The mathematics has been formalized

in the Nuprl System, an implementation of an extremely rich constructive type

theory that is supported by a mature interactive theorem proving environment.

1

2

The formal development of the decision procedures is interesting in its own right.

When we say our goal is to make program synthesis a practical endeavor we

mean two things. The first is that the effort required is comparable to the effort

required for other methods offering similar guarantees of correctness. If the de-

velopment formally justifies the mathematical claims by formal proofs, it should

represent no more effort than it might have required to use another proof system

guaranteeing a similar level of assurance. The evidence for the claim that Nuprl

is satisfactory on this account can be found by examining the complexity of the

mathematical claims that have been proved in Nuprl and comparing their formal-

izations to those done in other systems. The best resource for this information is

the Nuprl web-page[CT98]. In developments where the mathematical claims are

not completely justified, the effort required to use of the system should compare

favorably with less formal program development methods. Early evidence that

Nuprl can function in this mode can be found in [BC85], more recent evidence can

be found in [CGU99].

The second aspect of practicality we intend is a property of the extracted pro-

grams themselves: the synthesized programs, as artifacts, must be comprehendible

in their own right. The extracted programs must be readable, they must reveal

the structure of the computation they are meant to perform; it must be possible,

although it is not always necessary, to synthesize programs that are as efficient as

hand crafted code written by expert programmers. The programs extracted from

the proofs presented in this thesis will be seen to satisfy this requirement.

3

1.2 Background and Related Work

This work is situated in the larger context of constructive mathematics, formal

methods, and program synthesis.

1.2.1 History and Related Systems

As early as 1971, in an IFIP paper entitled Constructive Mathematics and Auto-

matic Program Writers [Con71], Constable presented the idea of programming via

constructive proofs. He reckoned that Kleene’s realizability method for the arith-

metization of µ-recursive functions could be modified in such a way that programs

in a high level programming language like Algol, or instances of machines in an ab-

stract computational model like the RAM, could serve as realizers. In that paper,

Constable showed that there is an effective procedure for extracting programs from

formal proofs in Intuitionistic Number theory, thereby showing that the theory is

a Turing complete programming language.

In 1980 Bates implemented a system called λ-PRL based on these ideas, ex-

tracting the realizers as Lisp programs. This started the line of system development

that has evolved into the current Nuprl system [Con86]. The motivation of the

system is programming via proofs. Bates and Constable considered this problem

again in a 1981 paper [BC85] entitled Proofs as programs that was about λ-PRL

and its applications.

4

The endeavor of programming via constructive proofs touches on many topics,

both theoretical and practical. These ideas have been widely pursued in many

independent efforts which we mention next.

Martin Löf’s intuitionistic type theories [ML73, ML82] inspired the group at

Göteborg, Sweden to develop methodology for program development in type theory

not unlike Nuprl [NPS90], and to implement a prover for it [MN94].

Nuprl’s type theory [Con86] is an extension of Martin Löf’s 1982 system. Its

development was influenced by the work of de Bruijn’s Automath system [deB70]

and by Scott’s Constructive Validity paper [Sco70]. The extensions include the

quotient type [CZ84], the set type [Con83, Con85], and the inductive type [CM85,

Men88]. Recently, rules for the intersection type have been added, as have rules

for a newly developed partial type [CC98] which allows for reasoning about partial

functions in type theory.

In France, Coquand and Huet designed the Calculus of Constructions [CH85,

CH88a], a higher-order impredicative constructive type system based on Girard’s

system F [Gir86]. The Coq system [DFH+93a, CCF+95] provides a computer

implementation of the Calculus of Constructions, extending it by the addition of an

inductive type. Paulin-Mohring [PM89] developed methodology for programming

in Coq.

At Edinburgh, Luo [Luo89, Luo94] designed an extended theory of construc-

tions, the Extended the Calculus of Constructions. Pollack implemented a prover

for that theory named LEGO [Pol90, LP92].

In Japan, Hayashi and Nakano implemented a program synthesis system called

5

PX [HN88] based on Feferman’s theories [Fef79]. More recently, Hayashi [Hay94]

has designed a new type theory for program extraction based on intersection and

union types.

In Munich, Schwictenberg’s group has recently implemented a first order nat-

ural deduction theorem prover for program extraction called MINLOG.

Considering the scale of the research program undertaken by this international

group, it is perhaps surprising that the application of the methods has not had more

impact on practice. Much of the effort has been toward building the theoretical

basis for the methods, yet only now does it seem that the implementations are

reaching the potential promised by the theory.

1.2.2 Related Work

The research reported on here owes much to Underwood’s work on constructive

completeness proofs for intuitionistic propositional logic as a means of extracting

tableau decision procedures: she reported on that work in [Und93, Und94, Und95],

and also, in work done jointly with Aitken and Constable [ACU]. Her formalization

of intuitionistic decidability motivated the development of the classical case pre-

sented here in chapter 4. Underwood worked out the type theoretic presentation

of the problem and detailed informal proofs. Chapter 5 of this thesis is a formal

implementation and extension of the proof given in [ACU]. The implementation of

the proofs and the mathematics supporting them provided the means to examine

the extracted programs and to manipulate the statements of the theorems and

their formal proofs, resulting in clean and efficient extracts.

6

The idea of verifying decision procedures is not new: proposals to extend the-

orem provers by adding formally verified decision procedures were made as early

as 1977 [DS77]. Harrison provides a detailed survey of two approaches to the dis-

ciplined extension of prover capabilities in [Har95]. Actual formal verifications of

decision procedures are less common. One example that has been repeated a num-

ber of times is Boyer and Moore’s propositional tautology checker in the form of an

IF-THEN-ELSE normalization procedure [BM79, Les81, Pau86b, Hed91, PMW93].

Both Shankar [Sha85] and Hayashi [HN88] verify deciders for implicational frag-

ments of propositional logic presented in sequent forms.

With respect to the goal of extracting readable programs from constructive

proofs, Paulin-Mohring and Werner’s work in the Coq system is the closest to

ours. In [PMW93] they report on the extraction of the Boyer and Moore tautology

checker. Their development address issues related to the efficiency of the extracted

program.

Recently, Weich [Wei98a] has formalized a proof of decidability for the implica-

tional fragment of propositional intuitionistic logic in MINLOG. His work is also

closely related to the proof presented in Chapter 5 here; indeed, his effort was also

inspired by Underwood’s formulation of constructive decidability. Weich’s proof is

based on the contraction-free calculus of Dyckhoff [Dyc92]. He reports [Wei98b]

that the extracted program is large (about 60KB) and he is working on minimizing

its size.

Another recent application of program extraction technology include Théry’s

[Thé98] extraction of Buchberger’s algorithm for computing Gröbner bases. This

7

work was done using the Coq system and formalizes a sophisticated piece of math-

ematics. The extracted program has been applied computationally.

Finally, in Nuprl, and jointly work with Gent and Underwood [CGU99], Cald-

well extracted an implementation of Conflict-directed backjump search [Pro93].

This was done in a classical extension to Nuprl which thereby allowing the ex-

tracted program to contain non-local control operators, in this case the call/cc

operator of Scheme. The extracted program was translated into Scheme and ap-

plied to the Hamiltonian circuit problem, resulting in a new solution. This search

scheme has been applied to decision procedures for propositional logic.

1.3 Results

The technical accomplishments of the thesis are as follows:

Clean extracts. The programs extracted from constructive proofs of decid-

ability are the most tangible results of the work presented here. The program

extracted from the proof of intuitionistic decidability is the first formally justified

implementation for the full set of propositional operators. The extracted programs

are eminently readable, more so in the classical case, but in the intuitionistic case

as well. The programs are efficient in that they do not perform extraneous com-

putations related to the logical parts of their specifications, nor do they contain

unreadable artifacts of the proof in their texts. These qualities will be most ev-

ident to those familiar with the state of the art in program extraction. Relative

to these properties of readability and efficiency, these programs compare favorably

8

with extracted programs appearing anywhere in the literature.

Proof Methodology. In the course of the research described here, a new

methodology for using the existing Nuprl system has been developed. The objec-

tive of these new methods is the generation of clean and readable extracts while

ensuring, as far as possible, that the proofs are no more difficult than they would

have been had they been developed using the standard Nuprl methodology. The

method is based on use of the set type combined with the application of induction

tactics that result in efficient general recursion schemes. The author extracted

these efficient recursion schemes from proofs of general induction principles. A

style of proof based on delaying the introduction of explicit computational content

until as late as possible has been used here. This approach insures that the substi-

tution of set types for existential quantifiers will have minimal effect on the actual

proofs. This approach is presented in the course of the thesis but is the particular

emphasis of Chapter 3.

Formalized Mathematics and Pedagogy. This thesis represents a signifi-

cant effort in the development of formal mathematical theories. The formalizations

presented here have been polished by use; the false starts and bad choices inevitable

in such an effort are not revealed here. An aspect of formal mathematics that is

perhaps not appreciated by those who do not practice it is that the precise form

of a definition, while not always mathematically significant, can have great impact

on utility in applied formal mathematics. As such, the formalizations and proofs

presented here represent an investment of time and energy worthy of study.

The theories supporting the classical decidability have been used to teach Logic

9

to undergraduates at Cornell in the past and will be used again in the future. Stu-

dents use the system to navigate proofs and to view definitions. It turns out

that well-motivated interactive presentations of formalized mathematics are read-

ily accepted by students. The presentation of the intuitionistic case, previously

unavailable, will become source material for future courses. Not only do the for-

mal theories contain the Nuprl definitions, but the formal proofs, as objects, are

available as well and record the structure of the arguments.

Chapter 2

Nuprl

2.1 The Nuprl Type Theory

The Nuprl type theory is a sequent presentation of a constructive type theory via

type assignment rules. It supports an untyped lambda-calculus as its programming

language. Following Barendregt [Bar92] we can distinguish the Nuprl type theory

from the perhaps more familiar Church style typed lambda-calculus by calling it a

lambda calculus in the style of Curry or a lambda calculus with type assignment.

In Nuprl the underlying programming language is untyped and the objective of

a proof is to prove a type is inhabited, i.e. to show some program (term) is a

member of the type. A complete presentation of the type theory can be found in

the Nuprl book [Con86] (which will be referred to subsequently as “the book”).

The Nuprl system, as distinguished from the type theory, implements a rich

environment to support reasoning about and computing with the Nuprl type the-

10

11

ory. The system implementing the type theory has evolved since publication of

the book but (with a few extensions) the type theory presented there is faithfully

implemented by the Nuprl system. Complete documentation is included in the

Nuprl V4.2 distribution available on the World Wide Web [CT98].

The following sections give a brief introduction to the Nuprl computation sys-

tem, the type theory and some aspects of the system.

2.1.1 The computation system

Nuprl’s terms include the constructs of its untyped functional programming lan-

guage with additional constructs for denoting types and propositions. Terms will

be printed here in typewriter font: this is a term. Variables denoting terms

will sometimes be printed in italics (t). Terms (other than variables) are either in

canonical form, meaning no further evaluation is possible, or in noncanonical form.

Whether a term has canonical form depends only on its outermost form (they may

contain subterms of non-canonical form). The Nuprl computation system provides

reduction rules for evaluation of noncanonical forms. The Nuprl evaluator is the

computer implementation of these rules. A more complete description of canonical

and non-canonical forms and the semantics for the computation system is provided

in the book.

For terms t and t’ we will write t . t’ to indicate that t (the redex) evaluates

to t’ (the contractum) under the reduction rules. In later sections we will apply

an extended version of the basic computation system via the rewrite facility. For

terms t and t’ we will write t.R t’ to indicate that t reduces to t’ in this system.

12

As usual, the notation t[t’/x] denotes the term resulting from the capture-

avoiding substitution of t’ for free occurrences of x in t. Similarly, the notation

t[t1,· · ·,tn/x1,· · ·,xn] denotes the simultaneous capture-avoiding substitution

of each ti for each xi in t.

The reduction rules used in the decidability proofs are presented here for quick

reference.

(λx.b)(t) . b[t/x]

list ind([];b;x,y,z.u) . b

list ind(h::t;b;x,y,z.u) . u[h,t,list ind(t;b;x,y,z.u)/x,y,z]

decide(inl(t);x.l;y.r) . l[t/x]

decide(inr(t);x.l;y.r) . r[t/y]

spread(<t1,t2>;x,y.t) . t[t1,t2/x,y]

atom eq(a;b;t1;t2) . t1 if a=b

atom eq(a;b;t1;t2) . t2 if a6=b

rec ind(a;h,z.d) . d[a,λz.rec ind(z;h,z.d)/h,z]

The first rule is the ordinary beta-reduction rule. Since it is included in the

computation system, and since Nuprl terms are not tagged with type-information

(a la Church), the evaluator is an interpreter for the untyped lambda calculus

(extended with the computation rules just defined). The Nuprl term evaluator

implements a left-most outermost (lazy) evaluation strategy.

2.1.2 The types

A Nuprl type is a term T of the computation system with an associated transitive

and symmetric relation denoted by the term x=y∈T. This relation is known as

equality on T and respects evaluation in terms x and y (it is an equivalence relation

13

when restricted to members of T). Membership in T is expressed by x∈T which is

defined as x=x∈T.

A formula x∈T is well formed (is a meaningful proposition) only when T is a

type and x and y are both elements of type T; if T is not a type, or either x or

y is not an element of T (or neither is), then the term x=y∈T denotes nothing,

it is nonsense. Thus, x∈T is assigned a meaning when x is a member of T. Type

membership is different from set membership in that x∈T cannot be false in Nuprl;

it is either true or meaningless.

In addition to the type membership equality provided with each type, there is

an equality on types. Equality of types is intensional, i.e. type equality in Nuprl

is a structural equality modulo the direct computation rules. This means that,

unlike sets which enjoy extensional equality, there can be types T and T’ such that

x∈T, y∈T, x∈T’,y∈T’ and x=y∈T but not x=y∈T.

Interpreting the type membership equality relation and type membership as

types is made sensible via the propositions-as-types interpretation [Con86, pg.29–

31].

x=y∈T is an equality term. It denotes a type when T is a type and x∈T and y∈T;

otherwise it denotes nothing, it is nonsense. If x and y are not equal elements

in T then the type is empty. If x and y denote equal elements in T, the type

in inhabited by the single element denoted by the constant term Axiom (even

when the equality is not axiomatic).

x∈T is a membership term. It is an encoding for the equality term x=x∈T. It

14

denotes nothing if T is not a type or if x is not in T, and is inhabited by the

single term Axiom if T is a type and x is in T.

Like the related type theory of Marin Löf [ML73] or the type theory of White-

head and Russell’s Principia Mathematica, the Nuprl’s type theory is a predicative

type theory supporting an unbounded cumulative hierarchy of type universes. Ev-

ery universe is itself a type and every type is an element of some universe.

U{i} denotes the type universe where i is a universe level expression.1 The mem-

bers of the universe U{i} are types and other universes U{j} for j<i. The

property of T being a type is approximated by T∈Ui. When the level ex-

pression parameter is “i” it is elided by the standard display forms and Ui

appears simply as U.

P{i} is a synonym for U{i} and is sometimes used to emphasize the proposi-

tional side of the propositions-as-types interpretation. In Nuprl no formal

distinction is made between propositions and types.

The other Nuprl types and their members include the following:

Void is the empty type of which there are no members. Given a declaration x:Void

(absurdly declaring the existence of an element of the empty type) anything

follows. The constant term any denotes uses of elements of Void in extracts,

1Level expressions are not documented in the book. Based on Allen’s design
[All87a], universe level expressions provide a means of polymorphically referring
to universe levels without specifying explicitly which level is intended. Jackson
describes the implementation in Nuprl V4 [Jac95b, pg.23].

15

this is an exception condition. The term any is such that for all types T

(including Void), any(x)∈T.

Z is the type integer whose members are denoted by the numerals

· · ·,−1,0,1,2,· · ·.

Atom is the type whose elements are strings of the form ‘‘· · ·’’ where · · · is any

character string. Atoms are equal when they are the same character string.

Atoms really are atomic, as there is no way in the logic to analyze an atom

into characters.

T list is the type of lists of elements of type T. The elements of T list include

the empty list, denoted [], and conses of the form a::t where a∈T and t∈T

list. Lists are equal either when they are both the empty list or when they

have equal heads and their tails are equal.

y:A→B[y] is the dependent function type, not uncommonly called the pi type

and denoted by Πy:A.B[y]. The members of this type are functions f

with domain of type A such that f(y)∈B[y] where y is a variable possibly

occurring free in B. A lambda abstraction of the form λx.M is an element

of the type y:A→B[y] if M[a/x]∈B[a/y] for a∈A. These are the functions

whose range may depend on the element of the domain applied to. Function

equality is extensional.

A→B is the function type which is an encoding of terms of the form y:A→B when

y does not occur free in B.

16

x:A×B[x] is the dependent product type consisting of pairs <a,b> where a∈A and

b∈B[a/x]. This type is also sometimes called the sigma type and is denoted

Σx:A.B[x]. Two pairs <a,b> and <a’,b’> are equal in x:A×B[x] when

a=a’∈A and b=b’∈B[a/x].

A×B is the product type and is an encoding of terms x:A×B where x does not

occur free in B.

A | B denotes the disjoint union of types A and B, i.e.elements of this type are

tagged elements of the form inl(a) for a∈A and inr(b) for b∈B. Two ele-

ments of the disjoint union are equal when their tagged elements are equal

in the underlying type A (if the tag is inl) or B (if the tag is inr).

rec(x.T) is the Nuprl inductive type constructor where x is a variable bound in

term T, and free occurrences of x in T denote subtypes of the type; thus,

its members are the members of T[rec(x.T)/x]. There are some technical

constraints on the form of T but we do not include them here. Whenever

rec(x.T) is a type, members a and b are equal if a=b∈T[rec(x.T)/x].

{y∈T|P[y]} denotes a set type when T is a type and P[y] is a proposition possibly

containing free occurrences of the variable y. Elements x of this type are

those elements of T such that P[x/y] is true. Equality for set types is just

the equality of T restricted to {y∈T|P[y]}. This type is related to the

dependent product type.

x,y:A//E[x,y] denotes a quotient which is a type whenever A is a type, and

17

E[x,y] is an equivalence on A. Its members are elements of A and it identifies

elements a and b whenever the equivalence E[a,b/x,y] holds.

∩x:T.P[x] denotes the intersection type. It is a type whenever T is a type and

P[z/x] can be shown to be a type under the condition that z is a variable

of type T. Two members a and b are equal in type ∩x:T.P[x] if T is a type

and a=b∈P[z/x] for every z∈T.

2.1.3 Judgements, Sequents, Rules, and Proofs

Nuprl judgements are the assertions one proves in the system. Nuprl judgements

take the following form:

x1:T1,· · ·,xn:Tn >> S

where x1,· · ·,xn are distinct variables and T1,· · ·,Tn , S, and s are terms (n may

be 0), every free variable of Ti is one of x1,· · ·,xi−1 and every free variable of S

or of s is one of x1,· · ·,xn. The list x1:T1,· · ·,xn:Tn is called the hypothesis list,

each xi:Ti a declaration (of xi), each Ti is a hypothesis, and S is the consequent or

conclusion. The syntactic form is called a sequent.

A judgement where S is of the form t∈T is called a well-formedness goal.

The conditions under which a Nuprl sequent is deemed true are rather tech-

nical because of the so-called functionality constraints insuring equal elements of

hypotheses can be freely substituted into the consequent and extract terms; the

reader is referred to the Nuprl book [Con86, pg.141]; for a full account of Nuprl

semantics the reader is directed to [All87b]. Informally, a judgement asserts that,

18

assuming the hypotheses are well-formed types, and the conclusion and extract

terms are functional in those types, then the term S is an inhabited type. If S is

inhabited there may be more than one inhabitant and different proofs may yield

different inhabitants.

Nuprl proofs are constructed by refinement, i.e. in a top-down manner. A

sequent is proved by applying a refinement rule which induces a set of subgoals.

These subgoals are, in turn, proved by refinement. If a refinement induces no

subgoals, the truth of the goal is axiomatic and is justified by the rule.

Nuprl’s rules are schemes for inference consisting of three parts: a Nuprl sequent

called the goal, which is paired with an term of the computation system called the

extract; a rule name and parameter list pair; and a collection of sequents called

the subgoals (or premises), each of which is paired with a variable denoting the

extract of the subgoal. The form of an introduction rule is:

H ` T ext t

BY rule name rule parms

H1 ` T1 ext t1

...

Hk ` Tk ext tk

Here, H1,· · ·,Hk, and H are meta-variables denoting all or part of a hypothesis

list of a Nuprl sequent. For the elimination rules, hypotheses of the goal and

subgoal sequents are of the form H’,z:Z, H’’. Parameters required to completely

instantiate a rule (new variables, universe levels, etc.) are specified in the list

rule parms.

19

Rules serve both to specify proof refinement steps, to be applied in a top-

down fashion, as well as a scheme for constructing extract terms from the subgoal

extracts t1,· · ·,tk. The fact that the extract t inhabits T is an artifact of the proof

of T. The computational content of well-formedness subgoals or equality subgoals

is the trivial term Axiom and so is not displayed.

For example, consider the introduction and elimination rules for dependent

function type that appear as follows in the Nuprl theory rules 1 in the standard

library.

*R lambdaFormation

H ` x:A → B ext λz.b

BY lambdaFormation level{i} z

H, z:A ` B[z/x] ext b

H ` A = A ∈ U
*R dependent functionElimination

H, f:x:A → B, J ` T ext t[(f a),Ax/y,v]

BY dependent functionElimination #$i a y v

H, f:x:A → B, J ` a = a ∈ A

H, f:x:A → B, J, y:B[a/x], v:y = f a ∈ B[a/x] ` T ext t

A Nuprl proof is a tree structure in which the root is a Nuprl judgement having

no hypotheses. The children of each node are instances of sequents justified by

some refinement rule applied to the node. A proof of a sequent shows that the

goal, viewed as a type, is both well-formed and inhabited. Given the extract terms

inhabiting the subgoals of a rule, a proof specifies how to construct an extract term

inhabiting the type in the conclusion of the rule; thus, proofs contain instructions

for the construction of witnesses. Extraction is the process of constructing a witness

20

term as specified by a proof. Although extracts are not displayed by the system,

the extract term can be retrieved by applying the function extract of thm object

to a token containing the name of the theorem to be extracted. The extract of a

completed proof of a sequent is a closed term; the extract of an incomplete proof

is a term possibly containing free variables.

2.2 The Nuprl system

The Nuprl system supports construction of top-down proofs by refinement. The

prover is implemented as a tactic based prover in the style of LCF [GMW79] and

built on a base of ML. In Nuprl and related constructive systems [ML82, Nor81,

CH88b], the so-called proposition-as-types interpretation allows for presentations

to be cloaked in either logical or more purely type-theoretic terms. Paul Jackson’s

rational reconstruction of the Nuprl V3 tactics and display forms serves as the

basis of the Nuprl V4 system; it gives the system a distinctly logical appearance

(in contrast to the more type-theoretic appearance of other systems).

2.2.1 The Library

The system supports a library mechanism which provides for grouping of Nuprl

objects. The status and class of an object are indicated in the library by a two

character sequence preceding the name of the entry in the library, the first character

indicating the status and the second indicating the type of object. The six main

kinds of objects (and their single character labels) are the following: an abstraction

21

object (A) which defines an operator; a comment object (C) which may contain any

untyped data, a display form object (D), an ml object (M), a rule object (R), and

theorem objects, containing possibly incomplete proofs, and which are labeled by

the lower case character (t) if the theorem is unexpanded and are labeled by the

upper case character (T) if expanded. Every object has associated with it a status,

also labeled by a single character, which is either raw (?), bad (-), incomplete (#),

or complete (*). A raw status means an object has been changed but not yet

checked. A bad status means an object has been checked and found to contain

errors. An incomplete status is meaningful only for theorem objects and signifies

that its proof contains no errors but has not been finished. A complete status

indicates that the object is correct and complete.

Typically, each new operator is defined by three (or four) library objects: a

display form object, an abstraction or definition object, a well-formedness theorem

object describing the type of the operator, and possibly an ML object containing

tactics and or conversions characterizing the behavior of the operator.

2.2.2 Display Forms

Nuprl supports a unique display mechanism. The structure of Nuprl terms is spec-

ified independently of their display characteristics. Terms are edited in the Nuprl

structure editor, and since they are never parsed, there are no externally gener-

ated constraints based on considerations of grammar. The display form mechanism

includes a rich language for display specification. Since actual term structure is

independent of display it is possible to over-load displays without introducing the

22

attending complexity of disambiguation. Indeed, mathematics can be displayed in

Nuprl with the same conventions used in traditional presentations of mathematics.

The Nuprl terms presented here appear as they do in the system and have been

generated by the system. One significant advantage of the separation of display

from definition is that individual users can customize displays to their own tastes.

For example, the following shows two different Nuprl displays of the identical

term.

(x:Z)(y:Z)(∃z:Z)(x+z = y)

∀x,y:Z. ∃z:Z. x+z = y

2.2.3 Definitions

Definitions are added to Nuprl by creating so-called abstraction objects in the

Nuprl library.

One important set of definitions is the encoding of constructive logic in the

type theory. The Heyting interpretation is encoded in the Nuprl type theory by

the following abstractions which are defined in the Nuprl V4 core 1 system library.

*A true True
def
= 0 ∈ Z

*A false False
def
= Void

*A and P ∧ Q
def
= P × Q

*A or P ∨ Q
def
= P | Q

*A implies P ⇒ Q
def
= P → Q

*A not ¬A
def
= A ⇒ False

*A exists ∃x:A. B[x]
def
= x:A × B[x]

*A all ∀x:A. B[x]
def
= x:A → B[x]

23

Thus, True, which could be modeled by any inhabited type, is modeled here

as the type asserting 0∈ Z (which happens to be true and has the single inhab-

itant Axiom). False is encoded as the empty type; conjunction is just a simple

product; disjunction is disjoint union; implication is the function type; negation of

a proposition P is defined to be the function that, when applied to an element of

P, returns an element of the empty type; existential quantification is encoded as

the dependent product type; and universal quantification is the dependent func-

tion type. The correspondence between the propositions encoded as above and the

type theory is elaborated on in [Con86, Section 3.6,]. The Nuprl tactics have been

built to deal uniformly with either the propositional or type formulations.

Chapter 3

Programming in Nuprl

In this chapter we describe attributes of Nuprl that allow it to be used both as a

program synthesis tool and as a program verification tool.

The essence of constructive methods for program development is that the proofs

of theorems having the shape ∀∃ contain all the information necessary to build the

object claimed to exist. This idea is rooted in Kleene’s realizability semantics for

intuitionistic number theory [Kle52]. Other implementations of Martin-Löf type

theory [Nor93, Mag95] provide similar extraction methods as do Coq [DFH+93b]

and Hayashi’s system PX [HN88] and its descendent [Hay94].

If the exact form of the intended program is known, then the corresponding

proof obligation is to prove that it inhabits the appropriate type – this is program

verification. In other cases, the system is used to synthesize a program from the

proof. Of course, proofs are often hybrid in the sense that some parts of the extract

are purely synthesized while others parts are explicitly defined and verified.

24

25

3.1 Proofs and Extracts

In this section we give definitions to distinguish proofs based on how the compu-

tational content of the proof arises. We define three classes of proofs, strictly pure

proofs, pure proofs, and computationally explicit proofs. We introduce these dis-

tinctions here to capture the informal idea that some proofs have some or all of the

computational content explicitly provided while other proofs use the constructive

proof rules in a pure way.

Nuprl proofs are stored compactly as tactic trees; however, their expanded

proofs form trees of rule instances and their subgoals. We will use variables p and

p′ to refer to expanded proof trees. Two Nuprl proofs p and p′ are equal (p = p′) if

and only if their expanded rule trees are identical. The extract term of a proof p is

denoted ext(p). The raw extract of a proof (even one designed to result in a clean

extract) usually contains many applications that disappear under one bottom-up

traversal of the term performing all β-reductions possible. As mentioned above in

Chapter 2, the reduction system can be extended to arbitrarily include other steps

of direct computations. Two terms t1 and t2 are equivalent modulo a reduction

system R (t1 =R t2) if and only if for some term t, t1 .R t and t2 .R t. From now

on, when we say two terms are equivalent we will mean equivalent modulo (some

unspecified) reduction system R unless otherwise noted.

Each valid proposition has many distinct proofs; distinct proofs sometimes

share identical extracts while in other cases proofs are distinguished not only by

their rule trees but also by their extracts. Thus, extract terms can be seen to

26

define equivalence classes of proofs.

Proofs p and p′ are strongly computationally equivalent (p =ext p
′) if and only if

the term ext(p) is alpha congruent (see [Bar81]) to the term ext(p′). Thus, strong

computational equivalence is an equivalence defined on the syntactic structure of

the extract term, modulo variable renaming. This equivalence is the strongest

extract equivalence on proofs.

We can further identify proofs by the extensional behavior of their extract

terms. Proofs p and p′ are computationally equivalent if in every context C[],

C[ext(p)] and C[ext(p′)] normalize to alpha congruent terms.

If every proof of a given valid proposition makes use of some occurrence of a

subterm of the proposition, then we will say that occurrence is essential.

The strictly positive parts (s.p.p) of a formula P are defined inductively as

follows:

i. P is a s.p.p. of P;

ii. If A ∧B or A ∨B are s.p.p of P then so are A and B;

iii. If A→ B is a s.p.p. of P then so is B;

iv. If ∀x :A.B or ∩x :A.B are a s.p.p. of P then so is B[t/x] for all terms t;

v. If ∃x :A.B or {x : A|B} are s.p.p. of P then so are A and B[t/x] for all t;

In sequent calculus derivations having P at the root, the elimination rules apply

to negative parts of P and introduction rules apply to the positive occurrences in

P . Thus, strictly positive occurrences of subformulas can only be manipulated in

a proof by an intro rule (i.e. a rule that operates on the right side of the sequent).

27

A Harrop formula [Har60] is a formula that does not contain a strictly positive

part with ∨ or ∃ as its principal operator. We extend this standard definition to

further exclude formulas having a strictly positive part with the set type construc-

tor as its principal operator.

A strictly pure proof is a proof of a proposition (say P) whose computational

content is never explicitly provided to the prover, but instead, it is implicit in its

structure of rule applications. This class is restricted to those proofs that never

apply the explicit intro rule or any existential introduction rule.

The class of strictly pure proofs is too narrow: it excludes any proof of a

proposition having essential s.p.p. occurrences of an existential operator. We relax

the condition by distinguishing where in the proof the existential introduction rules

occur. What we wish to exclude is those proofs where an existential introduction

rule occurs too early and thereby explicitly introduces computational content that

might instead have been generated by applications of the ordinary proof rules.

Now consider the proofs containing no instances of the explicit introrule,

but possibly containing existential introduction rules. Among them there are

proofs in which the occurrences of the existential intro rules occur as low (near

the leaves) in the rule tree as possible. If t1, t2, · · · , tn are the witness terms to

these rules (as they occur in some fixed traversal order of the tree), then all proofs

in the strong computational equivalence class that share the same witness set

t1, t2, · · · , tn will be called a pure proof.

A computationally explicit proof is one that is neither strictly pure nor pure.

It is one in which computational content is provided, before it is necessary. Typ-

28

ically this class arises by application of an explicit intro rule or by certain

applications of existential introduction rules.

Consider the trivial case first, i.e. the case where the computational content

is provided by the explicit intro rule. Then, a Nuprl term (say t) is provided

as the computational content of a judgement of the form Γ ` P. This results in

a subgoal of the form Γ ` t∈P. Viewing the proposition P as a specification, a

proof of this subgoal is a verification that t satisfies the specification P. Because

it is a membership goal (its outermost operator is the member operator) this is a

well-formedness goal. Computationally explicit proofs do not include all proofs of

theorems having essential positive occurrences of existential operators.

If instead, the witness to the existential introduction rule introduces compu-

tational content that could have been otherwise constructed, we say the proof is

computationally explicit.

The distinction we are intending is a qualitative difference not easily captured

in a formal definition. The definition we have given here for a pure proof is fixed by

the form of the proposition. This leaves open the possibility that a reformulated

proposition having the same logical content might subvert the intended meaning

of the definition.

Indeed Thompson [Tho91] recommends reformulating ∀∃ theorems into theo-

rems of the form ∃∀ by Skolemizing, via the constructive axiom of choice, appar-

ently believing it is better to verify a program than it is to synthesize it. This was

an attempt to avoid the use of the set type, which makes no sense in the intensional

version of Martin-Löf type theory that Thompson adopted for his book. Thus a

29

theorem ∀x : T.∃yT ′.P [x, y] becomes ∃f : T → T ′.∀x : T.P [x, f(x)]. Under this

scheme, the first element of the pair inhabiting the proof of the second theorem

is the explicit computational content of the proof of the first. It should be clear

that a proof of the Skolemized form (pure or otherwise) is not pure in the sense we

intend here. The second specification is less natural and this form is never applied

in this thesis. Further refinement of our characterization to rule out this type of

reformulated specification is beyond the scope of this thesis.

This thesis is largely based on the idea that program synthesis is generally

preferred over program verification, but that the integration of the two is necessary

for practical program development. When possible, we believe pure proofs are

preferred. By avoiding explicit introduction of terms of the programming language,

pure proofs are at a higher level of abstraction than computationally explicit proofs.

Pure proofs are more independent of the underlying programming language.

A Nuprl proof shows that a term is both inhabited (i.e. true) and that it

is well-formed (i.e. that it denotes some type). Because of this, virtually all

Nuprl proof rules generate well-formedness subgoals. The vast majority of the

well-formedness subgoals that arise in ordinary Nuprl proofs are discharged auto-

matically by the auto-tactic Auto.

The well-formedness subgoal that arises in computationally explicit proof often

takes on a decidedly different character (from the point of view of the Nuprl user)

from pure proofs. Some part of this difference can be attributed to the fact that

verification is not the standard mode of Nuprl use; better tactic support would

undoubtedly help to alleviate the problem. But there is an intrinsic difference be-

30

tween proofs of well-formedness goals and proofs of ordinary propositions, resulting

from the structure of the Nuprl type theory itself.

3.2 Existential Types

Nuprl’s existential types include the dependent product type (also widely referred

to as the sigma type in the literature) and the set type; they are classified as

existential types because applications of the introduction rules for these types

require witness terms. Recall that the existential quantifier of Nuprl’s logic is

merely an abbreviation for dependent product so we will not distinguish existential

propositions from product types in the discussion that follows, simply referring to

the two of them as the existential type.

Methods of generating efficient and readable extracts by the use of the set

type (as opposed to the existential) were presented by the author in [Cal97]. We

reiterate the main points here.

Inhabitants of the existential ∃x:T.P[x] are pairs <a,b> where a∈T and where

b∈P[a/x]. b is a term inhabiting P[a/x] and specifies, as far as the proofs-as-

programs interpretation goes, how to prove P[a/x]. When an existential type of

the form above occurs as a hypothesis it can be decomposed into two hypotheses,

one of the form a:T and another asserting b:P[a/x]. If v is the name of the

variable denoting the existential hypothesis, occurrences of a in the final extract

will appear as π1(v), and occurrences of b appear as π2(v).

Alternatively, consider the Nuprl set type {y∈T|P[y]}. Its inhabitants are

31

elements of T, say a, such that P[a/y] holds. Thus, a set type does not carry

the computational content associated with the logical part P[a/y]. Since the

computational content is not available, the fact that the a has the property P[a/x]

is not freely available in parts of a proof where it might find its way into an extract.

When a set type of this form, occurring as a hypothesis, is decomposed, it results

in two new hypotheses: one of the form a:T; and the other, a “hidden” hypothesis,

of the form b:P[a/x]. Hidden hypotheses are discussed in more detail below;

however, we briefly remark here that they are hypotheses having no computational

content, and so they may not appear in an extract. If v is the name of the variable

denoting the set type hypothesis, occurrences of a in the final extract will appear

as v and, in general, occurrences of b may not appear unless computational content

is explicitly provided for it.

The Nuprl system manages hidden hypotheses by “unhiding” them when ap-

propriate and by preventing their inadvertent use. Hidden hypotheses are freely

available in the parts of a proof that do not contribute to computational content;

these parts include proofs of well-formedness (membership) subgoals, equality sub-

goals (to see why this membership and equality reasoning do not contribute to the

computational content, recall that the only inhabitant for these judgements is the

term Axiom) when the computational content on a branch of the proof has already

been fully determined, or when the conclusion is decidable, stable, or squash stable.

Hidden hypotheses may be “unhidden” when their computational content can be

effectively decided, typically when they themselves can be shown to be decidable,

stable, or squash stable.

32

3.3 Decidability, Stability, the Squash Type, and

Squash Stability

Being constructive, not all propositions are assumed to be decidable in Nuprl,

i.e. for arbitrary propositions P, P ∨¬P is not a theorem of Nuprl [Smi89]. Even

though decidability for an arbitrary proposition P is not assumed, for many P it

is uniformly decidable (i.e. there is an algorithm to decide) which of P or ¬P

holds. A constructive proof of P ∨¬P yields a decision procedure. Thus we define

decidability by the following definition.

*A decidable Dec{P} def
= P ∨¬P

*T decidable wf ∀P:P{i}. (Dec{P} ∈ P{i})

Note that the well-formedness theorem asserts that for all propositions P, the

term Dec{P} is itself a proposition, but it does not prove it is inhabited for arbitrary

P. For definitions given below we will not show unexceptional well-formedness

theorems but the reader should assume they have been stated and formally proved.

A related notion is that of stability. Stability is constructively weaker than

decidability and like decidability is not constructively valid.

*A stable Stable{P} def
= (¬¬P) ⇒ P

Thus, if evidence for the fact that a proof of ¬P is absurd can be shown to

yield evidence for P, then we say P stable. Since ¬(¬¬P ∧¬P) is intuitionistically

valid, from ¬¬P we can conclude that ¬P is not valid. Thus, inhabitants of

doubly negated propositions can be thought of as evidence that the proposition is

not falsifiable. We will say that proofs of doubly negated propositions P provide

33

evidence for the weak truth of P since the proofs do not contain computational

content for inhabitants of P itself but instead show it cannot be falsified.

For a proposition to be stable, the weak truth of the proposition must contain

enough evidence to construct a proper inhabitant of the proposition. Stability

is closely related to Gödel’s double-negation translation [Göd65] which embeds

classical logic into intuitionistic logic via double negations propagated throughout

the structure of a formula.

It is an interesting exercise to try to prove Stable{P} →Dec{P} to discover

how the proof fails.

A squashed type (or proposition) is one whose computational content has been

discarded. It is defined in Nuprl using the set type as follows:

*A squash ↓T def
= {True| T}

Thus for a type (proposition) T, ↓T is inhabited if and only if T is, and fur-

thermore, has as its only inhabitant the term Axiom (the sole inhabitant of the

proposition True). This “squashes” the representatives of members of the type

down to the single term Axiom.

Squash stability is weaker even than stability, though classically the two notions

are equivalent.

*A sq stable SqStable{P} def
= ↓{P} → P

False is squash stable, (it follows from the decidability of False). All provably

inhabited propositions are squash stable as well: to see this, note that if p∈P then

(λx.p) ∈↓P.

34

Nuprl theorems ordering these notions by their implicational strength are given

below.

*T stable from decidable ∀P:P. Dec(P) ⇒ Stable{P}
*T sq stable from decidable ∀P:P. Dec(P) ⇒ SqStable(P)

None of these implications hold in the opposite direction. Since ↓P ⇒ ¬¬P

we also have the following theorem.

*T sq stable from stable ∀P:P. Stable{P} ⇒ SqStable(P)

Following Troelstra [Tro73], Salvesen and Smith [SS87, SS88] show that the

natural type-theoretic analog of the Harrop formulas [Har60] preserve stability in

extensional Martin-Löf type theory.

The analog of this observation is extended and implemented in Nuprl for squash

stability. In Nuprl, squash stability is the weakest condition on a proposition P

which allows occurrences of it as a hidden hypothesis in a sequent to be unhidden.

That is, an application of the Unhide tactic to a sequent containing a hidden

hypothesis P yields a subgoal of the same form except where P is no longer hidden.

This is also true if P is stable or decidable.

The mechanism for automatically proving squash stability goals in Nuprl (i.e.

sequents having conclusions of the form SqStable{G}) was implemented by Jack-

son [Jac95b] in the ProveSqStable tactic. This tactic backchains through hypothe-

ses in the sequent declaring an operator to be squash stable, and through lemmas

in the library having names with the prefix sq stable op id name. Thus, the

tactic uses the ordering lemmas shown above, an extensible set of characterization

lemmas, and also relevant hypotheses occurring in the sequent being proved.

35

The following lemmas characterize the squash stable analogue of the Harrop

formulas.

*T decidable false Dec(False)

*T decidable true Dec(True)

*T sq stable equal ∀A:U. ∀x,y:A. SqStable(x = y)

*T sq stable and ∀P,Q:P. SqStable(P) ⇒ SqStable(Q) ⇒
SqStable(P ∧ Q)

*T sq stable implies ∀P,Q:P. SqStable(Q) ⇒ SqStable(P ⇒ Q)

*T sq stable all ∀A:U. ∀P:A→P. (∀x:A. SqStable(P[x])) ⇒
SqStable(∀x:A. P[x])

Squashed terms are trivially squash stable. Also, since intuitionistic negation

of a proposition P is simply defined to be P⇒False, and since bi-implication

is defined to be the conjunction of implication in both directions, the following

lemmas are added as well.

*T sq stable squash ∀P:P. SqStable(↓P)
*T sq stable not ∀P:P. SqStable(¬P)

*T sq stable iff ∀P,Q:P. SqStable(P) ⇒ SqStable(Q) ⇒
SqStable(P ⇐⇒ Q)

To prune the search space, the ProveSqStable tactic does not unfold defini-

tions. Thus, the standard methodology is to add squash stability lemmas for new

operators if possible.

3.3.1 A discussion of the set type

The set type was proposed by Constable [CZ84] as a means to define sub-types

in analog with a constrained set comprehension principle (As we shall see, this

36

analogy with set theory, reflected in the standard notation for the type, may have

been unfortunate). The set type was seen to eliminate the second element of the

pair inhabiting a dependent product, and indeed Constable proposed it be used

to generate “clean extracts”. As discussed above, this second component of the

dependent product is often computationally irrelevant.

The set type was subsequently adopted by the Göteburg group [NPS90] in their

implementation of Martin-Löf type theory as a programming logic.

Early on, Salvesen [SS87, Sal89] explored the use of the set type in specifications

and its effect on programs extracted from proofs. Indeed, she was perhaps the first

to apply the set-type in the early implementation of Nuprl. In section 2 of [Sal89]

she reports on a Nuprl proof of the following theorem.

∀x:N List. ∀n:{ z: N | z ∈ x}. n ∈ x

Thompson [Tho92] makes much of the fact that Salvesen’s proof was non-trivial,

which undoubtedly it was in 1989. In the current version of Nuprl, which includes

tactic support for proving squash stability, the proof of this proposition is quite

straightforward. Aside from proving the squash stability of the list membership

operator, the proof of this theorem is absolutely trivial. In the current system the

proof that list membership is squash stable is quite easy. Thus, it appears that one

of the main criticisms, that proofs of theorems containing set types are non-trivial,

no longer holds. Improved technology has apparently solved it.

An apparently deeper criticism appears in Thompson [Tho92] where he cites

Salvesen and Smith’s work [SS87, SS88] showing that in Martin-Löf’s intensional

type theory, the set type is absurd; this has no bearing on Nuprl, which is based

37

on the extensional Martin-Löf theory, but it does seem to indicate an essential

weakness in the intensional theory since they show unequivocally that it cannot

be extended to reasonably accommodate a subset type.

3.4 General Recursive Definitions in Nuprl

Nuprl is unique among existing implementations of constructive systems in its ad-

missibility of general recursive definitions. This possibility for the Nuprl type sys-

tem was first noted by Allen, who realized that applications of Y could be assigned

a type. In a Nuprl seminar in 1984 he presented a typing of Kleene’s minimization

operator (µ) using his methods. Based on Allen’s proof, Howe [How88, How93] de-

veloped the standard Nuprl methodology for using general recursive functions and

Jackson [Jac95a, Jac95b] implemented the methodology in his tactics for Nuprl 4.

Curry’s fixedpoint combinator is defined in the Nuprl system library core 2 as

follows:

*A ycomb Y
def
= λf.(λx.f (x x))(λx.f (x x))

Its usefulness in defining general recursive functions is based on its fixed point

property.

Y F .R F (Y F)

Here, F is any term.

Allen’s typing of applications of Y depended on the direct computation rules

of the system; indeed, he presented his proof as part of his argument for their

adoption. By definition, the direct computation rules observe subject reduction

38

(ı.e. they preserve typing). The fixed-point property is easily justified purely in

terms of direct computation rules and, since they preserve typing, well-formedness

goals are never generated by unfoldings of Y .

Jackson’s [Jac95a, Jac95b] implementation of these ideas in Nuprl V4 used his

rewrite package which includes direct computation rules as one form of justifica-

tion for rewrites. It is a particularly important one because it does not require

justification via functionality lemmas and so is the most efficient form of rewrite.

The rewrite package is used to describe equivalences under direct computation by

defining conversions encapsulating the desired behavior. Typically they appear in

the library as ML objects named <opid> unroll. The conversion for the Y combi-

nator named YUnrollC encapsulates the fixed-point property of the Y combinator

and unrolls one step of computation.

In this thesis, an additional level of abstraction hides the Y combinator. The

letrec form is implemented through three display forms and abstractions that

hide the underlying use of the fixed point combinator.

*A letrec (letrec f b[f])
def
= Y (λf.b[f])

*A letrec body = b
def
= b

*A letrec arg x b[x]
def
= λx.b[x]

Thus

(letrec f ~x = b[f,~x]) is defined to be (Y (λf.λ~x.b[f,~x]))

The conversion letrec unrollC captures the following computational behavior

of applications of letrec terms.

(letrec f t = b[f;t])(T) .R b[(letrec f t = b[f;t]),T/f,t]

39

i.e. the recursive call is substituted for f in the term b[f;t] and the argument

T is substituted for t.

3.4.1 An example definition

In this section an operator for list quantification is developed. The list 3 library

supporting the decidability theorems has four library objects associated with the

definition of the operator: a display form object exhibiting a non-trivial use of the

Nuprl display mechanism; an abstraction object defined by general recursion; an

associated ML object that reflects the computational behavior of the operator via

the rewrite system; and a theorem object which shows the definition is well-formed.

*D list all df

∀<x:element>∈<L:List>.<P:T→Pi:L> def
= list all{}(<L>; <x>.<P>)

*A list all

∀x∈L.P[x]
def
=

(letrec list all L =

list ind L of [] => True | h::t => P[h] ∧ list all t

) L

*M list all unroll

let list all conv T =

FwdMacroC ‘list all unrollC‘

(AllC [UnfoldC ‘list all‘;

letrec unrollC;

ReduceC;

TryC (FoldC ‘list all‘)])

T

;;

40

let list all unrollC =

SomeC [list all conv d∀x∈[].P[x]e;

list all conv d∀x∈(h::t).P[x]e]

;;

add AbReduce conv ‘list all‘ list all unrollC;;

*T list all wf

∀T:U. ∀P:T → P. ∀L:T List. ∀x∈L.P[x] ∈ U
Extraction:

λT,P,L.list-case(L) of [] => Axiom | u::v => %.Ax

The first entry is a display form object named list all df. This object pro-

vides a template for display of instances of the list all operator. The naming con-

vention in Nuprl is to give display-form objects names of the form op id name df

where op id name is the operator identifier of the abstraction being displayed. The

display-form itself has two components appearing as “[lhs]
def
= [rhs] ”. The lhs is

the display template with slots. In the display-form for list all there are three:

one slot for the variable x which is bound by the quantifier; one slot for the list

L which is the domain of the quantification; and one slot for the predicate P[x]

possibly containing free occurrences of the variable x. In a complete display-form,

rhs is an instance of the operator being displayed. In this case the operator is

list all{}(<L>; <x>.<P>), having the operator identifier list all, and having

no parameters (which would be enclosed within the set brackets), and having three

meta-variables L, x, and P with the notation <x>.<P> indicating that x is bound in

P. The Nuprl display form mechanism supports additional features not used here.

The second library entry is an abstraction with the name list all. The nam-

ing convention for abstractions is to give them the same name as the operator

41

identifier of the operator being defined. In the remainder of this paper, unless

there is some interesting characteristic of a display-form itself, display definitions

will not be shown, and abstractions will be displayed as above; e.g. with the in-

stantiated display-form to the left of the “
def
= ” and with the definition to the

right. In this case the definition consists of a recursive function, defined via a

letrec form, applied to the argument L.

Based on these definitions, the behavior of the abstraction for the list all

operator should be transparent. The computational behavior can be explained by

considering the rewrite conversions defined in the ML object associated with its

definition.

The ML object named list all unroll contains the code used to selectively

unroll occurrences of the list all operator. The details of the ML code are unim-

portant, but it is worth pointing out how selective rewrite support is provided for

recursively defined functions. Upon evaluation of the ML object list all unroll

by the system, the two objects list all conv and list all unrollC result in ML

objects of type conversion. When applied by the rewrite system, the conversions

exhibit the following behavior.

∀x∈[].P[x] .R True

∀x∈h::t.P[x] .R P[h] ∧ ∀x∈h::t.P[x]

The last line of the ML object adds the list all unrollC conversion to the

list of conversions applied by the tactic AbReduce when an operator with operator

id ‘list all‘ is encountered having either the empty list or a cons as its primary

argument. For a complete account of the rewrite system and the Nuprl ML system,

42

the documentation provided with the system should be consulted.

The third library entry above is a well-formedness theorem for the list all

abstraction. The theorem is named list all wf following the convention used

by the well-formedness tactics which will search for it by name and automatically

apply it when well-formedness goals are induced during the proving process. The

theorem says that for appropriately typed arguments, the list all operator de-

notes a type. More precisely, for every type T, and for every T List, and for every

proposition (function from T onto P) the list all operator is a member of all

levels of the type universe hierarchy. Typically we will omit the presentation of

well-formedness goals that simply state an abstraction is an element of some type

universe.

The proof of list all wf provides the extract

λT,P,L.list-ind(L) of [] => Axiom | u::v => Axiom

This term is one function inhabiting the proposition

∀T:U. ∀P:T → P. ∀L:T List. ∀x∈L.P[x] ∈ U

The theorem was proved by induction on L and so extraction includes the

the primitive recursive list-ind form which is the computational content of list

induction. In the case the list is empty the extract evaluates to Axiom; this is

because the element inhabiting the proposition True∈U is Axiom. The inductive

hypothesis of the list induction establishes that the recursive call is well-formed,

thus in the case of a cons u::v, the extract evaluates to Axiom.

The following useful lemma characterizes the list all operator in terms of

the x in T such that x is a member of L under the discrete equality eq.

43

* THM list all all lemma

∀T:U. ∀P:T → P. ∀L:T List. ∀eq:{T=2}.
∀x∈L.P[x]⇐⇒(∀x:{x:T| x(∈eq) L} . P[x])}

The lemma says for every type T, every proposition P, every list L, and every

discrete equality over T, the proposition ∀x∈L.P[x] holds, if and only if for every

x of type T that is in the list L, P[x] holds. The set type is being used here as a

sub-typing mechanism to restrict attention to elements of T that happen to occur

in the list L. We shall see a distinctly different application for the set type in the

next section.

3.5 Extraction of general recursive content

Most of the material appearing in this section has appeared elsewhere [Cal97]. The

definition just given for list all does not apply the proofs-as-types interpretation.

It is essentially classical program verification performed in the Nuprl type theory.

The goal of this section is to show how to specify and prove a theorem having as its

extract the same function as the one used to directly define the list all operator

above.

3.5.1 A first specification

The first task is to state a theorem whose inhabitants are of the correct type. The

type we are interested in is given by the well-formedness theorem for the list all

operator, i.e.

T:U → P:(T → P) → L:T List → P

44

We use the characterization given by the lemma list all all as a basis for

the specification of the behavior of the function.

* THM list all exists lemma

∀T:U. ∀P:T → P. ∀L:T List.

∃p:P. ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])

Under the propositions-as-types interpretation we can understand the theorem

as a specification for functions of type

T:U → P:(T → P) → L:T List → p:P × T [p]

where T [p] is the proposition

∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])

The elements of the type are the terms inhabiting (proving) the proposition. In

this specification, p is a proposition (an element of type P) that is true whenever

T [p] is inhabited.

Using the extract of this theorem, we can easily define a function that is ex-

tensionally equivalent to the one we are after by taking the first projection of the

result of applying it to the appropriate arguments. Thus if f is the extract of the

theorem, we can easily prove

∀T:U. ∀P:T → P. ∀L:T List. (f(T)(P)(L)).1 ∈ P

Where for any pair 〈x,y〉, 〈x,y〉.1 = x.

This is precisely the approach described in the Nuprl book [Con86, section 4.4]

and elsewhere [NPS90, section 21.1]. But this approach fails if we are interested in

using extracted programs as operators in proofs where we need efficient selective

45

λT,P,L.

(letrec f (L) =

if null(L)

then <True, λeq.<λ%,x.any Ax, λ%.Ax>>

else h::t = L in let <p,%1> = (f(t)) in

<P[h] ∧ p,

λeq.<λ%1@0.let <%2,%3> = %1@0 in

λx.let <%4,%5> = (%1(eq)) in

let <%9,%10> =

(ext{discrete equality properties}{i:l}(T)(eq)) in

case ext{decidable assert}((eq(x)(h)))
of inl(%14) => let <%18,%19> = (%9(x)(h)) in %2

| inr(%15) => %4(%3)(x),

λz.<z(h), let <%3,%4> = (%1(eq)) in %4((λx.z(x)))>

>

>

fi)(L)

Figure 3.1: Extract of list all exists lemma

unfolding of terms and partial evaluations. Figure[1] shows the term extracted

from a natural proof of the list all exists lemma after one step of reduction

under the Reduce tactic. Although the term in the figure is correct and computes

reasonably when applied to ground terms, there is no obvious way to partially

evaluate the term on a non-ground argument without blowing up the term size

with every unfolding. The parts of the program we are not interested in are

contained in the right element of the pair computed by the program.

46

3.5.2 Minimization of the logical content

One idea to maintain the existential specification but to minimize the logical con-

tent is to hide most of the logical content in a set type.

* THM list all exists lemma 1

∀T:U. ∀P:T → P. ∀L:T List.

∃{p:P | ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])}. True

Proofs of this theorem still compute pairs but the right element of the pair is

simply the term Ax.

The following theorem justifies the elimination of the existential quantifier com-

pletely.

* THM exists iff set

∀T:U. ∀P:T → P. ∃{x:T | P[x]}. True ⇐⇒ {x:T | P[x]}

This lemma leads to the elimination of the existential quantifier in favor of the

set type.

3.5.3 A Refined Specification

The Nuprl set type was used above to define a subtype, but now we use it to discard

the unwanted computational content carried by proofs of specifications based on

the existential quantifier.

Replacing the existential quantifier by the set type as follows gives the type

we’re interested in.

* THM list all ext

∀T:U. ∀P:T → P. ∀L:T List.

{p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])}

47

At first sight this specification seems curious. Reading it literally it says

For every type T, every proposition on type T, and every T list, the

set of propositions p such that T [p] holds, is true.

Recall, the Nuprl logic is an encoding in the type theory via the Curry Howard

isomorphism; every statement in the logic is an encoding for type. Under the

propositions-as-types interpretation, truth corresponds to inhabitation, and so the

goal of every proof is to show that the encoded type is inhabited. The proof rules

for the set type are noticeably similar to those for dependent product, but the

extract of the set type does not include the proof that T [p] holds. The type of

this specification is the one we want.

T:U → P:(T → P) → L:T List → P

Having a statement of the theorem with the correct type and with the in-

tended meaning we must prove it in a way that generated the extract we are most

interested in. Specifically, we want to prove the theorem so that the extract is a

recursive function defined by letrec. We will return to the proof of the theorem

list all ext after developing the necessary mechanism.

3.5.4 List Induction Extracting letrec

Induction on lists is defined by the Nuprl inference rule listElimination. The

application of the rule generates the extract list ind defined above. The ListInd

tactic is used to apply the rule. Our goal is to develop a new list induction tactic

48

whose behavior mimics the ListInd tactic but having a recursion combinator

defined using letrec as its extract.

The following theorem captures the familiar list induction principle.

* THM list ind with y

∀T:U. ∀P:T List → P’.
P[[]] ⇒ (∀u:T. ∀v:T List. P[v] ⇒ P[u::v]) ⇒
(∀M:T List. P[M])

Since our goal is a specific extract, we explicitly provide the witness term we

are interested in.

λT,P,b,g.

letrec f (L) = if null(L) then b

else h::t = L in g(h)(t)(f(t))

fi

Given the witness, the remainder of the proof is a verification that the witness

term does indeed inhabit the type specified by the theorem. The proof is surpris-

ingly intricate although it is modeled on a similar induction principle developed

by Howe [How93] for natural numbers and having a recursion combinator defined

using Y as its extract.

A new tactic, ListIndY, facilitates the application of the induction principle.

ListIndY duplicates the behavior of the ordinary ListInd tactic in most contexts.

Taking as argument the hypothesis number of the induction variable, the tactic

constructs the induction proposition (the function P of type T → P) and then

instantiates the list ind with y lemma. The instantiation of the lemma generates

a number of well-formedness goals which are, in most contexts, easily discharged by

49

the Auto tactic. Of the three remaining goals, one corresponds to the base case, the

other to the induction step, and the third to the original sequent with the induction

principle fully instantiated as a hypothesis. This third subgoal is discharged by an

application of HypBackchain THEN Auto, leaving only two subgoals which match

those produced by the ListInd tactic.

Extracts of theorems proved with the ListIndY tactic refer indirectly to the

computational content of this theorem by mentioning ext{list ind with y}{i:l}.

An ML object extends the reduction system to automatically unfold the extract

when it is encountered by Reduce.

The context in which ListIndY does not behave as its counterpart ListInd is

when proving well-formedness goals. The ListIndY tactic cannot be used to show

well-formedness. This is because the instantiation of the list ind with y lemma

generates well-formedness subgoals for the induction proposition, and these will

essentially be identical to the original well-formedness lemma. However, this is

not a limitation to the methodology since well-formedness goals for abstractions

defined directly via extracted terms are trivially proved by appeal to the theorem

the abstractions are extracted from.

Application of the tactic will be shown in the next section when we return to

the proof of the list all ext theorem.

3.5.5 A proof and extract

In this section we step through the proof of list all ext until we’ve completed

as much as is required to generate the desired extract.

50

Recall the statement of the theorem (displayed here as a sequent with no hy-

potheses).

` ∀T:U. ∀P:T → P. ∀L:T List.

{p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])}

Stripping off the quantified variables results in the following sequent.

1. T: U
2. P: T → P
3. L: T List

` {p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])}

The proof is by induction on the list L so we apply the tactic ListIndY (-1),

which results in two subgoals.

The first is the base case where L has been replaced by the empty list [] in the

conclusion.

` {p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) []} . P[x])}

To complete the proof we must choose a witness for p. Noticing that x(∈eq)

[] is false, we see that the right side of the if and only if is vacuously true and so

we supply True as the witness for p. At this point the computational content on

this branch of the proof is complete. The resulting subgoal is to verify the logical

property that the proposition defining the set is indeed true when True substituted

for p.

The subgoal for the inductive case is the following.

4. u: T

5. v: T List

6. {p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) v} . P[x])}
` {p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) (u::v)} . P[x])}

51

Decomposing the induction hypothesis results in the following.

6. p: P
[7]. ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) v} . P[x])

` {p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) (u::v)} . P[x])}

Hypothesis 7 is a hidden hypothesis (denoted by the brackets) that cannot be

used to build computational content. But we construct the witness for the set type

in the conclusion without relying on 7. The variable p of hypothesis 6 corresponds

to the proposition that is true iff the specification holds for the list v. Thus, the

proposition P[u] ∧ p is the witness for the set type in the conclusion.

Once the witness is provided, the computational content is completed and the

hidden hypotheses can be used in the verification of the resulting logical property.

This unhiding is automatically done by the system in the proof step that provides

the witness. A key to making the proof go through is to decompose any set types

required for the verification so that the hidden hypotheses are exposed at the point

in the proof that the witness is provided.

The raw extract of this proof is the following term1.

λT,P,L.

(λ%1.(λ%2.%2(L))

((%1(T)(λ2L.{p:P| ∀eq:{T=2}. p ⇐⇒ (∀x:{x:T| x(∈eq) L} . P[x])})
(True)

((λu,v,%.(λ%1.P[u] ∧ %1)(%))))))

(ext{list ind with y}{i:l})

1Interested readers will note the second-order λ-term on the third line which
was generated by the ListIndY tactic.

52

One step of reduction under Reduce (extended with list ind with y unrollC

defined above) results in the following term.

λT,P,L.

(letrec f (L) = if null(L) then True

else h::t = L in P[h] ∧ f(t)

fi)(L)

This is exactly the program we are interested in, modulo renaming of the

recursion variable f.

3.5.6 Display forms, abstractions, and well-formedness the-

orems

To use the term just extracted in the same way the original list all operator is

used, we must define a display form, an abstraction (having the extracted term as

the definition), and a well-formedness theorem. The ML function add extract abs,

accepts a display-form template and the name of the theorem, and constructs

the display form and the abstraction; it also automatically constructs the well-

formedness goal and proves it by backchaining through the theorem generating

the extract. All arguments outside the scope of the application of letrec that

occur within the scope of the body of the letrec are made parameters of the ab-

straction. In practice this approach seems to work. Note that the first argument

T in the extract above does not occur in the body of the letrec and so is not

included as an argument of the generated abstraction.

The extract term can be directly used in contexts where a display form is

53

not required. It is referred to by entering the name of the theorem (in this case

list all ext) in a term slot. When used in this mode, the rewrite system can be

extended to include conversions for selectively unfolding and computing with the

extract whenever it is applied to arguments of the appropriate type.

3.6 Efficient Induction Schemes

Nuprl supports primitive recursive induction over the built-in types such as num-

bers and lists. It also supports induction on recursive types. Nuprl users also

extend the available forms of induction by proving new induction schemes in the

form of lemmas.

A type of well-founded binary relations over a type is defined in the Nuprl

standard library as follows.

*A wellfounded

WellFnd{i}(A;x,y.R[x; y]) ==

∀P:A → P.
(∀j:A. (∀k:A. R[k; j] ⇒ P[k]) ⇒ P[j]) ⇒

{∀n:A. P[n]}

Using a lemma stating, for instance, that WellFnd{i}(N;x,y.x < y), we can

apply the lemma to do well-founded induction on the natural numbers over the

ordinary less-than ordering. Nuprl4.2 provides tactic support doing these induc-

tions.

The following recursion scheme is an inhabitant of this type.

λP,g. (letrec f(n) = g(n)(λk,p. f(k)))

54

Here g corresponds to the computational content of the induction hypothesis.

In this scheme, g takes two arguments, the first being the principal argument

on which the recursion is formed, while the second argument to g is a function

inhabiting the proposition ∀k:A. R[k; j]⇒ P[k], i.e. a function which accepts

some element k of type A along with evidence for R[k;j] and which produces

evidence for P[j]. In the scheme, the evidence that R[k;j] holds takes the form

of the argument p to the innermost λ-binding. The variable p occurs nowhere else

in the term and does not contribute to the actual computation of P[j]; instead it

is a vestige of the typing. In the context of any complete proof, this argument will

be a term justifying R[k;j]. This term is not part of what one would ordinarily

consider part of the computation.

As an alternative, we have defined another notion of well-foundedness that

hides the ordering under R in a set type.

* ABS sq stable wellfounded

WF{i}(A;x,y.R[x; y]) ==

∀P:A → P.
(∀j:A. (∀k:{k:A| R[k; j]} . P[k]) ⇒ P[j]) ⇒

{∀n:A. P[n]}

This type can only usefully be applied in proofs when R is squash stable, hence

the name. However, it should also be noted that type equality is trivially squash

stable, as are the order relations numbers. Indeed, for program development, this

constraint on R seems not to matter since it is hard to imagine how a termination

ordering that is not squash stable could be applied.

Since the ordering relation is hidden in the right side of a set type, it cannot

55

contribute to the computational content. The recursion scheme extracted from a

proof of this type is nearly identical to the previous one, but the extra level of

lambda-abstraction is gone.

λP,g. (letrec f(n) = g(n)(λk. f(k)))

Using the sq stable wellfounded relation on natural numbers we are able to

define the following measure induction principle.

* THM measure ind

∀T:U. ∀ρ:T → N. WF{i}(T;x,y.ρ x < ρ y)

Extraction:

λT,ρ,P,g.(letrec f(n) = (g(n)(λk.f (k))))

Note that the measure function ρ does not occur in the body of the extract.

The proof of intuitionistic decidability presented below in chapter 5 is by induc-

tion on the lexicographic ordering of inverse images onto natural numbers. Using

a squash stable well-founded relation, we are able to define this induction scheme

as follows.

* THM lexicographic measure ind

∀T:U. ∀ρ,ρ’:T → N.

WF{i}(T;k,j.ρ k < ρ j ∨ (ρ k = ρ j ∧ ρ’ k < ρ’ j))

Extraction:

λT,ρ,ρ’,P,g.(letrec f(n) = (g n (λj.f j)))

It is interesting to note that the simplest proof for this induction principle (as

for instance given in [MW90]) is based on the least element principle. This principle

is the contrapositive of the standard definition of well-founded and therefore is not,

in general, constructively valid.

56

3.7 Related Work

The methodology presented in this section owes much to [How93]. In that paper,

Howe described verification and extraction methodologies applied to Boyer-Moore’s

fast majority algorithm in Nuprl 3. He developed a natural number induction

theorem having as its extract the recursion combinator defined by Y. Although

Howe mentions the possibility of using the set type to clean-up the extracts, he

did not do so there.

The Nuprl 4.2 int 1 library contains an induction lemma for complete induc-

tion, having as its extract a recursion combinator. The proof of that lemma was

based on Allen’s typing of Y and has served as a basis for the proofs of all the

well-founded induction lemmas presented above.

Paulson [Pau86a] presented a theory of well-founded relations for constructing

recursion schemes other than primitive recursion. In that paper he gives full details

of the proofs with the idea that they might be reused in provers for type theory

such as Nuprl. Interestingly, Paulson remarks that the only induction principle

of the Boyer and Moore prover, a system known among automated systems for

its inductive strength, is well-founded inductions over lexicographic products of

inverse images of <. This is our lexicographic measure induction.

Certainly it is well known in the Nuprl community how the set type can be

used to hide unwanted computational content. However, the approach has rarely

been applied in practice. Indeed, even in examples where the goal of the exercise

is to extract computational content [Con86, pg.86–93], they prefer the existential

57

quantifier to the set type and choose to project the first element of the pair.

The Calculus of Constructions is similar to Nuprl and the problem of extract-

ing clear programs from proofs in Coq has also been addressed there. The ap-

proach developed by Paulin-Mohring [Moh86, PM89] to allow the possibility of

clean extracts in Coq is based on separating “computationally informative” and

“non-informative” propositions by declaring them to either be of type Set or Prop.

If A is of type Prop, the elements of A are proofs which are ignored from the com-

putational view, and A is strictly logical. If A has type Set, then elements of A are

“program developments” from which Coq extracts programs that are correct with

respect to A. This duality of types provides a method of eliminating the parts of

the program corresponding to the logical specification.

PX [HN88] uses a similar approach based on separating non-computational con-

tent from computationally interesting content. This system of partitioning did not

apparently work in practice; in a later paper [Hay94] Hayashi motivates a new

system based on set types and intersection types by claiming the earlier was not

suitable for practical code development.

3.8 Remarks

The work reported on in this Chapter was motivated by need. In large proofs, it

often happens that the form of some subprogram is well known. In that case, the

existing Nuprl methodology works well in allowing the definition and verification

of the appropriate property. However, when development is driven from the proof

58

side, often, the logical specification is known but the implementation is not. In the

methodology developed here, extracted programs obtain the same status as verified

programs with respect to later use in other contexts of definition and proof.

We shown by example how to massage the statement of the theorem

list all exists lemma into a form of the correct type. The methodology has been

applied to define a number of abstractions being applied in a proof of propositional

intuitionistic decidability.

We have have developed tactics which generate proofs having letrec forms as

their extracts. The extracts of the theorems proved with the tactics coexist with

established Nuprl methodology for recursive functions.

Perhaps most surprisingly, the proof of the theorem using the set-type speci-

fication, list all ext, is identical to the proof for the existential version of the

lemma list all exists lemma. This seems to be generally true of pure proofs –

a natural pure proof of the existential form is identical to the natural proof of the

reformulated theorem with the set type replacing the existential quantifier. Note

that this does not hold for computationally explicit proofs that provide explicit

witnesses (a pair) to discharge an existential subgoal. The pair is not the of the

correct type to eliminate a set, and so the proof will fail if it is rerun on a restated

theorem where existential quantifiers have been changed to set type quantifiers.

The fact that pure proofs often rerun with no change suggests that in many

contexts, the existential quantifier, although it is the natural form, may be the

wrong one.

Chapter 4

Decidability of Classical

Propositional Logic

A formalization of a sequent presentation of classical propositional logic is de-

scribed in this chapter. The formalized mathematics is then used to produce a

fully formal proof of decidability. The program extracted from this proof is exceed-

ingly clear; indeed, it is the natural recursive program an experienced functional

programmer would naturally write. The extracted program is efficient in that no

artifacts of the proof remain in the extract. The extracted code has been run on

a number of examples.

The formal theories developed in support of the decidability proof were designed

to give as clear an account of the material as can be found in the best published

presentations, as for example in Smullyan [Smu68], Gallier [Gal86a] or Nerode and

Shore [NS94]. The proof of the main theorem presented in this chapter follows the

59

60

one outlined by Constable and Howe in [CH90]. However, the semantic base used

here is Kleene’s three-valued logic.

The Nuprl formalization of the syntax and semantics of the Nuprl logic is given

in the next section and the proof of decidability is given in the following section.

A analysis and discussion of the program extracted from the proof follows.

4.1 Type Theoretic Formalization

In this section the Nuprl definitions supporting the statement and proof of the

decidability theorem are presented. The syntax of propositional formulas is for-

malized using Nuprl’s recursive types. The semantic notion of a Kleene (partial)

valuation on formulas is also defined. This requires the development of a small

theory of three-element types as well as the definition of the logical operators of

Kleene’s strong three-valued logic. Kleene valuations are defined over three-valued

assignments using the operators. The semantics for formulas is then defined in

terms of Kleene valuations by giving definitions for formula satisfiability, formula

falsifiability and a unique definition of formula validity. Subsequently, a sequent

type is defined as the Cartesian product of lists of formulas. The semantics of

sequents is given by lifting the formula semantics in the natural way to define

sequent satisfiability, sequent falsifiability, and sequent validity.

The decidability theorem is stated and proved in the next section using these

definitions. The proof is by induction on the complexity of sequents where the

measure is the number of propositional operators occurring in the sequent. Thus,

61

the definition of sequent rank (defined in terms of formula rank) is also given here.

4.1.1 Variables and Formulas

The Nuprl formalization of the logic formulas is by a recursive type.

*A Formula

Formula
def
= rec(F.Var | F | (F × F) | (F × F) | (F × F))

The Formula type abstraction is defined to be the recursive type whose mem-

bers are a disjoint union of five elements. The first element of the disjoint union is

the uninterpreted type Var or propositional variables. Since the variable F, bound

by the rec-type operator, doesn’t occur in the first component, terms of the form

inl(x), where x is an element of the type Var, form the basis elements of the

recursive type. The second component of the disjoint union is an instance of the

bound variable F denoting a recursively smaller element of the formula type. The

third, fourth, and fifth elements of the disjoint union are the Cartesian products

(pairing) of two recursively smaller formulas. When the semantics of the propo-

sitional formulas is defined below it will become clear that the second disjunct of

the formula type denotes the negation of the formula F , and the pairs of formu-

las in the third, fourth, and fifth disjuncts denote the operators for conjunction,

disjunction, and implication.

It should be remarked that the recursive type applied to this purpose is exceed-

ingly efficient. Smullyan devotes three pages to this. The recursive type definition

of syntax gives the uniqueness of decomposition for free since the rec type auto-

matically supports structural induction on elements of the type.

62

For concreteness, the variables are defined to be Nuprl atoms, however, any

discrete type will do.

4.1.1.1 Constructors

To facilitate manipulation of the type Formula, a collection of constructors and a

destructor are defined. The constructors and their well-formedness theorems are

as follows.

*A fvar dxe def
= inl x

*T fvar wf ∀x:Var. (dxe ∈ Formula)

*A fnot (d∼ep)
def
= inr inl p

*T fnot wf ∀p:Formula. (d∼ep ∈ Formula)

*A fand (pd∧eq)
def
= inr inr inl <p,q>

*T fand wf ∀p,q:Formula. (pd∧eq) ∈ Formula

*A for (pd∨eq)
def
= inr inr inr inl <p,q>

*T for wf ∀p,q:Formula. (pd∨eq) ∈ Formula

*A fimp (pd⇒eq)
def
= inr inr inr inr <p,q>

*T fimp wf ∀p,q:Formula. (pd⇒eq) ∈ Formula

Thus, the term (((dxed⇒edye)d⇒edxe)d⇒edxe) is a formula.

A formula of the form dxe, where x denotes an element of type Var, will be

called an atomic formula (or simply atomic) and all others are called non-atomic

formulas.

4.1.1.2 Case analysis

The formula case operator defined below is the destructor for the Formula type.

It is defined using nested case analysis on the disjoint union type. A nested series

63

of decide operators gives the case analysis for the type Formula. The definition

is as follows:

*A formula case

case F:
dxe → varC[x];
d∼ep1 → notC[p1];

p2d∧ep3 → andC[p2; p3];

p4d∨ep5 → orC[p4; p5];

p6d⇒ep7→impC[p6; p7];
def
=

decide F of

inl(x) => varC[x]

| inr(F) => decide F of

inl(p1) => notC[p1]

| inr(F) => decide F of

inl(x) => let p2,p3 = x in andC[p2; p3]

| inr(F) => decide F of

inl(x) => let p4,p5 = x in orC[p4; p5]

| inr(x) => let p6,p7 = x in impC[p6; p7]

In the abstraction, the display slots contain occurrences of the second-order

variables varC[x], notC[p1], andC[p2;p3], orC[p4;p5] and impC[p6,p7]. In

an instantiation of the formula case operator, terms, possibly containing free oc-

currences of the bracketed variables, are substituted for the variables. The brack-

eted variables are are bound by the names to the left of the →.

As an example use of the operator we define a function which collects the

principal subformulas of a formula into a list.

64

*A principal subformula

principal subformula(F)
def
= case F:

dye → [];
d∼ep → (p::[]);

pd∧eq → (p::q::[]);

pd∨eq → (p::q::[]);

pd⇒eq → (p::q::[]);

In this instantiation of the formula case operator, the display-form variable x

is bound to y and the term denoting the empty list ([]) is bound to the second-

order variable varC[y]. In the second case, the variable p1 is bound to p and the

term (p::[]) is bound to the second-order variable notC[p]. The other cases are

similarly explained. Thus, for a formula F,

principal subformula(d∼eF) .R F::[]

e.g. under the computation system extended to include the behavior of the

principal subformula operator, principal subformula(d∼eF) evaluates to the

list containing the single formula F.

4.1.1.3 Formula rank

Having defined the type Formula and the supporting constructors and destructor,

we define a well-founded measure on formulas. The following measure function, a

count of the number of operators in a formula, is the simplest and most natural

ordering to consider.

65

*A formula rank ρ
def
=

letrec measure(f) =

case f:
dxe → 0;
d∼ep → (measure(p) + 1);

pd∧eq → (measure(p) + measure(q) + 1);

pd∨eq → (measure(p) + measure(q) + 1);

pd⇒eq → (measure(p) + measure(q) + 1);

The well-formedness theorem for the formula rank function certifies it is a

function from formulas to natural numbers.

*T formula rank wf ρ ∈ Formula → N

4.1.2 Semantics

In standard treatments of decidability (and completeness) for classical proposi-

tional logic, for example as found in Mendelson [Men79], truth assignments are

total functions mapping the (countably infinite) propositional variables onto the

Booleans. Smullyan [Smu68] considers finite functions mapping the set of variables

occurring in a formula (or set of formulas) onto the Booleans. In both presenta-

tions it as shown how assignments uniquely determine Boolean valuations. The

decision procedure developed here not only determines whether a propositional

sequent (to be defined below) is valid, but in the case the sequent is not valid, it

returns a falsifying assignment. In the natural development, falsifying assignments

generated by the decision procedure are finite functions and, furthermore, their

66

domains may not even include all variables occurring in the sequent. Thus, the

formal development must either account for an arbitrary extension of the domain

of a partial falsifying assignment to include all variables occurring in the sequent,

or the notion of partial assignments must be accounted for in the semantics. The

second approach is developed here.

We define the semantics of propositional logic in terms of Kleene’s strong three-

valued logic [Kle52]. A Kleene valuation reflects the classical interpretations of

the standard propositional connectives under fully determined assignments (those

assigning true or false to every variable in the formula); but also, when a partial

assignment has “enough information” to determine the truth or falsity of a formula,

the Kleene valuation induced by it does as well. This strategy is sometimes called

“short circuit evaluation”. For example, if either conjunct of the formula p∧Kq is

false under the Kleene valuation induced by a partial assignment a, then p∧Kq is

false under the valuation too. It does not matter what value the other conjunct

has, or even if it is defined. Under all extensions of a, the valuation of p∧Kq is

false. Thus, once determined, an assignment remains fixed. Similar rules apply for

the other operators which are formally defined below.

To proceed with the formalization in Nuprl we first define a three-valued type.

4.1.2.1 A three-element type

There are a number of ways to formalize a three element type e.g. N2. Here we

choose to use a three-way disjoint union.

*A Three 3
def
= Unit | Unit | Unit

67

The single element of Unit, called “dot”, is displayed as ‘·’. Thus, 3 is the

type containing the injections of · into the first, second, or third components of

the three part disjoint union. We provide names and display forms for each of the

three elements below.

*A Three false F3
def
= inl ·

*A Three undef ?3
def
= inr inl ·

*A Three true T3
def
= inr inr ·

A case discriminator for the three-valued type is also defined.

*A Three case

case x: F3 → case0; ?3 → case1; T3 → case2;
def
=

decide x of

inl(zero) => case0

| inr(one or two) =>

decide one or two of

inl(one) => case1

| inr(two) => case2

Continuing with the development of the theory, we define two tactics: ThreeInd

and ThreeNEQ. Following the convention used in the Nuprl V4 tactics, we name

the tactic that does the case analysis on the type 3, ThreeInd.1

H, (i) x:3, H ′ >> C[x] by ThreeInd i

H, H ′[F3/x] >> C[F3/x]

H, H ′[?3/x] >> C[?3/x]

H, H ′[T3/x] >> C[T3/x]

1To read the rule-like characterization of the tactic: the top line is the goal
sequent and the indented lines below it are the three subgoals generated by appli-
cation of ThreeInd to hypothesis number i in the goal.

68

If a variable x is declared to be of type 3 in hypothesis i of a Nuprl sequent,

the application of the tactic ThreeInd i generates three subgoals, one for each of

the three elements of the type. The subgoals are formed by substituting one of F3,

?3, or T3 for occurrences of the variable x in the hypotheses to the right of x in

the hypothesis list and in the goal of the sequent. The raw extract generated by

application of the ThreeInd tactic is of the following form.

decide x of

inl(x1) => Ext0

| inr(y) => decide y of

inl(x) => Ext1

| inr(y1) => Ext2

Here, Ext0, Ext1, and Ext2 denote the extracts of the proofs of the three subgoals

generated by the tactic. Observing that this term schema is an instance of the

Three case abstraction defined above, we will use the following tidied version,

formed by folding the abstraction Three case, when displaying the extract:

case x: F3 → Ext0; ?3 → Ext1; T3 → Ext2;

The tactic ThreeNEQ solves goals (generating no subgoals) of the following form,

H, (i) a = b ∈ 3, H ′ >> C by ThreeNEQ i

where a and b are different constants of type 3 and hypothesis (i) falsely

asserts their equality. The extract generated by the application of the tactic is a

term which, applied to any argument, returns the constant Axiom. The raw extract

and its reduction are shown here:

λ%.(λ%1.Axiom) Axiom .R λ%.Axiom

69

The following theorem asserts 3 is a discrete type, that is, that the equality on

3 is decidable. This theorem is the first having a proof with interesting compu-

tational content. Since it is the first such proof, we examine it and its extracted

term in some detail.

*T decidable equal Three

∀x,y:3. Dec{x = y ∈ 3}

The first step of the proof is the elimination of the outermost universal quan-

tifiers by the tactic UnivCD THENA Auto. This yields the following Nuprl sequent.

1. x: 3

2. y: 3

` Dec{x = y ∈ 3}

The extract resulting from this proof step has the form λx,y.Ext, where Ext

is the extract of the proof of resulting subgoal.

The next step in the proof is case analysis on x and then on y. Two applications

of the ThreeInd tactic accomplish this. This results in nine subgoals.

1* ` Dec{F3 = F3 ∈ 3}
2* ` Dec{F3 = ?3 ∈ 3}
3* ` Dec{F3 = T3 ∈ 3}
4* ` Dec{?3 = F3 ∈ 3}
5* ` Dec{?3 = ?3 ∈ 3}
6* ` Dec{?3 = T3 ∈ 3}
7* ` Dec{T3 = F3 ∈ 3}
8* ` Dec{T3 = ?3 ∈ 3}
9* ` Dec{T3 = T3 ∈ 3}

70

The extract resulting from this step will be nested occurrences of the Three case

operator with the first splitting on x and the second on y.

Each of the nine cases is easily proved. Recall that Dec{P} is the constructive

disjunction P∨¬P. To prove cases 1, 5, and 9, the first disjunct is selected, which

in turn is discharged by the Auto tactic. Equality terms viewed as types, when

true, have as their inhabitants the single element denoted by the constant Axiom.

The proofs of each of these three cases contribute the extract inl(Axiom) to their

respective case splits.

In the six other cases, the equality is false; to prove the theorem, the second

disjunct is chosen, resulting in a subgoal having the negated form of the equality

as its consequent. Eliminating the negation results in a false hypothesis which is

then discharged by the ThreeNEQ tactic. The proofs of these six cases contribute

the extract inr(λ%.Axiom) to the corresponding case.

The extract of the entire proof is a term deciding if two elements of the type

3 are in fact equal.

λx,y. case x: F3 → case y: F3 → inl(Axiom) ;

?3 → inr(λ%.Axiom) ;

T3 → inr(λ%.Axiom) ;;

?3 → case y: F3 → inr(λ%.Axiom) ;

?3 → inl(Axiom) ;

T3 → inr(λ%.Axiom) ;;

T3 → case y: F3 → inr(λ%.Axiom) ;

?3 → inr(λ%.Axiom) ;

T3 → inl(Axiom) ;;

Thus, to decide x = y ∈ 3 it is enough to apply the function to x and y and

71

then to observe whether it returns a left or right injection; the content under the

inl or inr is not used. This function is evidence for the proposition that the type

is discrete.

4.1.2.2 Kleene’s Strong Three-Valued Logic

In this section the operators of Kleene’s three-valued logic are defined over the

type 3. Inspection of the definitions below reveals that on inputs restricted to

F3 and T3 (which are to be interpreted as false and true respectively and will

often be referred to as such below), the operators behave exactly as the familiar

boolean operators of the same names. More technically, following Kleene [Kle52],

we may say these operators are uniquely determined as the strongest possible

regular extensions of the classical 2-valued operators.

*A K not ∼K p == case p: F3→ T3;

?3→ ?3;

T3→ F3;

Thus, for negation the undefined value ?3 is a fixedpoint and, as is the case for

the other Kleene operators, on the values F3 and T3 the Kleene operator reflects

the behavior of its two-valued counterpart.

For a conjunction, in the case that one of p or q is false then the conjunct p∧Kq

is false too. A conjunction is undefined either if one of the conjuncts is true and

the other is undefined or if they’re both undefined. It is true otherwise.

72

*A K and p ∧K q
def
= case p: F3→ F3;

?3→ case q: F3→ F3;

?3→ ?3;

T3→ ?3;;

T3→q;

For disjunctions, if one of p or q is true then the disjunction p∨Kq is too. It

is undefined either if one disjunct is false and the other is undefined or if both

disjuncts are undefined. It is false otherwise.

*A K or p ∨K q
def
= case p: F3→ q;

?3→ case q: F3→ ?3;

?3→ ?3;

T3→ T3;;

T3→ T3;

For an implication p⇒Kq, if either p is false or q is true then the implication is

true as well. An implication is undefined if p is true and q is undefined or if both

p and q are undefined. A Kleene implication is false otherwise.

*A K imp p ⇒K q
def
= case p: F3→ T3;

?3→ case q: F3→ ?3;

?3→ ?3;

T3→ T3;;

T3→ q;

The well-formedness theorems for the Kleene operators exhibit their closure

over the type 3.

*T K not wf ∀p:3.(∼K p ∈ 3)

*T K and wf ∀p,q:3.(p ∧K q ∈ 3)

*T K or wf ∀p,q:3.(p ∨K q ∈ 3)

*T K imp wf ∀p,q:3.(p ⇒K q ∈ 3)

73

4.1.2.3 Assignments and Kleene Valuation

The type of three-valued assignments is defined as follows.

*A Assignment: Assignment
def
= Var → 3

The valuation function recursively computes the Kleene valuation of the for-

mula F under a partial assignment a. The valuation of F under assignment

a (displayed as (F under a)) is defined as follows.

*A valuation

(F under a)
def
= (letrec val f =

case f:
dxe → (a x);
d∼ep → ∼K val p;

pd∧eq → val p ∧K val q;

pd∨eq → val p ∨K val q;

pd⇒eq → val p ⇒K val q;

) F

The abstraction is defined by the application of the recursive procedure val to

the formula F. The body of the recursive procedure is defined via case analysis on

the parameter f. In the base case, the formula f is a formula of the form dxe, then

the result is the value returned by the application of assignment a to the variable

x. If f is a non-atomic formula, the valuation is computed by applying the corre-

sponding Kleene operator to the recursively computed values of the subformulas

of f.

As expected, the well-formedness theorem for the valuation operator says it’s

an element of the type 3.

74

*T valuation wf ∀a:Assignment.∀F:Formula.((F under a) ∈ 3)

4.1.2.4 Satisfaction and Falsification of Formulas

Using the Kleene valuation we define the semantic notion of a formula being sat-

isfied (falsified) by an assignment a.

*A formula sat a |= F
def
= (F under a) = T3 ∈ 3

*A formula falsifiable a |6= F
def
= (F under a) = F3 ∈ 3

Thus, a formula F is satisfied by assignment a (written a |= F) when (F under

a) evaluates to T3. Similarly, a formula F is falsified by assignment a (written a

|6= F when (F under a) evaluates to F3.

The satisfiability (or falsifiability) of a formula under an assignment is clearly

a decidable property; to decide if a formula is satisfied (falsified) by a, evaluate

(F under a) and check whether the result is equal to T3 (F3). This property is

captured by the following theorems.

*T decidable formula sat:

∀a:Assignment. ∀F:Formula. Dec{a |= F}
Extraction:

λa,F.((λ%1.%1 (F under a) T3) ext{decidable equal Three})
*T decidable formula falsifiable:

∀a:Assignment. ∀F:Formula. Dec{a |6= F}
Extraction:

λa,F.((λ%1.%1 (F under a) F3) ext{decidable equal Three})

The functions extracted from the formal proofs reflect the informal argument

just given, i.e. they accept as arguments an assignment a and a formula F and

75

then apply the decision procedure for equality over 3 to the terms (F under

a) and T3 (F3). The function deciding equality over 3 is referred to by the

term ext{decidable equal Three}, which denotes the extract of the theorem of

the same name. Reference to the extract of a previously proved lemma arises by

reference to the previously proved lemma in the proof.

Some useful lemmas follow immediately from the definitions of satisfiability

and falsifiability. These lemmas relate semantic notions with syntactic structure

by characterizing the satisfiability (or falsifiability) of a formula in terms of its

subformulas.

*T formula not sat lemma

∀F:Formula. ∀a:Assignment
a |= d∼eF ⇐⇒ a |6= F

*T formula not falsifiable lemma

∀F:Formula. ∀a:Assignment.
a |6= d∼eF⇐⇒ a |= F

*T formula and sat lemma

∀a:Assignment. ∀q:Formula. ∀r:Formula.
a |= qd∧er ⇐⇒ a |= q ∧ a |= r

*T formula and falsifiable lemma

∀a:Assignment. ∀q,r:Formula.
a |6= qd∧er⇐⇒ a |6= q ∨ a |6= r

*T formula or sat lemma

∀a:Assignment. ∀q,r:Formula.
a |= qd∨er ⇐⇒ a |= q ∨ a |= r

*T formula or falsifiable lemma

∀a:Assignment. ∀q,r:Formula.
a |6= qd∨er⇐⇒ a |6= q ∧ a |6= r

76

*T formula imp sat lemma

∀a:Assignment. ∀q,r:Formula.
a |= qd⇒er ⇐⇒ a |6= q ∨ a |= r

*T formula imp falsifiable lemma

∀a:Assignment. ∀q,r:Formula.
a |6= qd⇒er⇐⇒ a |= q ∧ a |6= r

These lemmas are proved by unfolding the definitions of formula sat and

formula falsifiable and then case analysis. These characterizations have been

shown to hold in both directions (⇐⇒) but are typically applied as rewrites in a

left to right form (⇒).

4.1.2.5 Reconciling classical semantics with Kleene semantics

In this section we show that the use of the semantics based on the three-valued

Kleene valuation coincides with the standard two-valued semantics.

Given assignments a’ and a, we define the restriction of a’ to a, denoted

(a’↓a), to be the assignment that is undefined (i.e. equal to ?3) whenever a is

undefined. The formal definition is as follows.

*A restriction

a’↓a def
= λx.case (a x): F3 → (a’ x); ?3 → ?3; T3 → (a’ x);

The well-formedness theorem establishes that a’↓a is in fact an assignment.

*T restriction wf

∀a,a’:Assignment. (a↓a’ ∈ Assignment)

If the restriction of an assignment a’ to an assignment a is identical with a,

we say a’ is an extension of a or a’ extends a. We formalize this notion in the

following abstraction.

77

*A extension a’ extends a
def
= a’↓a = a ∈ Assignment

The well-formedness goal for the the definition asserts that it is indeed a propo-

sition.

The following lemma characterizes the notion of extension and verifies the main

property of interest; specifically, if a’ extends a then a’ and a agree on every

variable for which a is defined.

*T extension lemma

∀a,a’:Assignment
a’ extends a ⇒

(∀x:Var. ¬((a x) = ?3 ∈ 3) ⇒ ((a x) = (a’ x) ∈ 3))

Having formally defined the notion of one assignment being an extension of

another, we can state a theorem justifying the Kleene valuation semantics with

respect to the standard two-valued semantics.

*T assignment monotone

∀a,a’:Assignment
∀F:Formula

a’ extends a ⇒
(a |= F ⇒ a’ |= F) ∧ (a |6= F ⇒ a’ |6= F)

The lemma is proved by induction on the structure of the formula F. It tells us

that any assignment extending a satisfying (falsifying) assignment for a formula

F is also a satisfying (falsifying) assignment of F. Extensions of partial assignments

not having the value ?3 in their range comprise the standard two-valued assign-

ments, thereby justifying our use of three-valued semantics based on the Kleene

operators.

78

4.1.2.6 Fullness and Validity

Although we are ultimately interested in determining the validity of sequents,

introducing the concepts of fullness and validity in relation to formulas first is

worthwhile. The definitions presented in this section are not used in the decid-

ability proof itself but do serve to illustrate fullness and validity in the simpler

context of formulas. These definitions are used to prove a theorem characterizing

the relationship between validity of formulas and validity of sequents.

In two-valued semantic presentations, a formula F is said to be valid when

∀a : Assignment. a |= F.

However, under this definition there are no valid sentences of Kleene’s three-valued

logic. To see why, consider the constant assignment (λx.?3); examination of

the matrices for the Kleene operators shows that no formula is true under this

assignment. Thus, if validity requires a formula to be true under every Kleene

valuation, there are no valid formulas. Validity was not at issue for Kleene, who

used the logic for reasoning about partial recursive predicates; for us, an acceptable

notion of validity is crucial.

Toward this end we will say an assignment is full for a formula F if the assign-

ment either satisfies F or falsifies F. For example, let a be the assignment that

maps variable x to the value T3 and maps all other variables to the undefined

value, ?3. Then (dxe under a) evaluates to T3 and so satisfies the formula dxe;

a is full for the formula dxe. On the other hand, (dxed⇒edye under a) evaluates

79

to (dye under a) which in turn valuates to ?3 , and thus a is not full for the

formula dxed⇒edye. This notion of fullness allows for consideration of only those

assignments that contain “enough information” to completely determine the value

of a formula. In the formalization, full assignments are defined as a subtype of

Assignment.

*A full formula assignment

Full(F)
def
= {a:Assignment| (a |= F ∨ a |6= F)}

Thus, Full(F) is the type of assignments satisfying the fullness predicate for

formula F.

It was shown above that formula sat and formula falsifiable are decidable

properties; hence, for any formula F and any assignment a, it can be uniformly

decided whether a is in the type Full(F) or not. In general, if the defining

predicate of a set type is decidable, we may disregard the restrictions on the use of

the properties specified by the defining predicate. The following property lemma

is used by the Nuprl decomposition tactics to decompose full assignments.

*T full formula assignment properties

∀F:Formula. ∀a:Full(F). a |= F ∨ a |6= F

This lemma is proved by eliminating the outermost quantifiers and then de-

composing the type Full(F). This results in the following sequent.

1. F:Formula

2. a: Assignment

[3]. a |= F ∨ a |6= F

` a |= F ∨ a |6= F

80

Hidden hypotheses are labeled hidden by the square brackets surrounding their

hypothesis numbers.

The proof is trivial if hypothesis 3 can be unhidden. To do this we assert its

decidability, which results in two subgoals: one to show that the disjunction is

in fact decidable; and the second to show the original goal under the additional

hypothesis of decidability of the disjunct. The first subgoal is reduced to trivial

subgoals by the ProveDecidable tactic, which establishes the decidability of the

disjunct using a lemma in the library characterizing when disjunctive formulas are

decidable (i.e. whenever the principal sub-terms are too). The second subgoal

generated by asserting dec{a |= F ∨ a |6= F} is discharged by applying the

UnhideHyp tactic to the hidden hypothesis. This results in a subgoal requiring us

to show that the decidable predicate is squash stable which in turn is discharged by

applying the ProveSqStable tactic, completing the proof of the properties lemma.

Using the definition of fullness just given, we formalize the notion of validity

as follows.

*A formula valid |= F
def
= ∀a:Full(F). a |= F

Thus, a formula is valid when it is satisfied by every full assignment. If an

assignment contains enough information to determine the truth or falsity of a

formula and every such assignment corroborates the truth of the formula then the

formula is valid.

81

4.1.3 Sequents

Sequents are formalized as pairs of lists of formulas; of course, other options are

possible, pairs of bags (multi-sets) of formulas chief among them.

*A Sequent: Sequent
def
= Formula list × Formula list

Another trivial inclusion lemma is provided for the type checking tactics.

*T Sequent inc: Sequent ⊆ (Formula list × Formula list)

A functional interface is provided for decomposing sequents into the hypothesis

and conclusion lists by the H and C abstractions.

*A H: s.H
def
= let h,c = s in h

*A C: s.C
def
= let h,c = s in c

4.1.3.1 Sequent Rank

Before defining a measure on sequents we define the rank of a list of formulas; it

is simply the sum of the ranks of the formulas occurring in the list.

*A list rank ρ
def
= λL.reduce((λx,y.(ρ(x) + y));0;L)

*T list rank wf ρ ∈ (Formula list → N)

This definition uses the reduce operator on lists, which accepts three argu-

ments: a two argument function which is associative; an identity for the oper-

ator; and a list. Note that we have not distinguished the display forms for the

formula rank function (which is used within the definition of the right associative

82

operator) and the list rank function being defined here; they share the same dis-

play in the system as well. The same display is used for the sequent rank function

defined below. It is clear from the context which operator is being used and, in

the system, should it be confusing at any point which operator a display denotes,

a click of a mouse button distinguishes them.

A useful property of list rank is that it, in some sense, “distributes” over list

append (denoted in infix notation here by @). More formally we say list rank is

homomorphic with respect to append and addition. Of course this property can

be formulated more abstractly in that any right associative operation (addition in

this case) iteratively applied to list is homomorphic with the append operator; the

following theorem is a special case of that fact and is useful in the decomposition

of ranked lists.

*T list rank append homomorphism

∀M,N:Formula list. ρ(M @ N) = (ρ(M) + ρ(N)) ∈ N

Using the list rank just defined, the rank of a sequent is simply defined to be

the sum of the ranks of the hypothesis and conclusion lists.

*A sequent rank ρ
def
= λS.(ρ(S.H) + ρ(S.C))

*T sequent rank wf ρ ∈ (Sequent → N)

We call sequents having rank 0 atomic sequents.

4.1.3.2 Sequent satisfiability and falsifiability

In this section the semantics of sequents is given. First, the meaning of a sequent

is given in informal mathematical terms and then this definition is translated into

the three-valued model being developed here.

83

A sequent S is of the form 〈[H1, H2, . . . , Hn], [C1, C2, . . . , Cm]〉, where

[H1, . . . , Hn] and [C1, . . . , Cm] are lists of formulas corresponding to the hypoth-

esis and conclusion respectively. S is interpreted to be true precisely when the

conjunction of the hypotheses implies the disjunction of the conclusions.

(H1 ∧ · · · ∧Hn) ⇒ (C1 ∨ · · · ∨ Cm)

Adopting the convention that an empty conjunction denotes truth and the empty

disjunction denotes falsity, the sequent 〈[H1, . . . , Hn], []〉 means ¬H1 ∨ · · · ∨ ¬Hn,

〈[], [C1, . . . , Cm]〉 means C1 ∨ · · · ∨Cm, and the empty sequent, 〈[], []〉, denotes an

unsatisfiable sequent.

The discussion above follows the standard presentation for a two-valued se-

mantics of sequents; here however, as for formula above, we are interested in the

satisfaction of sequents under Kleene valuations induced by partial assignments.

Adapting the discussion above to the analogous definition under Kleene interpre-

tation, which we’ve already defined for formulas, we find the following.

A partial assignment a satisfies a sequent 〈[H1, . . . , Hn], [C1, . . . , Cm]〉 if and

only if

a |= (H1 d∧e · · · d∧eHn) d⇒e (C1 d∨e · · · d∨eCm)

where |= is the formula satisfaction relation defined above using the Kleene inter-

pretation induced by a. Similarly, an assignment falsifies a sequent of the form

84

〈[H1, . . . , Hn], [C1, . . . , Cm]〉 if and only if

a 6|= (H1 d∧e · · · d∧eHn) d⇒e (C1 d∨e · · · d∨eCm)

These definitions could be formalized as presented and would serve to define

the semantic notions of sequent satisfiability, sequent falsifiability and sequent va-

lidity; however, the properties of the operators for conjunction, disjunction and

implication under the Kleene valuation suggest a computationally simpler charac-

terization. Under the definition above, a sequent is satisfiable under an assignment

a either when there is some hypothesis that is falsified by a or there is some formula

in the conclusion that is satisfied by a. This suggests the following definition.

*A sequent satisfiable

a |= S
def
= ∃F∈S.H.a |6= F ∨ ∃F∈S.C.a |= F

Similarly, a sequent S is falsifiable under an assignment a if every hypothesis

of S is satisfied by a and every conclusion of S is falsified by a. Again, this is the

formal definition adopted here.

*A sequent falsifiable

a |6= S
def
= ∀F∈S.H.a |= F ∧ ∀F∈S.C.a |6= F

These definitions exhibit the first use of the bounded list quantification oper-

ators. The list existence quantifier is non-void (true) if, for any member x of the

list L, the predicate P[x] is non-void. Thus, for empty lists it is false. Similarly,

the list forall quantifier is true if every x in L satisfies P[x]. For the empty list,

the quantifier is vacuously true.

85

It can effectively be decided whether a sequent is satisfied or falsified by an

assignment; this follows from the decidability of the same properties for formulas.

These facts are captured in the following two decidability theorems.

*T decidable sequent satisfiable:

∀S:Sequent. ∀a:Assignment. Dec{a |= S}
*T decidable sequent falsifiable:

∀S:Sequent. ∀a:Assignment. Dec{a |6= S}

4.1.3.3 Full Sequent Assignments and Sequent Validity

Fullness for a formula is now defined for sequents.

*A full sequent assignment

Full(S)
def
= {a:Assignment| (a |= S ∨ a |6= S)}

Again, we provide a trivial sub-typing lemma and a properties lemma for use

by the decomposition tactics.

*T full sequent assignment inc

∀S:Sequent. Full(S) ⊆ Assignment

*T full sequent assignment properties

∀S:Sequent. ∀a:Full(S). a |= S ∨ a |6= S

Validity can now be defined with respect to fullness.

*A sequent valid |= S
def
= ∀a:Full(S). a |= S

If sequent validity has the relationship to formula validity we expect, then for

every formula F, the sequent 〈[],F::[]〉 should be valid precisely when F itself

is. This is captured by the following theorem which is easily proved by unfolding

86

the definitions for sequent validity and formula validity, followed by some steps of

computation.

*T formula valid iff sequent valid

∀F:Formula. |= F ⇐⇒ |= <[],F::[]>

4.2 Decidability

Our goal is to prove decidability of propositional logic, i.e. to show that we can

decide if a propositional sequent is valid. The most natural formalization of the

theorem would simply say

∀S:Sequent. |= S ∨ ¬(|= S)

A proof of this theorem would yield a function accepting a sequent as an ar-

gument and then returning an inl term or an inr term, depending on whether

the sequent was valid or not. But we know a proposition is not valid if and only if

there is some full assignment which falsifies it.

∀S:Sequent.¬(|= S) ⇐⇒ (∃a:Assignment. a|6= S).

Using this logically equivalent form of unsatisfiability we state a computation-

ally stronger version of the decidability theorem.

∀S:Sequent. |= S ∨ (∃a:Assignment. a |6= S)

That is, every sequent is either valid or there exists an assignment which falsifies

it. The revised version of the theorem is stronger in the sense that we extract more

interesting computational content from its proof. A witness for the theorem is a

function of type

87

S:Sequent → (|= S | a:Assignment × a |6= S)

Thus, a constructive proof of this theorem results in a function accepting a

sequent S as its argument and returning one of inl(t) or inr(〈a,e〉). The term

t under the injection inl has little interest for us and so we squash it; however,

the first element of the pair 〈a,e〉 under the inl injection is most interesting. It

is an assignment falsifying the proposition. This assignment provides diagnostic

information telling exactly when the proposition is false. We have formalized the

semantics in terms of partial assignments to be able to refine the information

content in the falsifying assignment further: depending on the form of the proof,

the falsifying assignment returned by the procedure can be minimal in the sense

that only those variables contributing to the falsification of the formula are assigned

one of true or false, all others are left undefined. Of course, this depends on

the form of the proof; it is shown below where the partiality plays a part.

Modifying the statement of the theorem to eliminate the computationally un-

interesting parts of the extract results in the following theorem.

*THM propositional decidability

∀S:Sequent. ↓(|= S) ∨ {a:Assignment | a |6= S}

In Chapter 5, a proof type is formalized and formal proofs are returned in the

case that an intuitionistic sequent is valid; although we have not done it, the same

approach could be duplicated here.

88

4.2.1 A Sequent Proof System for Classical Propositional

Logic

Consider the propositional proof system shown in Figure 4.1.

M, q,N ` M ′, q, N ′

M, N ` p, concl
M, d∼ep, N ` concl

p, hyp `M, N

hyp `M, d∼ep, N

q, r, M, N ` concl
M, qd∧er, N ` concl

hyp ` q, M, N hyp ` r, M, N

hyp `M, qd∧er, N

q, M, N ` concl r, M, N ` concl
M, qd∨er, N ` concl

hyp ` q, r, M, N

hyp `M, qd∨er, N

M, N ` q, concl r, M, N ` concl
M, qd⇒er, N ` concl

q, hyp ` r, M, N

hyp `M, qd⇒er, N

Figure 4.1: Proof System for Classical Propositional Logic

Recall that a sound rule preserves validity, i.e. the validity of its premises

implies the validity of its conclusion. A proof rule is said to be invertible when

every assignment satisfying the conclusion also satisfies all the premises. For the

rules used here, if any premise of an invertible rule is falsified by a given three-

valued assignment, then the conclusion is falsified by the same assignment.

Each of the proof rules has been formally shown to be both sound and invertible.

Negation on the left

*T formula not left sound

∀concl,M,N:Formula list. ∀p:Formula.
|= <M @ N,p::concl> ⇒ |= <M @ (d∼ep::N),concl>

89

*T formula not left invertible

∀concl,M,N:Formula list. ∀p:Formula. ∀a:Assignment.
a |6= <M @ N,p::concl>⇐⇒ a |6= <M @ (d∼ep::N),concl>

Conjunction on the left

*T formula and left sound

∀concl,M,N:Formula list. ∀q,r:Formula
|= <q::r::M @ N,concl> ⇒ |= <M @ (qd∧er::N),concl>

*T formula and left invertible

∀concl,M,N:Formula list. ∀q,r:Formula. ∀a:Assignment.
a |6= <q::r::M @ N,concl>⇐⇒ a |6= <M @ (qd∧er::N),concl>

Disjunction on the left

*T formula or left sound

∀concl,M,N:Formula list. ∀q,r:Formula
|= <q::M @ N,concl> ⇒ |= <r::M @ N,concl>

⇒ |= <M @ (qd∨er::N),concl>

*T formula or left invertible

∀concl,M,N:Formula list. ∀q,r:Formula. ∀a:Assignment
a |6= <q::M @ N,concl> ∨ a |6= <r::M @ N,concl>

⇐⇒ a |6= <M @ (qd∨er::N),concl>

Implication on the left

*T formula imp left sound

∀concl,M,N:Formula list. ∀q,r:Formula
|= <M @ N,q::concl> ⇒ |= <r::M @ N,concl>

⇒ |= <M @ (qd⇒er::N),concl>

*T formula imp left invertible

∀concl,M,N:Formula list. ∀q,r:Formula. ∀a:Assignment
a |6= <r::M @ N,concl> ∨ a |6= <M @ N,q::concl>

⇐⇒ a |6= <M @ (qd⇒er::N),concl>

90

Negation on the right

*T formula not right sound

∀hyp,M,N:Formula list. ∀p:Formula.
|= <p::hyp,M @ N> ⇒ |= <hyp,M @ (d∼ep::N)>

*T formula not right invertible

∀hyp,M,N:Formula list. ∀p:Formula. ∀a:Assignment.
a |6= <p::hyp,M @ N>⇐⇒ a |6= <hyp,M @ (d∼ep::N)>

Conjunction on the right

*T formula and right sound

∀hyp,M,N:Formula list. ∀q,r:Formula
|= <hyp,q::M @ N> ⇒ |= <hyp,r::M @ N>

⇒ |= <hyp,M @ (qd∧er::N)>

*T formula and right invertible

∀hyp,M,N:Formula list. ∀q,r:Formula. ∀a:Assignment
a |6= <hyp,q::M @ N> ∨ a |6= <hyp,r::M @ N>⇐
⇒ a |6= <hyp,M @ (qd∧er::N)>

Disjunction on the right

*T formula or right sound

∀hyp,M,N:Formula list. ∀q,r:Formula
|= <hyp,q::r::M @ N> ⇒ |= <hyp,M @ (qd∨er::N)>

*T formula or right invertible

∀hyp,M,N:Formula list. ∀q,r:Formula. ∀a:Assignment.
a |6= <hyp,q::r::M @ N>⇐⇒ a |6= <hyp,M @ (qd∨er::N)>

Implication on the right

*T formula imp right sound

∀hyp,M,N:Formula list. ∀q,r:Formula
|= <q::hyp,r::M @ N> ⇒ |= <hyp,M @ (qd⇒er::N)>

91

*T formula imp right invertible

∀hyp,M,N:Formula list. ∀q,r:Formula. ∀a:Assignment.
a |6= <q::hyp,r::M @ N>⇐⇒ a |6= <hyp,M @ (qd⇒er::N)>

It should be remarked here that the propositional proof rules given are the

ordinary rules presented by Gentzen [Gen69] or system G′ as presented by Gallier

in [Gal86b], for example (modulo ordering of formulas in the antecedents of the

rule hypotheses). The reader might suspect that the Kleene semantics somehow

make the logic special, but the Kleene semantics simply allows for the construction

of tighter counter-examples. By defining validity in terms of full assignments,

the assignment monotone lemma (presented above) shows that our decidability

result applies to ordinary two valued classical logic. Above the layer of abstraction

provided by the definitions of satisfaction, falsification, and validity, the effect

of the Kleene semantics on the decidability proof and the extracted program is

isolated to a single lemma.

The ordering of formulas in the antecedents of hypotheses has no impact on the

logic but could affect the efficiency of the search procedure. In our rules we have

chosen to move decomposed parts of sequents to the front, hoping to cut down

on the complexity of the search for “normal” cases. If the procedure is applied

to “almost normal” sequents containing formulas of low complexity, then leaving

them in place would be no worse than our ordering. If, on the other hand, sequents

are composed of formulas having relatively higher complexity, moving them to the

front of the hypothesis and conclusion lists will have the effect of cutting down on

the length of the search for formulas of non-zero rank. In either case, worst case

92

search time for the list structure we have is O(n2).

In the proof presented here, application of the axiom rule (in the form of the

lemma valid or falsifiable) is further restricted to the case when all formulas

in the hypothesis and conclusion lists are atomic. This restriction is not required

for soundness but is a tradeoff in complexity of the execution time. For the list

data-structure we have used here to implement sequents, in the worst case, looking

for axioms before getting to a normal sequent could multiply, by a factor of n, the

overall complexity of the algorithm.

4.2.2 A strategy for the proof

Soundness and invertibility of the proof rules, coupled with the observation that

the backwards application of each rule results in one or two sequents having smaller

rank, suggests a recursive procedure for eliminating propositional operators, result-

ing in a collection of sequents having the following properties:

i.) the induced sequents are all atomic (and atomic sequents are easily decided),

ii.) if all the induced sequents are valid then so is the original sequent (by sound-

ness), and

iii.) if any of the induced sequents is falsified by an assignment then that assign-

ment falsifies the original sequent too (by invertibility).

These observations suggest the existence of a normalization procedure for se-

quents that produces at each step a collection of sequents having smaller rank; and

which preserves joint validity, and preserves the existence of a falsifiable member.

By transitivity of implication, the repeated application of the one-step procedure

93

would result in a collection of atomic sequents whose collective validity implies

the validity of the goal and, if any are individually falsifiable, then the falsifying

assignment falsifies the original sequent too. The existence of such a collection is

established by the following lemma.

∀G:Sequent
∃L:Sequent list

∀s∈L.ρ s = 0 ∧
(∀s∈L.|= s) ⇒ |= G ∧
(∀a:Assignment. ∃s∈L.a |6= s ⇒ a |6= G)

The extract from a proof of this lemma returns a list of sequents having the

desired properties, but it pairs that list with proofs that the properties are satisfied.

These are of no interest to us. The following lemma results in an extract term

containing the list of sequents without the accompanying proofs.

* THM normalize

∀G:Sequent
{L:Sequent List|

↓((∀s∈L. ρ(s) = 0)

∧ ((∀s∈L. |= s) ⇒ |= G)

∧ (∀a:Assignment. (∃s∈L. a |6= s) ⇒ a |6= G))}

The observation that atomic sequents are easily decided is generalized by the

following lemma which says that, for every list of atomic (zero rank) sequents,

either they are all valid or there is some assignment falsifying some sequent in the

list. A natural statement of this fact is as follows.

∀L:Sequent list.

(∀s∈L. ρ s = 0) ⇒
∀s∈L.|= s ∨ (∃a:Assignment. ∃s∈L.a |6= s)

94

We reformulate the lemma as follows, eliminating non-computational structure

from the resulting extract term.

* THM valid or falsifiable

∀L:{L:Sequent List| ∀s∈L.(ρ(s) = 0)}
↓(∀s∈L. |= s) ∨ {a:Assignment| ∃s∈L . a |6= s}

This lemma is the only point in the decidability proof that makes explicit use

of the Kleene semantics. In its proof, if there is a sequent s in the list L having

a disjoint antecedent and succedent, a decision must be made as to which values

to assign to variables not occurring in an atomic sequent. Rather than arbitrarily

choosing true (T3) or false (F3), as we would do in a two-valued semantics, under

the Kleene semantics we assign the “undefined” value (?3), resulting in a tighter

counter-example.

4.2.3 Decidability proof

We present highlights of the Nuprl proof of decidability.

` ∀S:Sequent. ↓(|= S) ∨ {a:Assignment| a | 6= S}

Decomposing the universal and instantiating the normalization lemma with S

as the goal results in the following Nuprl sequent.

1. S: Sequent

2. L: Sequent list

[3.] ↓((∀s∈L.ρ(s) = 0) ∧
(∀s∈L.|= s) ⇒ |= S ∧
∀a:Assignment. (∃s∈L.a |6= s) ⇒ a |6= S)

` ↓(|= S) ∨ {a:Assignment| a | 6= S}

95

Instantiating the lemma valid or falsifiable with L leaves a disjunction

asserting that either all elements of L are valid or some element of L is falsifiable.

Decomposing this disjunction leaves two subgoals. In the first case we know all

sequents in L are valid and so choose to prove the first disjunct of the conclusion.

In the second case we have an assignment that falsifies some sequent in L and so

choose to prove the second disjunct of the main goal in that case.

Consider the first case.

[3.] ↓((∀s∈L.ρ(s) = 0) ∧
(∀s∈L.|= s) ⇒ |= S ∧
∀a:Assignment. (∃s∈L.a |6= s) ⇒ a |6= S)

4. ↓(∀s∈L. |= s)

` ↓(|= S)

Because the conclusion is squashed, the hidden hypothesis (3) can be freely

unhidden. Eliminating the squash operators and then decomposing the conjuncts

in 3 results in the following:

3. ∀s∈L.ρ(s) = 0

4. (∀s∈L.|= s) ⇒ |= S

5. ∀a:Assignment. (∃s∈L.a |6= s) ⇒ a |6= S

6. ∀s∈L. |= s

` |= S

Backchaining through hypothesis 4 combined with the fact stated in 6 completes

the proof of this branch.

Now consider the second case.

4. {a:Assignment| ∃s∈L. a |6= s}
` {a:Assignment| a |6= S}

96

After decomposing the conjunction in hypothesis 3 (see above) and then de-

composing the set type in hypothesis 4, we provide the resulting assignment as the

witness for the set type in the conclusion. This yields the following subgoal.

3. ∀s∈L.ρ(s) = 0

4. (∀s∈L.|= s) ⇒ |= S

5. ∀a:Assignment. (∃s∈L.a |6= s) ⇒ a |6= S

6. a:Assignment

7. ∃s∈L. a |6= s

` a |6= S

The hidden hypotheses have automatically been unhidden by the system be-

cause the computational content of the proof has been completed at this point.

The remaining goal is proved by appeal to facts in hypotheses 5 and 7. This

completes the proof.

The program extracted from this proof (after one step of reduction) is the

following term.

λS.decide ext{valid or falsifiable}(ext{normalize}(S))
of inl(%3) => inl(Axiom)

| inr(%4) => inr(%4)

It accepts a sequent S as input and applies the normalization procedure to it.

The result is a list of zero rank sequents serving as input to valid or falsifiable.

This returns a term of the form inl(Ax) or inr(a), where a is a partial assignment

falsifying some element of L (and which by extension falsifies S). A case split is

made on the form of this term, which is then packaged up and returned as the final

result of the procedure. Thus, we see that this program is nearly the natural one

97

to write given the procedures ext{valid or falsifiable} and ext{normalize}.

A simple optimization results in the following simpler program which foregoes the

redundant decide.

λS. ext{valid or falsifiable}(ext{normalize}(S))

4.2.4 Deciding atomic sequents

Recall the statement of the lemma asserting that collections of atomic sequents

are either all valid or there is some assignment falsifying at least one of them.

* THM valid or falsifiable

∀L:{L:Sequent List| ∀s∈L.(ρ(s) = 0)}
↓(∀s∈L. |= s) ∨ {a:Assignment| ∃s∈L . a |6= s}

The proof rests on the observation that a sequent containing only atomic for-

mulas is falsifiable if and only if the hypotheses and the conclusions are disjoint. If

they share a hypothesis and conclusion in common, it is an instance of an axiom.

If not, the assignment that assigns true to all the variables in the hypothesis and

false to all the variables in the conclusion falsifies the sequent.

Thus, the proof idea is to search L to see if it is composed completely of sequents

that are instances of axioms. If not, then there is a disjoint sequent that serves as

the basis for a falsifying assignment. The following lemma specifies this search as

property of sequent lists.

98

* THM all intersect or exists disjoint

∀L:Sequent List

↓(∀s∈L.{F:Formula| F∈s.H ∧ F∈s.C})
∨ {s:Sequent| s∈L ∧ disjoint(=2;s.H;s.C)}

Note that the lemma holds for all sequent lists, not necessarily only those

composed of zero-rank sequents. The property of lists being disjoint is decidable if

the type of the list elements is discrete. Thus the proof of this lemma is split into

two cases, i.e. depending on whether every sequent in L is disjoint or not.

The following term was extracted from the proof of valid or falsifiable. It

shows how the extract of all intersect or exists disjoint is used as a sub-

program.

λL. decide ext{all intersect or exists disjoint}(L)
of inl() => inl(Ax)

| inr(s) => inr(λv.if (dve∈ s.H) then T3

else if (dve∈ s.C) then F3

else ?3

fi

fi)

Thus, the result of applying ext{all intersect or exists disjoint} to L is

either inl(Ax) or inr(s) where s is a disjoint sequent. The extract shows how

the sequent is used in the proof of valid or falsifiable to construct a falsifying

assignment for s. The falsifying assignment is partial; it only assigns values to

variables occurring in the disjoint sequent. Since not every variable occurring in

the original goal sequent need be in the leaves of the derivation tree, not every

variable of the goal contributes to a falsifying assignment. The end result is a

tighter counter-example returned by the procedure.

99

Before moving to the proof of the normalization lemma some remarks about

this proof and its extract are in order. The first thing to notice is that this is

the only place in the decidability proof where an equality on sequents is required,

but it does not contribute to the computational content. The discrete equality on

formulas is used here to search for the atomic formula dxe that is a member of both

the hypothesis and conclusion lists.

The assignment chosen to falsify the sequent, having non-disjoint hypotheses

and conclusions, is a partial assignment. Indeed, it only assigns values to variables

occurring in the non-disjoint sequent. Since not every variable occurring in a

sequent contributes content to a falsifying assignment the partial assignment used

here provides more information; it not only makes assignment of false and true

to variables, but also shows which variables do not affect the falsification of the

sequent by the particular assignment returned. In fact, the proof goes through

essentially unchanged when the following total assignment is used.

λv.if (dve(∈eqF) x.H) then T3 else F3 fi

The development of a three-valued type and the Kleene operators presented

here with the Kleene valuation is more complex, but the end result is tighter

information on the falsifying assignment returned by the procedure since we can

identify a class of “don’t care” variables in the counter-example.

4.2.5 The Normalization Proof

Decidability rests on the properties of the list L whose existence is established

by the normalization lemma. The proof of this lemma provides the core of the

100

computational procedure. The proof is by measure induction and so yields a

recursive procedure that maps a single sequent G to a list of atomic sequents which

collectively validate G or at least one of which falsifies G.

The proof of this lemma provides the core of the computational procedure. The

proof is by induction on the rank of a sequent. Recall the statement of the lemma.

` ∀G:Sequent
{L:Sequent List|

↓((∀s∈L. ρ(s) = 0)

∧ ((∀s∈L. |= s) ⇒ |= G)

∧ (∀a:Assignment. (∃s∈L. a |6= s) ⇒ a |6= G))}

The proof is by induction on the rank of a sequent; accordingly, the measure

induction tactic is invoked with the measure function sequent rank. Decomposing

G into its component formula lists, hyp and concl, results in the following subgoal.

1. hyp: Formula List

2. concl: Formula List

3. IH: ∀k:{k:Sequent| ρ(k) < ρ(<hyp, concl>)}
{L:Sequent List|

↓((∀s∈L. ρ(s) = 0)

∧ ((∀s∈L. |= s) ⇒ |= k)

∧ (∀a:Assignment. (∃s∈L. a |6= s) ⇒ a |6= k))}
` {L:Sequent List|

↓((∀s∈L. ρ(s) = 0)

∧ ((∀s∈L. |= s) ⇒ |= <hyp, concl>)

∧ (∀a:Assignment. (∃s∈L. a |6= s) ⇒ a |6= <hyp, concl>))}

The proof proceeds by inductively decomposing non-zero rank elements of the

sequent <hyp,concl> if there are any; if not, we directly argue the theorem holds.

101

Thus, to proceed with the proof we case split on whether the list hyp contains any

non-zero rank formula. In the case where all formulas in hyp are atomic we do a

case split on whether concl is atomic or not. Thus, in all, we have three cases.

We consider this last case first.

The sequent is atomic: In this case the list <hyp,concl>::[] witnesses the set

type. A step of reduction leaves the following squashed conjunction to prove.

4. ¬∃f∈hyp.ρ(f) > 0

5. ¬∃f∈concl.ρ(f) > 0

` ↓((∀s∈(<hyp,concl>::[]). ρ(s) = 0)

∧ ((∀s∈(<hyp,concl>::[]). |= s) ⇒ |= <hyp, concl>)

∧ (∀a:Assignment. (∃s∈(<hyp,concl>::[]). a | 6= s)

⇒ a |6= <hyp, concl>))

By hypotheses 4 and 5, the first conjunct holds and the remaining two conjuncts

are trivial.

The hypotheses contain a non-atomic formula: Now we consider the case

where the formula list hyp contains a non-zero rank formula, ∃f∈hyp.(ρ(f) > 0).

Whenever property (P) is asserted to hold for some element of a list L, we use

the following lemma to decompose the list, explicitly naming an element of the list

having the property.

* THM list exists decomposition

∀T:U. ∀P:T → P. ∀L:T List

(∃x∈L.P[x])⇒ ∃M:T List.∃x:T.{N:T List| L = M @ (x::N) ∧ P[x]}

Forward chaining through this lemma with hypothesis ∃f∈hyp.(ρ(f) > 0) yields

102

4. ∃f∈hyp.(ρ(f) > 0)

5. M: Formula List

6. f: Formula

7. N: Formula List

[8]. hyp = M @ (f::N) ∧ ρ(f) > 0

` {L:Sequent List|

↓((∀s∈L. ρ(s) = 0)

∧ ((∀s∈L. |= s) ⇒ |= <hyp, concl>)

∧ (∀a:Assignment. (∃s∈L. a |6= s) ⇒ a |6= <hyp, concl>))}

Now we have a name (f) for the non-zero rank formula occurring in hyp. Using

f we provide the following term as a witness for the set type in the conclusion.

case f:
dxe → [];
d¬ex→ (IH(<M @ N, x::concl>));

x1d∧ex2→ (IH(<x1::x2::(M @ N), concl>));

x1d∨ex2→ (IH(<x1::(M @ N), concl>) @ IH(<x2::(M @ N), concl>));

x1d⇒ex2→ (IH(<x2::(M @ N), concl>) @ IH(<M @ N, x1::concl>));

This term encodes the left rules of the sequent proof system presented above.

This step results in two subgoals: the first a well-formedness goal to show that the

term is in the type Sequent List, which is easily shown by case analysis on f and

then reduction; the second to show that term satisfies the three-part conjunction

defining the set. After this step, the computational content for this branch of the

proof is complete.

The remaining proof obligations are to verify that the witness term satisfies

the logical part of the specification. There are subgoals for negation, conjunction,

disjunction and implication occurring on the left (the case in which f is a variable

is trivially discharged by the auto tactic).

103

Negation on the left: This is the case where f is a negation of the form d∼ex.

8. x: Formula

9. hyp = M @ (d∼ex::N)

10. ρ x + 1 > 0

` ↓(∀s∈(IH <M @ N, x::concl>).(ρ s = 0)

∧ (∀s∈(IH <M @ N, x::concl>).|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment.
∃s∈(IH <M @ N, x::concl>).a |6= s ⇒ a |6= <hyp, concl>))

We decompose the induction hypothesis with d<M @ N, x::concl>e, resulting

in the following subgoal.

` <M @ N, x::concl> ∈ {k:Sequent| ρ k < ρ <M @ (d¬ex::N), concl>}

This well-formedness subgoal is discharged by direct computation and applica-

tion of the SupInf arithmetic decision procedure. By inspecting the witness term

the reader can satisfy himself that the rank of every sequent occurring as an argu-

ment to the induction hypothesis IH in the witness term is strictly smaller than the

rank of the sequent it normalizes and so we will not present these well-formedness

goals again.

Two subgoals remain, the first to show that <M @ (d∼ex::N), concl> is valid

under the assumption that every sequent in the list computed by the application

of the induction hypothesis is, i.e. to show:

12. ∀s∈(IH <M @ N, x::concl>).(ρ s = 0)

13. ∀s∈(IH <M @ N, x::concl>).|= s ⇒ |= <M @ N, x::concl>

14. ∀a:Assignment.
∃s∈(IH <M @ N, x::concl>).a |6= s ⇒ a |6= <M @ N, x::concl>

104

15. ∀s∈(IH <M @ N, x::concl>).|= s

` |= <M @ (d∼ex::N), concl>

This branch is discharged by appeal to soundness of negation on the left (lemma

formula not left sound) and then by backchaining through the hypotheses.

The final remaining subgoal for the case of negation on the left is to show

that there is an assignment falsifying <M @ (d∼ex::N), concl> if there is an

assignment falsifying some element of the list computed by the application of the

induction hypothesis.

12. ∀s∈(IH <M @ N, x::concl>).(ρ s = 0)

13. ∀s∈(IH <M @ N, x::concl>).|= s ⇒ |= <M @ N, x::concl>

14. ∀a:Assignment.
∃s∈(IH <M @ N, x::concl>).a |6= s ⇒ a |6= <M @ N, x::concl>

15. a: Assignment

16. ∃s∈(IH <M @ N, x::concl>).a |6= s

` a |6= <M @ (d∼ex::N), concl>

This subgoal is proved by backchaining through the invertibility lemma for

negation on the left and then backchaining through the hypotheses.

The case of a negation on the left required one application of the induction

hypothesis. We list the other proof obligations for operators on the left without

proof. Below, we examine the case for conjunction on the right in some detail to

show a case requiring two applications of the induction hypothesis.

105

Conjunction on the left:

8. x1: Formula

9. x2: Formula

10. hyp = M @ (x1d∧ex2::N)

11. (ρ x1 + ρ x2) + 1 > 0

` ↓(∀s∈(IH <x1::x2::(M @ N), concl>).(ρ s = 0)

∧ (∀s∈(IH <x1::x2::(M @ N), concl>).|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment.
∃s∈(IH <x1::x2::(M @ N), concl>)

a |6= s ⇒ a |6= <hyp, concl>))

Disjunction on the left:

10. hyp = M @ (x1d∧ex2::N)

11. (ρ x1 + ρ x2) + 1 > 0

` ↓(∀s∈(IH <x1::x2::(M @ N), concl>).(ρ s = 0)

∧ (∀s∈(IH <x1::x2::(M @ N), concl>).|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment
∃s∈(IH <x1::x2::(M @ N), concl>)

a |6= s ⇒ a |6= <hyp, concl>))

Implication on the left:

10. hyp = M @ (x1d⇒ex2::N)

11. (ρ x1 + ρ x2) + 1 > 0

` ↓(∀s∈(IH <x2::(M @ N), concl> @ IH <M @ N, x1::concl>)

(ρ s = 0)

∧ (∀s∈(IH <x2::(M @ N), concl> @ IH <M @ N, x1::concl>).

|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment

106

∃s∈(IH <x2::(M @ N), concl> @ IH <M @ N, x1::concl>).

a |6= s ⇒ a |6= <hyp, concl>))

The conclusion contains a non-atomic formula: If the list of hypotheses is

empty or contains only atomic formulas we consider whether the conclusion list

contains any non-atomic formula. In this case, we suppose it does. Like the case

above, we instantiate and decompose the lemma list exists decomposition to

get a name for the non-atomic formula occurring in the list. After that we must

prove the following:

4. ∃f∈concl.(ρ(f) > 0)

5. M: Formula List

6. f: Formula

7. N: Formula List

[8]. concl = M @ (f::N) ∈ Formula List ∧ ρ(f) > 0

` {L:Sequent List|

↓((∀s∈L. ρ(s) = 0)

∧ ((∀s∈L. |= s) ⇒ |= <hyp, concl>)

∧ (∀a:Assignment. (∃s∈L. a |6= s) ⇒ a |6= <hyp, concl>))}

In this case the witness term for the set type in the conclusion is the following.

case f:
dxe → [];
d¬ex→ (IH(<x::hyp, M @ N>));

x1d∧ex2→ (IH(<hyp, x1::(M @ N)>) @ IH(<hyp, x2::(M @ N)>));

x1d∨ex2→ (IH(<hyp, x1::x2::(M @ N)>));

x1d⇒ex2→ (IH(<x1::hyp, x2::(M @ N)>));

As above, the proof of the well-formedness goal asserting that this term de-

noted a sequent list is straightforward. We are left with the following four proof

obligations.

107

Negation on the right:

8. x: Formula

9. concl = M @ (d∼ex::N)

10. ρ x + 1 > 0

` ↓(∀s∈(IH <x::hyp, M @ N>).(ρ s = 0)

∧ (∀s∈(IH <x::hyp, M @ N>).|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment
∃s∈(IH <x::hyp, M @ N>).a |6= s ⇒ a |6= <hyp, concl>))

Conjunction on the right:

8. x1: Formula

9. x2: Formula

10. concl = M @ (x1d∧ex2::N)

11. (ρ x1 + ρ x2) + 1 > 0

` ↓(∀s∈(IH <hyp, x1::(M @ N)> @ IH <hyp, x2::(M @ N)>)

(ρ s = 0)

∧ (∀s∈(IH <hyp, x1::(M @ N)> @ IH <hyp, x2::(M @ N)>)

|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment
∃s∈(IH <hyp, x1::(M @ N)> @ IH <hyp, x2::(M @ N)>)

a |6= s ⇒ a |6= <hyp, concl>))

Disjunction on the right:

10. concl = M @ (x1d∨ex2::N)

11. (ρ x1 + ρ x2) + 1 > 0

` ↓(∀s∈(IH <hyp, x1::x2::(M @ N)>).(ρ s = 0)

∧ (∀s∈(IH <hyp, x1::x2::(M @ N)>).|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment
∃s∈(IH <hyp, x1::x2::(M @ N)>)

a |6= s ⇒ a |6= <hyp, concl>))

108

Implication on the right:

10. concl = M @ (x1d⇒ex2::N)

11. (ρ x1 + ρ x2) + 1 > 0

` ↓(∀s∈(IH <x1::hyp, x2::(M @ N)>).(ρ s = 0)

∧ (∀s∈(IH <x1::hyp, x2::(M @ N)>).|= s ⇒ |= <hyp, concl>)

∧ (∀a:Assignment
∃s∈(IH <x1::hyp, x2::(M @ N)>)

a |6= s ⇒ a |6= <hyp, concl>))

These cases are discharged by instantiating the induction hypothesis with the

appropriate sequent(s) (depending on the propositional proof rule for that case)

and then appealing to the corresponding soundness and invertibility lemmas.

4.3 Analysis of the Normalization Proof and

Extract

The extract of the proof of normalization appears as in Figure 4.2. The extracted

program is essentially the functional program written to follow the tableau algo-

rithm. It closely matches the pseudo-code presented in Gallier’s textbook [Gal86a].

In contrast, the version of the proof not using the set type in its specification

and not using the derived measure induction principle is virtually unreadable,

being larger by a factor of about five. More precisely, after eliminating all newlines

and compressing remaining whitespace to a single space, the ratio is closer to 6 : 1,

and with all whitespace removed the ratio is similar. Measuring the number of

109

terms in each raw extract, we get a ratio of 5 : 1 and the ratio of the number of

subterms after an application of Reduce to each term is the same.

The measure induction eliminates all reference to the measure from the extract.

This is a crucial savings in the computational efficiency of the resulting program,

especially since the measure function plays no part in the actual computation.

The reader will note that the proof of normalization given above is not pure;

however, it does provide for a compact presentation. In this proof, the witnesses

compute the lists of normalized sequents directly. The corresponding pure proof

proceeds instead by a step of case analysis on the formula f, establishing the

context for instantiating the induction hypothesis with the hypothesis sequent(s)

specified by the propositional rules, and then constructing the appropriate list to

discharge the conclusion from these parts.

4.3.1 Applications

In [Gal86b, chapter 3] Gallier presents a search procedure nearly identical to the

one extracted from the normalization lemma proved here. He notes two interesting

applications of the procedure.

Recall that a proposition is in conjunctive normal form (Cnf) if it is a conjunc-

tion C1 ∧ · · · ∧Cn where each Ci is a disjunction of propositional variables or their

negations. A proposition is in disjunctive normal form (Dnf) if it is a disjunction

D1 ∨ · · · ∨ Dn where each Di is a conjunction of propositional variables or their

negations.

Given a proposition P , the normalization procedure can be used to construct

110

logically equivalent propositions PC and PD where PC is in Cnf and PD is in Dnf.

To construct the Cnf form PC , simply compute the normalization of the se-

quent <[],P>. For each sequent Si (of the form <[h1, · · · , hn], [c1, · · · cm]>) in

the list of normalized sequents, take Ci to be ¬h1 ∨ · · · ∨ ¬hn ∨ c1 ∨ · · · ∨ cm.

The proof that P ⇔ PC is quite easy, by using the definition of validity and the

properties ensured by the normalization procedure to show the two forms agree on

all assignments.

Similarly, to construct the Dnf form PD simply compute the normalization of

the sequent <P,[]>. For each sequent Si (of the form <[h1, · · · , hn], [c1, · · · cm]>)

in the list of normalized sequents, take Di to be h1 ∧ · · · ∧ hn ∧ ¬c1 ∧ · · · ∧ ¬cm.

The proof that P ⇔ PD is similar to the proof for the Cnf form.

The proof formalized and presented above has been used at Cornell to teach

propositional logic to upper level undergraduate students taking CS 472. Students

have reported that they found the formalized Nuprl presentation clearer than that

of the classic text used for the course by Smullyan [Smu68] Students find the

interactive access to all the definitions very helpful in learning the material; if

they forget what an operator does they can simply click on it and its definition is

displayed. The exposition here makes explicit certain algorithms, for example the

computation of sequent rank, that are implicit in the definitions given by Smullyan.

The libraries for these theories are available on the Nuprl web-page as well.

111

λG.(letrec normalize(S) =

let <hyp,concl> = S in

case ∃f∈hyp.(ρ(f) > 0)

of inl(%2) =>

let M,f@0,N = (ext{list exists decomposition}
(Formula)(λ2f.ρ(f) > 0)(hyp)(%2)) in

case f@0:
dxe → [];
d∼ex → (normalize(<M @ N, x::concl>));

x1d∧ex2 → (normalize(<x1::x2::(M @ N), concl>));

x1d∨ex2 → (normalize(<x1::(M @ N), concl>)

@ normalize(<x2::(M @ N), concl>));

y1d⇒ey2 → (normalize(<y2::(M @ N), concl>)

@ normalize(<M @ N, y1::concl>));

| inr(%3) =>

case ∃f∈concl.(ρ(f) > 0)

of inl(%5) =>

let M,f@0,N = (ext{list exists decomposition}
(Formula)(λ2f.ρ(f) > 0)(concl)(%5)) in

case f@0:
dxe → [];
d∼ex → (normalize(<x::hyp, M @ N>));

x1d∧ex2 → (normalize(<hyp, x1::(M @ N)>)

@ normalize(<hyp, x2::(M @ N)>));

x1d∨ex2 → (normalize(<hyp, x1::x2::(M @ N)>));

y1d⇒ey2 → (normalize(<y1::hyp, y2::(M @ N)>));

| inr(%6) => <hyp, concl>::[])

(G)

Figure 4.2: Extract of the Normalization Lemma

Chapter 5

Decidability of Intuitionistic

Propositional Logic

5.1 Introduction

In this chapter a formal theory of the intuitionistic propositional calculus is de-

scribed, including a formal proof of decidability in Nuprl. With the proof of de-

cidability as our focus, we describe formal developments of: a proof theory; the

tableau construction; and a theory supporting the use of Kripke counter-examples

as evidence of unprovability. The development is based on Underwood’s proof

[Und93, Und94] and closely follows the presentation by Aitken, Constable, and

Underwood in [ACU]. The program resulting from the proof is an implementation

of an intuitionistic tableau algorithm.

112

113

5.1.1 Intuitionistic proof systems

Sequent proof systems for classical and intuitionistic logic were first presented by

Gentzen [Gen69]. Somewhat surprisingly, restricting sequents in the proof rules

to having at most one formula in the succedent is enough to move from classical

to intuitionistic logic. Many intuitionistic sequent proof systems have been pro-

posed since, including a number of multi-conclusion calculi [Kle52, Dum77, Dra87,

Wal90]. Multi-conclusion calculi are closely related to tableau systems, and in

[Avr93] Avron characterizes the relation.

The calculus MJ presented in Figure 5.1 is essentially the propositional frag-

ment of Dragalin’s [Dra87, pg.11] multi-conclusion sequent calculus. The form of

our rules differs from Dragalin’s in two ways:

i.) The rules presented here are stated so as to allow the active formula (the

formula being eliminated or introduced) to occur anywhere in the antecedent

or consequent of the sequent. Dragalin stipulates this, but it is not reflected

in his rules.

ii.) We do not eliminate the active formula from the hypotheses (except in the⇒r

rule where it is required for soundness). This simplifies the formal definition

of proofs and is justified by Theorem 3.1.5 [Dra87, pg.13] which says the

contraction rule is admissible.

Intuitionistic propositional logic differs from classical propositional logic in that

undirected application of the proof rules is not guaranteed to terminate. This issue

does not arise in the classical case, since every application of a rule eliminates

114

M
,d
f
a
l
s
e
e,
N

`
C

(f
a
l
s
e
l
)

M
,a
,N

`
M

′ ,
a
,N

′
(A

x)

a
,M

,a
d∨
eb
,N

`
C

b,
M
,a
d∨
eb
,N

`
C

M
,a
d∨
eb
,N

`
C

(∨
l)

H
`
a
,M

,a
d∨
eb
,N

H
`
M
,a
d∨
eb
,N

(∨
r1

)

H
`
b,
M
,a
d∨
eb
,N

H
`
M
,a
d∨
eb
,N

(∨
r2

)

a
,M

,a
d∧
eb
,N

`
C

M
,a
d∧
eb
,N

`
C

(∧
l1

)

b,
M
,a
d∧
eb
,N

`
C

M
,a
d∧
eb
,N

`
C

(∧
l2

)

H
`
a
,M

,a
d∧
eb
,N

H
`
b,
M
,a
d∧
eb
,N

H
`
M
,a
d∧
eb
,N

(∧
r)

M
,a
d⇒

eb
,N

`
a
,C

b,
M
,a
d⇒

eb
,N

`
C

M
,a
d⇒

eb
,N

`
C

(⇒
l)

a
,H

`
r

H
`
M
,a
d⇒

eb
,N

(⇒
r)

F
ig

u
re

5.
1:

S
y
st

em
M

J

115

a formula; it is easy to see that the repeated application of the rules will

terminate. This complexity is revealed in the proof rule for an implication occurring

on the left side of a sequent; the implication itself cannot be deleted from from

the hypotheses of the rule premises; there are intuitionistically valid propositions

that depend on the reuse of the formula. To observe this phenomenon, consider

the proof (shown in Figure 5.2) of the formula ((P ∨ (P ⇒ ⊥)) ⇒ ⊥) ⇒ ⊥; this

is a proof of ¬¬(P ∨ ¬P) under the standard encoding of ¬P as P ⇒ ⊥. The

proof requires two instances of the ⇒r rule applied to the same implication on

the left side. Without the duplicated application, the proof cannot be completed.

Thus, both the sequent proof rule for implication on the left, and the tableau rule

for an implication assumed to be true, have a built in contraction. This implicit

contraction in the ⇒r rule complicates termination arguments.

As early as 1952, Vorob’ev [Vor52, Vor70] considered intuitionistic proposi-

tional calculi having proof rules that naturally terminate, thereby simplifying the

termination argument somewhat. More recently, Hudelmaier [Hud92], Lincoln,

Scedrov, and Shankar [LSS91] and Dyckhoff [Dyc92] have all independently redis-

covered this idea in contexts of various propositional calculi that suffer the same

problem of having implicit contractions. These are the so-called contraction-free

proof systems. They work by considering the structure of the antecedent of im-

plications occurring on the left and by delaying application of some of the rules

until as late as possible in the proof. Recently, Weich [Wei98a], has formalized

a decidability proof for the implicational fragment of Hudelmaier’s calculus for

intuitionistic propositional logic.

116

5.1.2 The Tableau Construction

In his 1990 book [Wal90] Wallen remarked that there had been few efforts to

automate proof search for intuitionistic logic. That can hardly be said to be

true today; indeed, Wallen’s book helped to spur significant interest in the area,

both in matrix based methods and also in tableau methods. Tableau methods

have received significant attention in the recent literature; indeed, since 1995 there

has been a series of conferences in Europe devoted specifically to these methods

[BHP95, MMMO96, Gal97, dS98], decision procedures for the propositional case

being among those receiving attention. Tableau methods for proof search in intu-

itionistic logic go back to Beth [Bet59]. Fitting’s book [Fit83], unfortunately out

of print, is the classic reference.

Roughly speaking, tableau methods are those proof search methods that work

by systematically exploring all consequences of an assumption. A tableau is a

tree-like structure that records the development of the search, keeping track of

those formulas assumed to true and those formulas assumed to be false. If we start

by assuming that the formula we wish to verify is false, the tableau construction

becomes a search for counter-examples. If a counter-example is found, then the

formula initially assumed false must be provable.

To decide a formula φ, we start the tableau construction with a system con-

taining a single node in which the formula φ is assumed to be false. Guided by

the formula structure and contents of the nodes in the system, and justified by

the Kripkian interpretation of the intuitionistic operators, the tableau construc-

tion proceeds by either: extending an existing node by adding new formulas to it;

117

splitting an existing node by extending it in two different ways; or extending the

tableau system by adding a new node. The latter only occurs when the tableau

rule is applied to an implication assumed to be false. In this way, all possible

consequences are developed. If it occurs that a formula is assumed to be both

false and true along some path in the developing tableau, then that path leads to

a contradiction and is closed. If a path is developed to the point where further

application of the tableau rules would only result in redundant structure being

added to the tableau, then we stop development along that path. We call these

paths open. If all the paths through the tableau for φ are closed then φ is provable;

i.e. if assuming φ is false always leads to a contradiction, then there must be a

proof of φ. Using the tableau constructed in this way we are able to construct a

proof of φ

It is easy to check whether a path is closed. The complexity of the procedure

arises in determining when further development of an open path is redundant.

Underwood’s proof [Und94], formalized for the first time here, provides a new ter-

mination argument based on a lexicographic ordering of tableau systems bounding

the number of formulas that can be added to any node and bounding the number

of nodes that can be added to a system.

The classical theory presented in Chapter 4 is a sub-theory of the one presented

here. In the classical tableau construction, since every rule is local, a system would

always contain a single node and would never be extended.

118

5.1.3 Kripke Counter-examples as Evidence of

Unprovability

In the proof of decidability for the classical case given in Chapter 4, the represen-

tation of counter-examples was simply accomplished by considering three-valued

assignments. Although not as fine, Boolean valuations would have also served that

purpose. In the intuitionistic case, it is a well known negative result that no fi-

nite valuation captures intuitionistic propositional logic [Dra87]. Thus, models for

intuitionistic logic are necessarily more complex. Following the account given by

Underwood in [Und90, Und94], we use Kripke models to witness the unprovability

of a formula. This interpretation is not without some subtlety which we address

below, but first we introduce the models.

In 1963 Kripke [Kri63] presented graph-based model construction for modal

logic. Gödel had already shown a modal interpretation of intuitionistic proposi-

tional logic: based on Gödel’s interpretation, Kripke was able to extend his con-

struction to the intuitionistic case [Kri65].

A Kripke model K is a triple of the form (Σ,≤, ‖−a) where: Σ is a (non-

empty) set of states; ≤ is a reflexive and transitive relation on the states; and ‖−a,

the atomic forcing relation, is a decidable relation on Σ × Var characterizing the

variables forced (true) in a state of K. Thus, σ ‖−a x holds when variable x is true

in state σ. The atomic forcing relation is monotone with respect to the partial

ordering on states, i.e. ∀σ. σ ‖−a x ⇒ ∀σ′ ≥ σ. σ′ ‖−a x.

The notion of truth in a Kripke structure is defined by the forcing relation. The

119

atomic forcing relation on variables determines a forcing relation (‖−) on formulas

with respect to the Kripke model. For a state σ in a given Kripke structure K

and a formula φ, σ forces φ in K is written σ :K ‖− φ (or if K is understood by

context we simply write σ ‖− φ). The atomic forcing relation uniquely determines

the forcing relation. If ‖−a is the atomic forcing relation for a Kripke model K,

the forcing relation it induces is defined as follows.

σ ‖− x iff σ ‖−a x

σ ‖− false iff False

σ ‖− φ ∧ ψ iff σ ‖− φ and σ ‖− ψ

σ ‖− φ ∨ ψ iff σ ‖− φ or σ ‖− ψ

σ ‖− φ⇒ ψ iff for all σ′ such that σ′ ≥ σ, if σ′ ‖− φ then σ′ ‖− ψ

We write K‖− φ if, for every state σ ∈ Σ, σ ‖− φ. A formula is Kripke valid

if it is forced in all Kripke models K. A Kripke structure in which a formula φ is

not forced is called a Kripke counter-example for φ.

Kripke’s semantics for intuitionistic logic is sometimes motivated by considering

Brouwer’s notion of mathematics as a system of (growing) knowledge, what he

called the creative subject. For such an account see Van Dalen [vD94]. Under

this account, the states in a Kripke structure correspond to the mental states or

stages of mathematical development of an idealized mathematician. Knowledge is

monotone: once a mathematical fact is established, it holds in all future states.

This epistemological structure forms the basis for the ordering of states in the

Kripke model and plays an important part in the definition of truth via forcing in

Kripke models.

120

However, Kripke semantics is not faithful to intuitionistic semantics. Smoryn-

ski [Smo73] and Dummett [Dum77] discuss this in some detail. Recall that, under

Heyting’s interpretation of Brouwer’s intentions [TvD88], φ ⇒ ψ is intuitionisti-

cally valid when there is a construction transforming evidence for φ into evidence

for ψ. But this is where the justification for Kripke semantics alluded to above

breaks down. To see this, consider the forcing condition for implication. A formula

of the form (φ⇒ ψ) is forced at state σ if at some state σ′, where σ′ > σ , σ′ ‖− φ

and σ′ ‖−ψ. This certainly does not capture the intended meaning of intuitionistic

implication, since under the Kripkian interpretation, φ and ψ need not have any

relation other than that they both occur as true formulas in some state later in

the ordering.

Although they do not provide faithful intuitionistic semantics, following Un-

derwood [Und94, pg.11–15], Kripke models serve as evidence of the unprovability

of certain formulas, and not simply as abstract algebraic structures. In fact, we

define a function below which maps systems (encodings of paths in the tableau

search) to Kripke models. In the decidability proof, this function (K), is used to

map failed (open) paths in the tableau search to Kripke models which can then be

interpreted as evidence for unprovability. Thus, tableau construction and Kripke

models are closely related. Failed tableau searches yield Kripke counter-examples.

This use of Kripke models as counter-examples to intuitionistic provability has

received attention elsewhere [PD95, Hud97].

More complete expositions on Kripke semantics for intuitionistic logic can be

found in many sources [Fit69, TvD88, vD94, NS94].

121

5.1.4 Statement of the Theorem

By the nature of the constructive interpretation, a proof of a disjunction (P ∨Q)

must indicate which of P or Q was proved and also must give evidence for its truth.

Thus, the computational content of the Nuprl proof of intuitionistic decidability

takes a propositional formula as its input and returns evidence for it truth or

evidence for its absurdity.

∀f:Formula. is valid(f) ∨ {c:counter example | c refutes f}

The reader may note that the shape of the theorem is essentially the same as

that of the classical decidability theorem proved in Chapter 4.

In any case, we do not prove this theorem directly, but instead prove a more

general theorem having enough structure to support our inductive proof. The more

general theorem does not apply directly to formulas, but applies to tableau systems

(lists of tableau nodes) satisfying an “eligibility” condition. Such structures have

type ESystem (for eligible system). Evidence for the provability of an ESystem

takes the form of a formal proof in a multi-conclusion sequent calculus. Evidence

for its absurdity takes the form of a Kripke counter-example. Formally stated, the

theorem we eventually prove in this chapter is the following:

* THM multi decide

∀S:ESystem
(∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})

∨ {K:K{i}| ∃f:Node → Σ(K)

∀N:{N:Node| N∈S}
∀F:Formula. (F∈(T(N)) ⇒ forces(K,f N,F))

∧ (F∈(F(N)) ⇒ not forces(K,f N,F))}

122

To decide a formula φ, we will apply the computational content of this more

general theorem to an eligible system containing a single node in which φ is as-

sumed to be false. Should φ turn out to be provable, the result is a pair consisting

of a tableau node and a proof of that node regarded as a sequent. Since the

computational content of the theorem is intended to be applied to systems con-

sisting of single nodes which contain a single formula, this evidently corresponds

to a proof of the sequent <[],[φ]>. Should φ turn out not to be provable, the

result is a Kripke counter-example. Kripke counter-examples here take the form

of Kripke models defined over tableau nodes N∈S such that every formula in the

true portion of the node (T(N)) is forced and every element in the false portion of

the node (F(N)) is not forced. Since we will be applying the extracted program to

initial systems consisting of a single nodes containing a single formula assumed to

be false, the formula is not forced in the resulting Kripke model and so it serves

as a counter-example.

5.2 Type Theoretic Formalization

In this section we present the formalization of the problem in type theory. This

includes a the development of Formula, Node, and Sequent types, a type of Kripke

models, and a Proof type. The definitions presented here are largely taken from

Underwood [Und94] and Aitken, Constable and Underwood [ACU].

123

5.2.1 Variables and Formulas

For the purposes of this presentation, variables are taken to be elements of Nuprl’s

Atom type. We hide this in an abstraction declaring the type Var to be the type

Atom. The only essential feature of the variable type is that it be a discrete type,

i.e. that it have a decidable equality. Without adjusting the existing proofs it

would be possible to substitute a more complex discrete type for the type Atom

used here. Specifically, it would be possible to specify a more complex class of

terms to stand for our variables.

Propositional formulas are defined by a Nuprl recursive type.

* ABS Formula

Formula
def
= rec(FF.Var | Unit | FF × FF | FF × FF | FF × FF)

Thus a formula is either: a variable (element of the type Var); a constant, inter-

preted as false; a pair of formulas, representing a conjunction; a pair of formulas,

representing a disjunction; or a pair of formulas, representing an implication. Intu-

itionistic negation ¬P is just an encoding for P ⇒ False and so we do not include

it explicitly in our formula type. Neither do we include equivalence (P⇐⇒Q),

which is defined to be P⇒Q ∧Q⇒P .

It should be remarked that the Formula type is discrete.

A display form and an abstraction are defined for each element of the Formula

type as follows:

* ABS fvar dFe def
= inl F

* ABS ffalse dfalsee def
= inr (inl ·)

* ABS fand (pd∧eq)
def
= inr inr (inl <p, q>)

124

* ABS f or (pd∨eq)
def
= inr inr inr (inl <p, q>)

* ABS fimp (pd⇒eq)
def
= inr inr inr inr <p, q>

Case analysis over formulas is provided by the formula case operator.

5.2.2 Sequents, Nodes, and Systems

We define sequents as pairs of formula lists.

* ABS Sequent

Sequent
def
= Formula List × Formula List

Sequent is a discrete type. This follows from the discreteness of the Formula

type.

Nodes of the tableau system are given by the type Node. Like sequents, they

are pairs of formula lists.

* ABS Node Node
def
= Formula List × Formula List

The elements in the first component of a node are those formulas assumed to

be true, the elements in the second component are those elements assumed to be

false. For a node N we will refer to these components by writing T(N) for N.1 and

F(N) for N.2. We will sometimes refer to formulas occurring in the true part of

node N, i.e. in T(N), as a positive occurrences. We refer to formulas occurring in

the false part of N (F(N)) as negative occurrences.

Also, note that Node is a discrete type.

Nodes are coerced to type Sequent by the identity operator.

* ABS NtoS asSequent(N)
def
= N

125

There is a potential point of confusion about positive and negative parts of

nodes and sequents. Because of the underlying semantic interpretation of nodes

(in the search for counter-examples), when nodes are coerced to sequents under the

mapping asSequent, the polarity of positive and negative parts switches. Thus

a positive occurrence of a formula in a node becomes a negative occurrence in a

sequent, and vice versa. The nomenclature of polarity has no bearing on the formal

development but is useful terminology, even if potentially confusing.

A System is a non-empty list of nodes.

* ABS System

System
def
= Node List+

Here, List+ is the type of non-empty lists.

For the purposes of the proof we will define (below) a class of eligible systems

(ESystem) as a subtype of System.

5.2.3 Kripke Semantics

The type theoretic characterization of Kripke models presented here follows the

presentation of [ACU]. A Kripke (model) is a dependent triple consisting of a type

(of states), a reflexive and transitive relation on the states, and an atomic forcing

function.

* ABS Kripke

K{i} def
=

T:U
× R:{R:(T × T) → P |

∀a,b,c:T. R(<a, a>) ∧

126

R(<a, b>) ⇒ R(<b, c>) ⇒ R(<a, c>)}
× {af:T → Var → P |

∀a:T. ∀v:Var.
af(a)(v) ⇒ (∀b:T. R(<a, b>) ⇒ af(b)(v))}

The first element of the triple is the carrier type which is interpreted as the set

of states of the Kripke model. Note that it is not always possible to simply model

a set by a type because they differ on their membership relations (set membership

is always a well-formed proposition while type membership is only a well-formed

proposition when true): these differences are not material to the development here.

The following abstraction encodes the selector referring to this component.

* ABS K state Σ(K)
def
= K.1

The second component of the Kripke model is a reflexive and transitive relation

on states. This relation presents the structure of Kripke model by relating states

to one another. The relation is formally modeled here as a set type of propositional

functions enjoying the appropriate properties. The selector for this component of

the model is defined as follows.

* ABS K rel ≤{K} def
= K.2.1

When K is understood by context, for states s and s’ we will use the display

s≤s’ instead of ≤{K}(<s,s’>).

The third element of the triple is the atomic forcing relation specifying those

atomic formulas which are true in a given state. Thus, it is a proposition on states

T and variables (Var) that is monotone with respect to the state relation R. That

is, if a variable is forced by af in some state s, then it is forced in all states s’

127

such that s≤s’. For every variable v forced at state s, the function K.af(s)(v)

evaluates to True. Those variables v’ such that ¬K.af(s)(v’) holds are not

forced at s. As expected, the Nuprl selector for the atomic forces relation for a

Kripke model is defined as follows:

* ABS K af K.af
def
= K.2.2

Triples inhabiting the type Kripke may be called Kripke structures.

5.2.3.1 The Forces and Not Forces Relations

As stated, the main theorem requires definitions of both forces, and its comple-

ment not forces. The reader may already realize that we cannot simply define

the complementary notion by taking the constructive negation of the definition of

forcing. Examining the definition of forcing reveals a conjunction in the condi-

tion for conjunctive formulas; ¬(P ∧Q) does not, in general, constructively imply

¬P ∨ ¬Q. Also, the universal quantifier in the case of implication is problematic,

thus ¬∀x : T.P [x] does not constructively imply ∃x : T.¬P [x].

Based on these observations we adopt Underwood’s method of [Und93] and

define the forces and not-forces relations simultaneously by mutual recursion. Def-

inition by mutual recursion is not supported by Nuprl tactics (although there is no

technical reason it cannot be) and we use the pairing trick to implement it here.

* ABS forcing pair

<forces,not forces>{K} def
=

(letrec f nf(s)(f) =

case f:
dxe → <K.af(s)(x), ¬(K.af(s)(x))>;

128

dfalsee → <False, True>;

ad∧eb → <(f nf(s)(a)).1 ∧ (f nf(s)(b)).1,

(f nf(s)(a)).2 ∨ (f nf(s)(b)).2>;

ad∨eb → <(f nf(s)(a)).1 ∨ (f nf(s)(b)).1,

(f nf(s)(a)).2 ∧ (f nf(s)(b)).2>;

ad⇒eb → <∀s’:Σ(K). ≤{K}(<s, s’>) ⇒
(f nf(s’)(a)).2 ∨ (f nf(s’)(b)).1,

∃s’:Σ(K). ≤{K}(<s, s’>) ∧
(f nf(s’)(a)).1 ∧ (f nf(s’)(b)).2>;

)

Thus, for a Kripke structure K, the function <forces,not forces>{K} is de-

fined as a mutually recursive pair by f nf. The arguments to the function are a

state s and a formula f. The function definition is best understood if the term

f nf(s)(f).1 is read as ‘‘s forces f’’ and the term f nf(s)(f).2 is read as

‘‘s does not force f’’. For a fixed state s the computation proceeds by case

analysis on f. In the case where f is a variable the result is determined by the

atomic forcing relation. If the formula f is the constant dfalsee then, for all states

the pair of Nuprl constants <False, True> is returned, i.e. dfalsee forces False,

and it does not force (not forces) True. If the argument f is a conjunction of

the form ad∧eb, then it is forced at s when both a and b are. Oppositely, ad∧eb

is not forced at s if either a is not forced at s or if b is not forced at s; ad∨eb

is not forced at s if a is not forced at s, and if b is not forced at s. Finally, an

implication ad⇒eb is forced at a state s if for every state s’∈Σ(K), if (s≤s’),

a is not forced at s’ or b is forced at s’. An implication ad⇒eb is not forced at

a state s if there is some state s’∈Σ(K), (s≤s’), a is forced at s’ and b is not

129

forced at s’. This gives the Nuprl encoding of the standard notion of forcing in a

Kripke structure.

Using this definition we define the forces and not forces relations as follows.

* ABS forces

forces(K,S,f)
def
= (<forces,not forces>{K}(S)(f)).1

* ABS not forces

not forces(K,S,f)
def
= (<forces,not forces>{K}(S)(f)).2

Eventually, we are interested in viewing tableau systems as Kripke structures.

The following function serves to map systems into Kripke models.

* ABS K structure

K(S)
def
= <{N:Node| N∈S} , λ<n,m>.T(n)⊆T(m), λN,x.dxe∈T(N)>

Thus, under the interpretation, states of the corresponding Kripke model con-

sist of the type whose members are those nodes in the system. The ordering on

pairs of nodes is defined by sublist inclusion on the formulas assumed to be true

in the nodes. The atomic forcing function for a state N and a variable x is defined

by membership of the atomic formula dxe among formulas assumed true at N.

The well-formedness goal shows that Systems S do indeed map to Kripke models

under K.

* THM K structure wf ∀S:System. K(S) ∈ K{i}

In the case of a failed tableau search, culminating in a system S, the corre-

sponding Kripke structure K(S) will serve as the counter-example.

Since we are interested in the possibility of reflecting our decision procedure

into Nuprl, it is better for provability to be represented by either a Nuprl extract

130

term or, more abstractly, by a formal proof. We choose the latter representation,

motivating the following section.

5.2.4 A Formal Proof Type

One form of evidence for the validity of a formula is a proof in a sound and complete

sequent calculus for propositional intuitionistic logic. In the decidability proof for

classical case presented in Chapter 4 we showed how the soundness and invertibility

of the sequent proof rules contributed to the the proof; here we will formally define

a proof type and, in the case the formula to be decided is provable, a formal proof

of that fact will be returned as evidence.

Proofs are formally modeled in two stages. A pre proof is a recursive type

representing the shape (tree structure) of a proof. A predicate is then defined to

determine when pre proofs are well-formed according to the proof rules of system

MJ, i.e. when their structure corresponds to what would be accepted as a sequent

proof. The Proof type is then defined as the subtype of pre proofs that are

well-formed.

* ABS pre proof

pre proof
def
= rec(P. Sequent

| Sequent × Sequent × P

| Sequent × Sequent × P × Sequent × P)

Thus, a pre proof is either: a single sequent, i.e. if well-formed, it is an axiom

or a sequent containing dfalsee in its hypothesis list; or it is a triple consisting of

two sequents and a pre proof, i.e. if well-formed it is a pre proof whose root was

131

derived by a proof rule with a single hypothesis and whose hypothesis is verified

by the accompanying pre proof; or it is a quintuple containing three sequents

and two proofs, i.e. if it is well-formed it is a proof in which the last rule applied

was a rule having two hypotheses, each of which is verified by the corresponding

pre proofs.

We define selectors for the various types of proof nodes and a pre proof case

analysis operator.

* ABS pre proof axiom

s\ def
= inl s

* ABS pre proof rule1

C\<H,p> def
= inr (inl <C, H, p>)

* ABS pre proof rule2

C\<H1,p1>,<H2,p2> def
= inr inr <C, H1, p1, H2, p2>

* ABS pre proof case

case P:

h\ → Axiom[h];

c1\<h1,p1> → Rule1[c1; h1; p1];

c2\<h2,p2>,<h3,p3> → Rule2[c2; h2; p2; h3; p3];
def
= case P of

inl(h) => Axiom[h] | inr(P) => case P of

inl(r2) => let c1,h1,p1 = r2 in Rule1[c1; h1; p1] |

inr(r3) => let c2,h2,p2,h3,p3 = r3 in

Rule2[c2; h2; p2; h3; p3]

132

Using the case analysis we define operators for manipulating the hypotheses

and conclusions of a pre proof.

* ABS hyp

Hyps(p)
def
= case p:

c\ → [];

c\<h,p’> → (h::[]);

c\<h,p>,<h’,p’> → (h::h’::[]);

* ABS concl

Concl(p)
def
= case p:

c\ → c;

c\<h,p> → c;

c\<h,p>,<h’,p’> → c;

The proof rules of the calculus are defined by the two definitions, one for rules

having a single hypothesis and another for rules having two hypotheses.

* ABS proof rule1

c\h is a rule instance
def
=

∃a,b:Formula.
((ad∨eb)∈ Concl(c) ∧ h = <Hyps(c),a::Concl(c)>)

∨ ((ad∨eb)∈ Concl(c) ∧ h = <Hyps(c),b::Concl(c)>)

∨ ((ad⇒eb)∈ Concl(c) ∧ h = <a::Hyps(c), b::[]>)

∨ ((ad∧eb)∈ Hyps(c) ∧ h = <a::Hyps(c), Concl(c)>)

∨ ((ad∧eb)∈ Hyps(c) ∧ h = <b::Hyps(c), Concl(c)>)

The clauses of proof rule1 correspond to the five rules (∨r1 , ∨r2 , ⇒r , ∧l1 ,

and ∧l2) of system MJ having only one hypothesis (see Figure 5.1). Consider

the case when c\h is in instance of the ⇒r rule. There must exist a and b such

that the formula (ad⇒eb) occurs in the conclusion of sequent c, and h must be

the sequent <a::Hyps(c), b::[]>. The equality used is the type equality for

133

sequents (defined as pairs of formula lists) and so order counts; this is not the

semantic (permutation) equality on sequents. The reader can verify by inspection

that these clauses match the rules of system MJ.

The rules (∨l, ∧r, and ⇒r) are characterized by the following definition.

* ABS proof rule2

c\<h1,h2> is a rule instance
def
=

∃a,b:Formula
((ad∧eb)∈ Concl(c) ∧ h1 = <Hyps(c), a::Concl(c)>

∧ h2 = <Hyps(c), b::Concl(c)>)

∨ ((ad∨eb)∈ Hyps(c) ∧ h1 = <a::Hyps(c), Concl(c)>

∧ h2 = <b::Hyps(c), Concl(c)>)

∨ ((ad⇒eb)∈ Hyps(c) ∧ h1 = <Hyps(c), a::Concl(c)>)

∧ h2 = <b::Hyps(c), Concl(c)>

Now we can define well-formedness for pre-proofs. A pre-proof is well-formed

if:

i.) its leaves are all instances of the falsel rule or the Ax rule, and

ii.) every non-leaf node matches a conclusion of some rule instance and its chil-

dren match the premises of that rule.

This characterization is formalized by the following recursive function.

* ABS well formed

p is a Proof
def
=

(letrec isap P =

case P:

c\ → (∃f∈Hyps(c).(f∈Concl(c)) ∨ dfalsee∈Hyps(c));

c\<h,p> → (c\h is a rule instance ∧

134

h = Concl(p) ∧
isap p);

c\<h,p>,<h’,p’> → (c\<h,h’> is a rule instance ∧
h = Concl(p) ∧
h’ = Concl(p’) ∧
isap p ∧
isap p’);

) p

This definition gives the means to define the proof type.

* ABS proof Proof
def
= {p:pre proof| p is a Proof}

We also formalize the notion of a proof P proving a sequent S.

* ABS proves P proves S
def
= Concl(P) = S

5.2.5 Eligible Systems and System Completeness

The tableau construction is defined inductively, starting with an initial system

containing a single node. We do not explicitly define a tableau type or a type

of tableau rules: the tableau is implicit in the structure of the inductive proof

and the rules are implicit in the proof steps instantiating the inductive hypothesis.

Systems, incrementally expanded during the tableau construction, correspond to

paths in the tableau. Should we collect the set of expanded systems, we could

reconstruct an explicit tableau, but there is no need. Even though we do not

explicitly define tableaux or tableau rules, we will sometimes refer to a step of

tableau development as the application of a tableau rule.

135

There is a close correspondence between the steps of tableau construction and

the proof rules of system MJ. For each proof rule there is a corresponding step

of tableau development. For proof rules having a single premise there is a corre-

sponding tableau development step in which an existing node is extended or, in

the case of ⇒r, the tableau system itself is extended by the addition of a new node.

For proof rules having two premises, the corresponding tableau step extends an

existing node in the tableau in two different ways, invoking the induction hypoth-

esis (unfolding a step of recursion) on these extended systems. This bifurcation of

systems corresponds to a branching in the tableau structure. We call the tableau

steps corresponding to rules other than the ⇒r rule local rules, as they only extend

existing nodes.

When a node has been developed as far as possible under the local rules we

say it is node complete. Having defined node completeness, we focus our attention

on eligible systems, systems restricted to contain at most one member that is not

node complete. Tableau systems containing all possible node extensions induced

by occurrences of ⇒r are called system complete.

The underlying tableau construction starts with an eligible system. If all nodes

are complete and the system is complete, the tableau is complete. Since the system

is eligible, it contains at most one node incomplete node. This node is developed

as far as possible under the local rules, each step preserving the eligibility of the

system. Once the sole incomplete node has been completed, the system is exam-

ined to see if it is system complete; if so we have developed the system as far

as possible and the tableau is complete; if not then the system is extended by

136

applying the ⇒r rule to some previously unextended node thereby extending the

system. This extension preserves eligibility. This procedure is repeated until the

system is complete. The termination argument for this procedure is given below.

Now, we give type theoretic definitions for node completeness, eligibility, and

system completeness.

5.2.5.1 Node Completeness

A node is node complete when further development of that node under the local

tableau rules adds no new information. We formalize this condition by the following

definition.

* ABS node complete

nComplete(N)
def
=

∀f∈(T(N)).case f:
dxe → True;
dfalsee → True;

ad∧eb → (a∈(T(N)) ∧ b∈(T(N)));

ad∨eb → (a∈(T(N)) ∨ b∈(T(N)));

ad⇒eb → (a∈(F(N)) ∨b∈(T(N)));

∧ ∀f∈(F(N)).case f:
dxe → True;
dfalsee → True;

ad∧eb → (a∈(F(N)) ∨ b∈(F(N)));

ad∨eb → (a∈(F(N)) ∧ b∈(F(N)));

ad⇒eb → True;

Note that this is a decidable property.

* THM decidable node complete ∀N:Node. Dec(nComplete(N))

137

5.2.5.2 Eligible Systems

Given our definition of node completeness, we define the subclass of systems that

are eligible. In [ACU], a system is eligible if it contains at most one node that is

not complete. Here, we strengthen the eligibility condition, so a system is eligible

if either every node in the system is complete or if the only incomplete node is at

the head of the list.

* ABS eligible

Eligible(S) ==

(∀N∈S. nComplete(N))

∨ let N::rest = S in ¬nComplete(N) ∧ (∀N’∈rest. nComplete(N’))

The strength of this definition of eligibility is not as fully utilized as it might

be in the main proof.

The incomplete node in an eligible system (if there is one) will be called the

eligible node.

5.2.5.3 System Completeness

New nodes are added to a system when a negative occurrence of an implication is

decomposed.

A node N containing a negative occurrence of an implication of the form a⇒b

is subsumed by any node N’ if T(N)⊂T(N’) and a∈T(N’) and b∈F(N’).

We only wish to extend a system with a new node when it does not already

contain a node which subsumes it. Otherwise, applying the decomposition tableau

rule is redundant. A system is complete when every node containing a negative

occurrence of an implication is subsumed by some node already in the system.

138

The following predicate defines system completeness.

* ABS system complete

sComplete(S)
def
=

∀N∈S.

∀f∈F(N).

case f: dxe → True;
dfalsee → True;

ad∧eb → True;

ad∨eb → True;

ad⇒eb → ∃N’∈S.(T(N) ⊆ T(N’) ∧ a∈T(N’) ∧ b∈F(N’));

The following lemma, an immediate consequence of the definition of system

completeness, characterizes incomplete systems.

* THM not system complete

∀S:ESystem
¬sComplete(S)

⇒ (∃N∈S

∃a,b:Formula. (ad⇒eb)∈F(N)

∧ (∀N’∈S . ¬a∈T(N’) ∨ ¬b∈F(N’)))

5.2.6 Termination

Underwood’s termination argument for the construction, as presented in [ACU],

is based on a lexicographic ordering of two measures on systems. Ultimately they

depend on the fact that tableau construction has the subformula property, i.e. in a

tableau construction from an initial system S, only subformulas of formulas already

occurring in S ever appear in the tableau.

139

Roughly, the first measure (i1) is on the number of nodes that may ever be

added to a system. The second measure (i2) is on the number of formulas that may

ever be added to a node. These measures are calculated by computing conservative

upper bounds on the sizes of the respective structures and then taking the difference

between these bounds and the actual sizes of the objects being constructed as the

measure. Since nodes and systems grow during the tableau construction phase, the

difference decreases. Thus, at each step of the tableau construction process, one

or the other measure decreases, which is enough to show termination. The bounds

are never achievable in an actual tableau development and so we terminate the

process when all nodes are complete and when the system is complete.

The lexicographic measure is defined as follows.

*ABS System lt

S < S’
def
= i1(S) < i1(S’) ∨ (i1(S) = i1(S’) ∧ i2(S) < i2(S’))

Under the lexicographic measure induction principle used in the proof, the mea-

sures do not contribute to the computational content of the program extracted from

the proof. They have not been formalized in Nuprl. Indeed, it would be possible to

verify the properties required of them in another system, even a classical system. In

[CU96], Underwood and Caldwell present arguments that would allow properties

of the measure functions to be verified in a classical system like PVS [OS95]. This

is possible because the measures do not contribute to the computational content.

The stipulated lemmas related to the correctness of the measure functions and

the steps of tableau development are listed in Appendix A. They have not been

proved in Nuprl, but they are assumed in the proof presented below. Stipulated

140

lemmas are added in Nuprl by creating the requisite theorem object and then

declaring it to be true by Fiat. Unfortunately, the current implementation of

Nuprl does not indicate uses of Fiat; however, in Version 5 of the Nuprl system,

occurrences of stipulated lemmas will be noted in the library.

Each of the stipulated lemmas characterizes one step of tableau development.

We present one here.

*THM and 1 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∧eb)∈(T(N)) ⇒ ¬(a∈(T(N))) ⇒
(<a::(T(N)), F(N)>::remove(N;S)) ∈ {k:ESystem| k < S}

The informal proofs of the stipulated lemmas are justified by arguments given

in [ACU]. In every case (except the implies negative rule) the argument that

the extended system is eligible is based on the fact that the element removed is

the incomplete node, and it is replaced in the system by the extended node. It

does not matter if this node is complete or not, since the new system is eligible

if the original one was. In the case of implies negative rule, by assumption,

every node in the system S is complete and so the extended system can have at

most one incomplete node, which has been added at the head of the list S, thus

the system is eligible.

The reader can easily see that, in every case, the measure of the extended

system is less than the measure of the system S. See [ACU] for a more detailed

argument to this effect.

141

5.3 The Formal Proof

In this section we present an informal account of the proof to orient the reader.

This is followed by the formal proof of intuitionistic decidability which is followed

by the formal proof of the base case construction.

5.3.1 An Informal Account

We wish to prove the following theorem.

* THM multi decide

∀S:ESystem
(∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})

∨ {K:K{i}| ∃f:Node → Σ(K)

∀N:{N:Node| N∈S}
∀F:Formula. (F∈(T(N)) ⇒ forces(K,f N,F))

∧ (F∈(F(N)) ⇒ not forces(K,f N,F))}

The proof is by induction on eligible systems, i.e. on systems having at most

one node that is not node complete. The induction principle is the lexicographic

measure induction presented in Chapter 3, and we apply it here using the measure

functions i1 and i2 defined above. Recall that the first measure decreases with

every node added to the system while the second decreases as formulas are added to

the eligible node. The resulting induction hypothesis asserts that the the theorem

holds for all systems below S in the lexicographic ordering.

Consider an arbitrary eligible system S; either it contains an eligible node or not.

Suppose there is one; then since eligible nodes are expanded in place by adding sub-

formulas of formulas already occurring in S, the tableau expansion steps for these

142

rules reduce the second measure. The proof rules ∨r1, ∨r2, ∧l1, and ∧l2 corre-

spond to local tableau steps and all have one premise. In these cases, the induction

hypothesis is instantiated with the system constructed from S by extending the

eligible node with subformulas as specified by the corresponding proof rule. The

proof rules ∨l, ∧r, and ⇒ l all have two premises and so we instantiate two copies

of the induction hypothesis; one with the system constructed by expanding the el-

igible node with the subformulas specified in the left premise of the corresponding

proof rule; and the other with a system created by expanding the eligible node

by adding subformulas as specified by the right premise of the corresponding rule.

In each case, the result of instantiating the induction hypothesis is either a node-

proof pair for the extended (lexicographically smaller) system or it is a Kripke

counter-example for the extended system. Whenever a Kripke counter-example

exists, it serves to refute the S as well. In the case node-proof pairs result from

the instantiated induction hypotheses, they are used to identify a node in S and

to construct a proof for it. The details of these constructions are elaborated below

in the presentation of the formal proof.

Now, suppose there is no eligible node in S. Then we consider whether the

system is complete or not. If it is not complete then there is some node containing

an occurrence of ⇒r which has not been accounted for in the system. This is the

case that distinguishes the intuitionistic case from the classical case. Recall from

Chapter 4 the classical proof rule for implies on the right.

q, hyp ` r, M, N

hyp `M, qd⇒er, N

143

The antecedent of the premise of this rule retains the formulas in M and N. The

corresponding proof rule for implication on the right in system MJ eliminates all

the formulas in M and N from the antecedent of the premise.

q,H ` r

H ` M, qd⇒er,N
⇒r

Thus, the intuitionistic proof rule effectively chooses which of the formulas among

M,r,N is to be proved. If the wrong choice is made, the proof may not succeed.

The search procedure implemented by the intuitionistic tableau methods takes this

impermutability of inference steps into account by introducing new tableau nodes

into the system each time an implication on the right (that has not been expanded)

is encountered. By adding new nodes in this way, different systems represent

the search for different possible proofs, each resulting from the application of an

⇒r rule at a different point in the proof. The classical tableau rules are all local

and thus all rules are permutable so this consideration does not arise. Based on

this discussion we see that one or more nodes may cause a system to be incomplete,

because it contains one or more nodes having implications on the right that have

not been fully explored in the tableau construction yet.

Continuing with the proof; choose one of the nodes causing the system to be

incomplete, call it N. We decompose the induction hypothesis by extending S with

a new node constructed from N and accounting for the application of the ⇒r rule.

This extended system is lower in the lexicographic ordering of systems since the

measure i1 is reduced whenever a node is added to S. As above, the instantiation

of the induction hypothesis results either in a node-proof pair or a Kripke counter-

144

example for the expanded system. These structures are used to construct the same

for the system S.

Finally, if all nodes are complete and the system is complete, then we are

in the base case where one of a node-proof pair or a Kripke counter example is

constructed directly without reference to the induction hypothesis. If the system

contains a node that, viewed as a sequent, is an axiom, then that node is returned

paired with the instance of the axiom rule. If not, then a Kripke counter-model is

constructed by applying the function K to the system, producing a counter-model

of the form

<{N:Node| N∈S} , λ<n,m>.T(n)⊆T(m), λN,x.dxe∈T(N)>

The details of the verification that this is indeed a Kripke counter-example

satisfying the properties specified of it in the main theorem are left until the pre-

sentation of the formal proof below.

This completes the informal proof of decidability the intuitionistic case.

5.3.2 Intuitionistic Decidability

In this section we present the formal proof in some detail.

* THM multi decide

∀S:ESystem
(∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})

∨ {K:K{i}| ∃f:Node → Σ(K)

∀N:{N:Node| N∈S}
∀F:Formula. (F∈(T(N)) ⇒ forces(K,f N,F))

∧ (F∈(F(N)) ⇒ not forces(K,f N,F))}

145

The proof is by lexicographic measure induction on the eligible system S. The

induction principle itself is justified by the lexicographic measure induction lemma

presented in Chapter 3. Invoking the tactic LexOrderMeasureInd automatically

instantiates it with the proper induction hypothesis. After the induction step,

Nuprl displays the following proof state.

1. S: ESystem

2. ∀k:{k:ESystem| k < S}
(∃N:{N:Node| N∈k} . {p:Proof| p proves asSequent(N)})
∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N:Node| N∈k}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
` (∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})

∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}

Thus, we may assume that there is either a proof or a Kripke counter example

for eligible systems lexicographically below S.

To save space in the presentation of the proofs: we will write C to denote the

conclusion of this sequent; we will write IH as an abbreviation for the term appear-

ing in hypothesis (2) above; and we will only indicate new or changed hypotheses.

Redisplaying this sequent under these conventions it appears as:

1. S: ESystem

2. IH
` C

146

The proof proceeds by first deciding if all nodes in S are node complete. If

not then some local tableau rule is applicable, and then one or two instances of

IH are instantiated with the node(s) corresponding to those generated by the

appropriate tableau expansion rule. The result of the instantiation is either a

proof or a Kripke counter-example for the inductively smaller case(s), which are

in turn used to construct a proof or counter-example satisfying the main goal of

the theorem at that point in the proof.

If all the nodes in the system are node complete, then no local tableau rules

apply to any node in S. Now it must be decided whether the system is complete.

If not, then a new node is added to the system as specified by the ⇒r tableau

rule and the induction hypothesis is invoked on the extended system, the result of

which is used to discharge this case.

If the system is complete, then no tableau rule applies. This is the base case

and is discharged by appeal to the following lemma.

* THM decidability base

∀S:ESystem
sComplete(S)

⇒ ∀N∈S.nComplete(N)

⇒ (∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})
∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}

The proof of the base case contains the construction of the initial proof or

Kripke model asserted to exist by the theorem. The proofs of the inductive steps

147

specify how these initial structures are extended by each call to the induction

hypothesis. We delay the proof of this important theorem until after we have

completed the main theorem.

To decide whether any local tableau rules apply we invoke the following tac-

tic: Decide d∀N∈S.nComplete(N)e. This results in two cases. We consider the

negative case first (i.e. the case where there is an incomplete node in S).

5.3.2.1 S contains an incomplete node

A direct consequence of a node not being complete is that some local tableau rule

must apply. This idea is captured by the following lemma.

* THM not node complete

∀N:Node
¬nComplete(N)

⇒ (∃a,b:Formula
((ad∧eb)∈(T(N)) ∧ (¬a∈(T(N)) ∨ ¬b∈(T(N))))

∨ ((ad∨eb)∈(T(N)) ∧ ¬a∈(T(N)) ∧ ¬b∈(T(N)))

∨ ((ad⇒eb)∈(T(N)) ∧ ¬a∈(F(N)) ∧ ¬b∈(T(N)))

∨ ((ad∧eb)∈(F(N)) ∧ ¬a∈(F(N)) ∧ ¬b∈(F(N)))

∨ ((ad∨eb)∈(F(N)) ∧ (¬a∈(F(N)) ∨ ¬b∈(F(N)))))

We take up the proof of decidability after having named the incomplete node.

3. ¬∀N∈S.nComplete(N)

4. N: {N:Node| N∈S}
5. ¬nComplete(N)

` C

148

Forward chaining through the lemma not node complete with hypothesis (5)

results in five subgoals, one for each local tableau rule and characterized by one of

the clauses of the lemma. Each clause corresponds to a case where the consequences

of some formula assumed to be true or false have not yet been accounted for in the

tableau. We will call such formula occurrences eligible.

An eligible conjunction occurs positively:

6. a: Formula

7. b: Formula

8. (ad∧eb)∈(T(N))

9. ¬a∈(T(N)) ∨ ¬b∈(T(N))

` C

By hypothesis (9), at least one of a or b is not among the positive formu-

las of N. To proceed we split on hypothesis (9). Guided by the rules for ∧l1

and ∧l2 respectively: in the first case we instantiate the induction hypothesis (2)

with the system <a::(T(N)), F(N)>::remove(N;S) ; and in the second case with

<b::(T(N)), F(N)>::remove(N;S). Since the proofs of the two cases are nearly

identical, we present the first in some detail, leaving the other to the imagination

of the reader.

The instantiation of the induction hypothesis results in a well-formedness obli-

gation of the following form.

9. ¬a∈(T(N))

` <a::(T(N)), F(N)>::remove(N;S) ∈ {k:ESystem| k < S}

This is proved by appeal to and 1 positive rule presented above.

The main thread of the proof continues with the following subgoal.

149

10. (∃N:{N1:Node| N1∈(<a::(T(N)), F(N)>::remove(N;S))}
{p:Proof| p proves asSequent(N)})

∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N1:Node| N1∈(<a::(T(N)), F(N)>::remove(N;S))}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
` C

Decomposing the disjunct in hypothesis (10) results in two subgoals: in one,

there is a proof of some node in the system <a::(T(N)),F(N)>::remove(N;S),

and in the other there is a Kripke counter-example for some node in the system.

First, consider the case where there is a proof.

10. N1: Node

11. N1∈(<a::(T(N)), F(N)>::remove(N;S))

12. p: Proof

[13]. p proves asSequent(N1)

` ∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)}

By (11) we know that either N1 is <a::(T(N)), F(N)> or it’s a member of the

list remove(N;S). In the first case, we use N as witness for the existential in the

conclusion resulting in the following proof state.

11. N1 = <a::(T(N)), F(N)>

12. p: Proof

[13]. p proves asSequent(N1)

` {p:Proof| p proves asSequent(N)}

We construct a witness for p using the ∧l1-rule as a model. Specifically, the

witness is the pre-proof term asSequent(N)\<asSequent(N1),p>. The subgoal

induced by this decomposition obliges a proof that this term is indeed a proof and

150

that it proves N. The reader can verify this for himself by referring to the definition

of the proof type given above and by referring to the ∧l1-rule.

Now, suppose instead that N1 is in remove(N;S)). Then p is already a proof

of some node in S and so we eliminate the existential N in the conclusion with N1

and use p to witness the proof.

Now consider the case where, instead of a proof, we have a Kripke counter-

example, then we must show:

10. K: K{i}
11. g: Node → Σ(K)

12. ∀N:{N1:Node| N1∈(<a::(T(N)), F(N)>::remove(N;S))} .

∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

` ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

Here we must supply a function that maps nodes to states of K such that every

formula in the nodes of S is forced or not forced according to its membership in the

positive or negative part. By the induction hypothesis, we already have a function

g mapping nodes in the system <a::(T(N)), F(N)>::remove(N;S) to states of K.

Since this step of tableau development has replaced the node N with <a::(T(N)),

F(N)>, we construct g’ to first check if the argument node is equal to N and if

so we map it to whatever state g(<a::(T(N)), F(N)>) does; otherwise, we just

apply g to the argument. The following lambda term witnesses this function.

λn.if (n = N) then g(<a::(T(N)), F(N)>) else g(n) fi

151

We apply this witness and then decompose the universal quantifiers in the conclusion.

Reducing the applications of the witness in the conclusion and case splitting on

whether N1 = N or not results in two subgoals. The first having the following form:

14. (N1 = N)

` (f∈(T(N1)) ⇒ forces(K,g(<a::(T(N)), F(N)>),F))

∧ (f∈(F(N1)) ⇒ not forces(K,g(<a::(T(N)), F(N)>),F))

and, the other having the form:

14. ¬(N1 = N)

` (f∈(T(N1)) ⇒ forces(K,g(N1),f))

∧ (f∈(F(N1)) ⇒ not forces(K,g(N1),f))

Both of these subgoals are discharged by backchaining through hypothesis (11).

This completes this branch of the proof. An eligible disjunction occurs posi-

tively: This case requires two instances of the induction hypothesis so we pick up

the proof after having copied it.

1. S: ESystem

2. IH
3. IH
4. ¬∀N∈S.nComplete(N)

5. N: {N:Node| N∈S}
6. ¬nComplete(N)

7. a: Formula

8. b: Formula

9. (ad∨eb)∈(T(N))

10. ¬a∈(T(N))

11. ¬b∈(T(N))

` C

152

Guided by the ∨l-rule, we instantiate the first occurrence of IH with the system

<a::(T(N)), F(N)>::remove(N;S). This results in a well-formedness goal to show

that this system is both eligible and lexicographically below S.

` (<a::(T(N)), F(N)>::remove(N;S)) ∈ {k:ESystem| k < S}

This is proved by backchaining through the stipulated lemma

or 1 positive rule shown in Appendix A.

Taking up the main line of the proof we see.

12. (∃N:{N1:Node| N1∈(<a::(T(N)), F(N)>::remove(N;S))}
{p:Proof| p proves asSequent(N)})

∨ {K:K{i}|
∃g:Node → Σ(K)

∀N:{N1:Node| N1∈(<a::(T(N)), F(N)>::remove(N;S))}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
` C

Evidently, by hypothesis (12), there are two cases: either there is a proof of a

node in the system; or there is a Kripke counter-example for this system.

We consider the second case first, i.e. the case that there is a Kripke model K

which is counter-example. To complete this branch of the proof there is no call to

instantiate the second instance of IH. Having already witnessed the existential in

the conclusion with K, the proof appears as follows.

12. K: K{i}
13. g: Node → Σ(K)

14. ∀N:{N1:Node| N1∈(<a::(T(N)), F(N)>::remove(N;S))}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

153

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

` ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

To eliminate the existential in the conclusion we appeal to the argument given

above (in the case an eligible conjunction occurs positively) and supply the witness

defined to be the following function term.

λn.if (n = N) then g(<a::(T(N)), F(N)>) else g(n) fi

This results in two subgoals, both of which are solved by backchaining through

the hypotheses. This completes the case where the instantiation of the induction

hypothesis with the system <a::(T(N)), F(N)>::remove(N;S) induced a Kripke

counter-example.

Now we consider the case where splitting the induction hypothesis results in

the assertion that a proof exists.

12. N1: Node

13. N1∈(<a::(T(N)), F(N)>::remove(N;S))

14. p: Proof

[15]. p proves asSequent(N1)

` C

Now, either N1 is the node <a::(T(N)), F(N)>, or it occurs as a member of

remove(N;S) (hence it was in S). Consider the second case first.

If N1 was already in S (but was not N) then, since p is a proof of N1, N1 and

p are witnesses for the first disjunct of the conclusion. This is a case where the

tableau step did not contribute to the end result.

154

If N1 is the node <a::(T(N)), F(N)>, then we instantiate the second instance

of the induction hypothesis with <b::(T(N)), F(N)>::remove(N;S). This gives

the following well-formedness goal.

` (<b::(T(N)), F(N)>::remove(N;S)) ∈ {k:ESystem| k < S}

It is proved by appeal to the stipulated lemma or 2 positive rule shown in

Appendix A.

Continuing with the main subgoal resulting from the second instantiation of

the induction hypothesis, we see the following.

16. (∃N:{N1:Node| N1∈(<b::(T(N)), F(N)>::remove(N;S))}
{p:Proof| p proves asSequent(N)})

∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N1:Node| N1∈(<b::(T(N)), F(N)>::remove(N;S))}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
` C

By (16), either there is a proof or a Kripke counter-example. In the case there

is a proof, either it is a proof of <b::(T(N)), F(N)> or it is a proof of some already

existing node of S. The second case is proved, as it was above, by providing N2 and

p as witnesses.

Instead, assume the proof p1 is of <b::(T(N)), F(N)>, i.e.:

16. N2: Node

17. N2∈(<b::(T(N)), F(N)>::remove(N;S))

18. p1: Proof

[19]. p1 proves asSequent(N2)

` ∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)}

155

We discharge the existential with the witness N and, following ∨l-rule, witness

the proof in the set type by the pre-proof term

asSequent(N)\<asSequent(N1),p>,<asSequent(N2),p1>

That it is a proof is verified by unfolding the definition and verifying that it does

indeed match a rule instance.

Now, suppose instead that there was a Kripke counter-example K for the system

<b::(T(N)), F(N)>::remove(N;S)). We pick up the proof after having witnessed

the existential in the conclusion by K.

16. p proves asSequent(N1)

17. K: K{i}
18. g: Node → Σ(K)

19. ∀N:{N1:Node| N1∈(<b::(T(N)), F(N)>::remove(N;S))}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

` ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

We supply the following witness to eliminate g in the conclusion.

λn.if (n = N) then g(<b::(T(N)), F(N)>) else g(n) fi

As above, this induces two subgoals, each of which is proved by backchaining

through the hypotheses. This complete the proof of the case where an eligible

disjunction occurs in the positive part of the eligible node.

156

So far, we have shown two cases, one requiring one instance of the induction

hypothesis, and the other requiring two. The proofs of the remaining cases where

a local tableau rule applies are similar to one or the other of these two presented

so far. These two cases serve as models for those remaining and so we gloss over

the formal details of the proofs in the remaining cases.

An eligible implication occurs positively:

8. (ad⇒eb)∈(T(N))

9. ¬a∈(F(N))

10. ¬b∈(T(N))

` C

In the case of a positive implication, the proof requires two instances of the

induction hypothesis. Use the system (<b::(T(N)), F(N)>::remove(N;S)) to

instantiate the first instance. The well-formedness goal induced by this proof step

is discharged by backchaining through the stipulated lemma imp 1 positive rule

shown in Appendix A. The instantiation of the induction hypothesis results either

in a node proof pair or a Kripke counter-example. If it is a counter-example, this

branch of the proof is done since that counter-example serves for the conclusion

as well. If it is a node proof pair of the form <N1,p1>, we check to see if N1 is

a member of remove(N;S). If so, then p1 is a proof of some node in S and this

branch of the proof is easily completed. Otherwise, N1 is the node <b::(T(N)),

F(N)>. In this case a second copy of the induction hypothesis is instantiated, this

time with the system (<T(N), a::(F(N))>::remove(N;S)). The well-formedness

goal for this step is discharged by the stipulated lemma imp 2 positive rule in

Appendix A. Again, the instantiated induction hypothesis gives a node proof

157

pair or a Kripke counter-example. As before, the same counter-example serves for

S completing the proof in that case. If, on the other hand, a node proof pair,

say <N2,p2> has been returned, then either N2 is <T(N), a::(F(N))> or it is

in remove(N;S). In the first case, we construct a proof of N by the construction

asSequent(N)\<asSequent(N1),p1>,<asSequent(N2),p2>. In the second, N2 is

in S and p2 is a proof of N2 satisfying this goal. This completes the case where an

eligible implication occurs positively.

An eligible conjunction occurs negatively:

6. a: Formula

7. b: Formula

8. (ad∧eb)∈(F(N))

9. ¬a∈(F(N))

10. ¬b∈(F(N))

` C

This case requires two instances of the induction hypothesis. The first is instan-

tiated with the system (<(T(N)),a::F(N)>::remove(N;S)). The well-formedness

goal induced by this proof step is discharged by appeal to the stipulated lemma

and 1 negative rule shown in Appendix A. The instantiation of the induction

hypothesis results either in a node proof pair or a Kripke counter-example. If it is a

counter-example, this branch of the proof is done since that counter-example serves

for the conclusion as well. If it is a node proof pair of the form <N1,p1>, we check to

see if N1 is a member of remove(N;S). If so, then p1 is a proof of some node in S and

this branch of the proof is complete. Otherwise, N1 is the node <T(N), a::F(N)>.

In this case a second copy of the induction hypothesis is instantiated, this time

158

with the system (<T(N), b::(F(N))>::remove(N;S)). The well-formedness goal

for this step is discharged by the stipulated lemma imp 2 positive rule. Again,

the instantiated induction hypothesis gives a node proof pair or a Kripke counter-

example. The counter-example serves for for S completing this branch of the proof.

If, on the other hand, a node proof pair, say <N2,p2> has been returned, then either

N2 is <T(N), b::(F(N))> or it is in remove(N;S). In the first case,

asSequent(N)\<asSequent(N1),p1>,<asSequent(N2),p2>

is a proof of N matching then ∧r-rule. In the second, N2 is in S and p2 is a proof

of N2 satisfying this goal. This completes the case where an eligible conjunction

occurs negatively.

An eligible disjunction occurs negatively:

8. (ad∨eb)∈(F(N))

9. ¬a∈(F(N)) ∨ ¬b∈(F(N))

` C

In the case of a negative occurrence of an eligible disjunction , either ¬a∈(F(N))

or ¬b∈(F(N)). The cases are symmetrical. In the first the induction hypothesis is

instantiated with (<T(N), a::F(N)>::remove(N;S)), in the second with (<T(N),

b::F(N)>::remove(N;S)). The well-formedness goals generated by these instanti-

ations are discharged by the lemmas or 1 negative rule and or 2 negative rule

shown in Appendix A. In both cases, the instantiated induction hypotheses as-

sert the existence of either a node proof pair (say <N1,p1>) or a Kripke counter-

example. For both instantiations, the counter-example refuting the extended sys-

tem serves to refute S, thereby satisfying the goal of the theorem. Now consider

159

the branch of the proof where p1 is a proof of N1 and where the node N1 is either

<T(N), a::F(N)> or it is in remove(N;S). If N1 is a member of remove(N;S), then

it is a member of S. Since p1 is a proof of N1, choosing N1 and p1 as the witnesses

for the first disjunct of the conclusion completes this branch of the proof. Alter-

nately, if N1 = <T(N), a::F(N)> then asSequent(N)\<asSequent(N1),p1> is a

proof of N since it is an instance of the proof rule ∨r1-rule. The case for (<T(N),

b::F(N)>::remove(N;S)) is symmetric and matches the ∨r2-rule.

This completes the proof of the case where S contains an incomplete node. Next

we consider the case where all nodes are complete but the system is not system

complete.

5.3.2.2 S is not system complete

We reiterate the entire proof state at this point.

1. S: ESystem

2. ∀k:{k:ESystem| k < S}
(∃N:{N:Node| N∈k} . {p:Proof| p proves asSequent(N)})
∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N:Node| N∈k}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
3. ∀N∈S.nComplete(N)

4. ¬sComplete(S)

` C

160

Forward chaining through the lemma not system complete we add the fol-

lowing five hypotheses telling us that there is an eligible negative occurrence of an

implication in some node of the system.

5. N: {N:Node| N∈S}
6. a: Formula

7. b: Formula

8. (ad⇒eb)∈(F(N))

9. ∀N’:{N’:Node| N’∈S} . ¬a∈(T(N’)) ∨ ¬b∈(F(N’))

` C

Decomposing the induction hypothesis with system <a::(T(N)),b::[]>::S

yields two subgoals, the first showing that, under the preexisting hypotheses, this

system is both an eligible system and is below S in the lexicographic ordering.

` (<a::(T(N)), b::[]>::S) ∈ {k:ESystem| k < S}

This subgoal is discharged by backchaining through the stipulated lemma

imp negative rule, which is informally justified by noting that S is node complete

and so the system (<a::(T(N)), b::[]>::S) is eligible, and by appeal to the

definitions of the measure i1.

The second subgoal, carrying the main thread of the proof, is as follows.

2. ∀N∈S.nComplete(N)

3. ¬sComplete(S)

4. N: {N:Node| N∈S}
5. a: Formula

6. b: Formula

7. (ad⇒eb)∈(F(N))

8. ∀N’:{N’:Node| N’∈S} . ¬a∈(T(N’)) ∨ ¬b∈(F(N’))

9. (∃N:{N1:Node| N1∈(<a::(T(N)), b::[]>::S)} .

161

{p:Proof| p proves asSequent(N)})
∨ {K:K{i}| ∃g:Node → Σ(K)

∀N:{N1:Node| N1∈(<a::(T(N)), b::[]>::S)}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
` C

Decomposing the disjunction in (10) (and resulting subterms) results in two

subgoals: the first asserting that there is a proof of some node N1 in the extended

system (<a::(T(N)), b::[]>::S); and the second asserting that there is a Kripke

counter-example for some node in the extended system.

There is a proof of a node in the extended system:

9. N1: Node

10. N1∈(<a::(T(N)), b::[]>::S)

11. p: Proof

[12]. p proves asSequent(N1)

` ∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)}

By hypothesis (10) we know that N1 is either <a::(T(N)), b::[]> or it is some

other node already in S. If it is a node in S, use N1 and p to witness the existentials

in the goal. If N1 is <a::(T(N)), b::[]> then we need to construct a proof.

First we discharge the existential with N (thereby unhiding hidden hypotheses)

and yielding the following subgoal.

12. p proves asSequent(<a::(T(N)), b::[]>)

` {p:Proof| p proves asSequent(N)}

We discharge this proof obligation, completing this branch of the proof, by

appeal to the following lemma.

162

* THM imp negative proof

∀G:Sequent. ∀a,b:Formula.
(ad⇒eb)∈Concl(G)

⇒ (∀p:Proof. p proves <a::Hyps(G), b::[]>

⇒ (∃p’:Proof. p’ proves G))

There is a Kripke counter-example for a node in the extended system:

9. K: K{i}
[10]. ∃g:Node → Σ(K)

∀N:{N1:Node| N1∈(<a::(T(N)), b::[]>::S)}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

` {K:K{i}| ∃g:Node → Σ(K)

∀N:{N:Node| N∈S} .

∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}

Decomposing the set type in the conclusion with witness K unhides hypothesis

(10). Decomposing it and then using g to witness the second existential, followed

by some house-keeping steps, results in the following proof state.

10. g: Node → Σ(K)

11. ∀N:{N1:Node| N1∈(<a::(T(N)), b::[]>::S)}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))

12. N1: {N:Node| N∈S}
13. f: Formula

` (f∈(F(N1)) ⇒ forces(K,g(N1),f))

∧ (f∈(T(N1)) ⇒ not forces(K,g(N1),f))

Backchaining through the hypotheses (and then discharging the well-formedness

goal N1∈(<a::(T(N)), b::[]>::S)) completes this branch of the proof.

163

It also completes the case where all nodes in the system are complete, but

the system was not complete. In the remaining case, all nodes in the system are

complete as is the system.

This completes the proof of the theorem.

5.3.3 The Base Case

The base case of the decidability theorem occurs when both the node and the

system are complete. Then, either there is a proof of some node in the system, or

there is a Kripke counter-example for the system. Thus, it is in the base case that

the initial proofs and counter-examples are constructed.

The overall strategy for the proof is to check if there are any nodes in S that,

when viewed as sequents, are instances of one of the axioms. If not, it is shown that

the system encodes a Kripke counter-example. Above, we presented a mapping

K:System →Kripke. The main body of this proof is to show that for eligible

systems S not containing any instances of axioms, K(S) is in fact a Kripke counter-

example for S.

Recall the statement of the lemma.

* THM decidability base

∀S:ESystem
sComplete(S)

⇒ ∀N∈S.nComplete(N)

⇒ (∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})
∨ {K:K{i}| ∃g:Node → Σ(K)

164

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}

First we decide if there is any node in the system having a non-empty intersec-

tion among those formulas it assumes true and those it assumes false. We pick up

the proof after having executed the Decide tactic on the following term.

∃N:{N:Node| N∈S}.T(N)∩F(N)

Here, M∩N is a proposition that is true when the lists M and N share a common

element. Clearly the existence of such a node is a decidable property and the proof

obligation to show that is automatically discharged by the system based on the

lemmas decidable exists and decidable is intersection.

This step of the proof yields two subgoals, the first being

1. S: ESystem

2. sComplete(S)

3. ∀N∈S.nComplete(N)

4. N:{N:Node| N∈S}
5. T(N)∩F(N)

` (∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})
∨ {K:K{i}|

∃g:Node → Σ(K)

∀N:{N:Node| N∈S} . ∀f:Formula.
(f∈(T(N)) ⇒ forces(K,g(N),f)) ∧
(f∈(F(N)) ⇒ not forces(K,g(N),f))}

In this case, there is a node N in the system that, when viewed as a sequent,

is an instance of an axiom, i.e. some hypothesis is among the conclusions. We

165

proceed by choosing to prove the first disjunct of the conclusion using N as the

witness for the node and the pre-proof term (asSequent(N)\) to witness the proof

in the set type. The proof that this term is indeed a proof of N is trival.

To save space below, we will display the goal of this sequent as C from here

on. Continuing with the proof, consider the case where there is no node that is an

axiom of this form.

4. ¬(∃N:{N:Node| N∈S} . T(N)∩F(N))

` C

Now we decide if there is a node N in S containing dfalsee among T(N), i.e.

we decide whether there is an instance of the constant dfalsee among the nodes

of S. This results in two subgoals, the first being:

4. ¬(∃N:{N:Node| N∈S} . T(N)∩F(N))

5. ∃N:{N:Node| N∈S} . dfalsee∈T(N)

` C

In this case there is a node N in S that is an axiom. Using N as a witness and

a pre-proof term of the form (asSequent(N)\) discharges the first conjunct of the

conclusion. This case is concluded by arguing that this pre-proof term is indeed a

well-formed proof of N by showing it is an instance of the axiom rule.

In the other case, dfalsee is not among the hypotheses of the nodes of S; we

conclude that S contains no instances of axioms in S.

4. ¬(∃N:{N:Node| N∈S} . T(N)∩F(N))

5. ¬(∃N:{N:Node| N∈S} . dfalsee∈T(N))

` C

166

To complete the proof we must construct a Kripke counter-example from S, and

so choose to prove the the second disjunct of the conclusion. We use the Kripke

model K(S) as witness for the set type. We also know there is some node N such

that N∈S (since systems are non-empty). After these steps the proof appears as

follows.

6. N: Node

7. N∈S

` ∃g:Node → Σ(K(S))

∀N:{N:Node| N∈S} . ∀f:Formula.
(f∈T(N) ⇒ forces(K(S),g(N),f)) ∧
(f∈F(N) ⇒ not forces(K(S),g(N),f))

Eliminating the existential with the function mapping nodes of S to themselves,

and all others to N, results in the following (main) subgoal (after having reordered

the universal quantifiers and stripping one off).

8. f: Formula.

` ∀N’:{N:Node| N∈S}
(f∈(T(N’)) ⇒ forces(K(S),(λx.if x∈S then x else N fi)(N’),f))

∧ (f∈(F(N’)) ⇒
not forces(K(S),(λx.if x∈S then x else N fi)(N’),f))

From here the proof is by induction on the structure of the formula g.

5.4 Remarks on the proof and Extract

It should be remarked that this particular structuring of sequents, as pairs of lists

of the form <M@f::N,c> or <h,M@f::N>, has proved itself well suited to imple-

mentation in Nuprl. It avoids the problems associated with formula ordering in

167

the parts of the sequent: in our proof we manage to avoid all reasoning about

permutation equivalence of lists that might otherwise be required. In system MJ,

multiplicity is not at issue because, unlike the classical case, the premises of all the

rules (except the ⇒r rule) are monotonic in their conclusions, i.e. the conclusions

of the rules are sub-sequents of their hypotheses. However, the only rule for which

the principle formula must be maintained in a premise is in the left premise of the

⇒ l rule.

The proofs produced here are in a multi-succedent calculus allowing multiple

formulas on the right. To incorporate the extracted procedure into Nuprl, either

via reflection, or by running the procedure and returning a tactic justification,

the multi-succedent calculus proofs must be transformed into the single succedent

calculus implemented by the Nuprl rules. Egly and Schmidtt [ES98] give cut-

free translations of multi-succedent proofs into single succedent proofs preserving

reasonable extracts.

168

(
A
x
)

P
,
(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
P
,
(
P

∨
(
P

⇒
⊥
)
)
,
⊥ (
∨r

1)
(
A
x
)

P
,
(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
(
P

∨
(
P

⇒
⊥
)
)
,
⊥

⊥
,

P
,

(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
⊥

(
⇒
l)

P
,
(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
⊥

(
⇒
r)

(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
P

⇒
⊥
,

(
(
P

∨
(
P

⇒
⊥
)
)
,
⊥ (
∨r

2)
(
A
x
)

(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
(
(
P

∨
(
P

⇒
⊥
)
)
,
⊥

⊥
,
(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
⊥

(
⇒
l)

(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥

`
⊥

(
⇒
r)

`
(
(
P

∨
(
P

⇒
⊥
)
)

⇒
⊥
)

⇒
⊥

F
ig

u
re

5.
2:

A
P

ro
of

of
¬¬

(P
∨
¬P

)
in

sy
st

em
M

J

Chapter 6

Conclusion

The work reported on here represents the early stages of an applied research pro-

gram devoted to the synthesis of programs by extraction from constructive proofs.

This is research that has many unexplored, yet important, topics.

The extract resulting from the proof of intuitionistic decidability presented in

proof in Chapter 5 is not as clear as it could be. Careful study of the extracted

program reveals that there is room for the introduction of abstractions which would

make the extracted program clearer and would result in a shorter proof. Also, it

would be interesting and reasonably easy to modify the current proof to implement

Dyckhoff’s contraction-free system.

The integration into Nuprl of the extracted decider for intuitionistic proposi-

tions is an immediate goal. The extracted program can easily be re-coded in ML

as as part of a tactic to decide propositional fragments of Nuprl’s type theory.

The resulting tactic would fail, returning the Kripke model as evidence against the

169

170

validity of a formula should it turn out not to be valid; alternatively, it would use

the formal proof returned by the procedure to construct a Nuprl tactic, which it

could then apply to discharge the goal.

Another line of development that should eventually be explored is the reflection

of this decision procedure into Nuprl. The reflection work [ACHA90, ACU] was

the motivation for the proof outlined in [ACU]. In [Har95] Harrison argued for

the kind of integration proposed above (as a tactic) and against reflection as being

unnecessary; until the experiment is performed, this question cannot really be

answered.

In [Und94] Underwood shows how the tableau proof of intuitionistic decidability

can be extended to a semi-decision procedure for the first order case by using co-

inductive types. In [Men88] Mendler presents the rules for co-inductive types but

they need to be implemented, this is an ideal application for them.

The Nuprl system supports an intersection type (see Chapter 2) which can

be seen to be the dual to the set type. The author has experimented with the

intersection type as a means to further eliminate unwanted computational content,

and it can be used to eliminate layers of lambda abstraction from extract terms

whenever the abstracted variable does not occur in the body of the term. Better

and more complete integration of the set type and the intersection type with the

existing tactic library holds great promise for achieving better extracts with less

effort in the future.

Currently, it is not entirely trivial to translate programs extracted form Nuprl

proofs into other languages. The Nuprl extracts are terms of the Nuprl compu-

171

tation system which has lazy evaluation semantics. For the purposes of program

extraction, the development of methodology to extract programs guaranteed to

terminate under an eager semantics is an interesting research topic. One approach

would be to develop a set of eager proof rules. A refiner extracting programs in

Scheme or perhaps Boyer and Moore’s ACL2 should be quite easy and would be a

very useful addition to the program extraction tool-box.

In joint work with Gent and Underwood [CGU99], the author applied Nuprl

to synthesize a sophisticated search algorithm known in the literature as Conflict-

directed backjump [Pro93]. The system applied to the problem was a classical

extension of Nuprl. The classical system provided the means to extract a non-

local control operator, Scheme’s call-cc. The successful results of that project

suggest further developments along that path.

Appendix A

Stipulated Lemmas

The following stipulated lemmas characterize the tableau construction.

*THM and 1 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∧eb)∈(T(N)) ⇒ ¬(a∈(T(N))) ⇒
(<a::(T(N)), F(N)>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM and 2 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∧eb)∈(T(N)) ⇒ ¬b∈(T(N)) ⇒
(<b::(T(N)), F(N)>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM or 1 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∨eb)∈(T(N)) ⇒ ¬a∈(T(N)) ⇒
(<a::(T(N)), F(N)>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

172

173

*THM or 2 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∨eb)∈(T(N)) ⇒ ¬b∈(T(N)) ⇒
(<b::(T(N)), F(N)>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM imp 1 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad⇒eb)∈(T(N)) ⇒ ¬b∈(T(N)) ⇒
(<b::(T(N)), F(N)>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM imp 2 positive rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad⇒eb)∈(T(N)) ⇒ ¬a∈(F(N)) ⇒
(<T(N), a::(F(N))>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM and 1 negative rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∧eb)∈(F(N)) ⇒ ¬a∈(F(N)) ⇒
(<T(N), a::(F(N))>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM and 2 negative rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∧eb)∈(F(N)) ⇒ ¬b∈(F(N)) ⇒
(<T(N), b::(F(N))>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM or 1 negative rule

174

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∨eb)∈(F(N)) ⇒ ¬a∈(F(N)) ⇒
(<T(N), a::(F(N))>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM or 2 negative rule

∀S:ESystem. ¬∀N∈S.nComplete(N) ⇒
∀N:{N:Node| N∈S}. ¬nComplete(N) ⇒
∀a,b:Formula. (ad∨eb)∈(F(N)) ⇒ ¬b∈(F(N)) ⇒
(<T(N), b::(F(N))>::remove(=2;N;S)) ∈ {k:ESystem| k <(i1,i2) S}

*THM imp negative rule

∀S:ESystem ∀N∈S. nComplete(N) ⇒ ¬sComplete(S) ⇒
∀N:{N:Node| N∈S}
∀a,b:Formula . (ad⇒eb)∈(F(N)) ⇒
∀N’:{N’:Node| N’∈S} . ¬a∈(T(N’)) ∨ ¬b∈(F(N’))) ⇒
(<a::(T(N)), b::[]>::S) ∈ {k:ESystem| k <(i1,i2) S})

Appendix B

Extract of intuitionistic

decidabilty proof

This transformed program is equivalent to the program extracted from the intu-

itionistic decidabilty proof.

λS.(letrec tableau(S) =

if ∀N∈S.nComplete(N) then

if sComplete(S) then

ext{decidability base}(S)(·)(·)
else let <N,a,b,mp, > = (ext{not system complete}(S)(·)) in

case tableau(<a::T(N), b::[]>::S)

of inl(<N1,p1>) =>

inl(if (N1 = <a::T(N), b::[]>)

then <N, let <p’, > =

(ext{imp right proof}
(N)(a)(b)(mp)(p1)(Ax)) in p’>

else <N1, p1>)

| inr(K) => inr(K)

175

176

else

let <N,t> = (∃N:{N:Node | N∈S}. ¬nComplete(N))

let <a,b,op type> = (ext{not node complete}(N)(t)) in

case op type of inl(< ,V14>) => case V14

of inl() =>

case tableau(<a::T(N), F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <a::T(N), F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr(K)

| inr() =>

case tableau(<b::T(N), F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <b::T(N), F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr K

| inr(V13) => case V13

of inl() =>

case tableau(<a::T(N), F(N)>::remove(N;S))

of inl(<N1,p1>) =>

if (N1 = <a::T(N), F(N)>) then

case tableau(<b::T(N), F(N)>::remove(N;S))

of inl(<N2,p2>) =>

inl(if (N2 = <b::T(N), F(N)>)

then <N, mk proof(N,<N1,p1>,<N2,p2>)>

else <N2, p2>)

| inr(K) => inr(K)

else inl(<N1, p1>)

| inr(K) => inr(K)

| inr(V15) => case V15

177

of inl() =>

case tableau(<b::T(N),F(N)>::remove(N;S))

of inl(<N1,p1>) =>

if (N1 = <b::T(N), F(N)>) then

case tableau(<T(N), a::F(N)>::remove(N;S))

of inl(<N2,p2>) =>

inl(if (N2 = <T(N), a::F(N)>)

then <N, mk proof(N,<N1,p1>,<N2,p2>)>

else <N2, p2>)

| inr(K) => inr(K)

else inl(<N1, N2>)

| inr(K) => inr(K)

| inr(V17) => case V17

of inl() =>

case tableau(<T(N), b::F(N)>::remove(N;S))

of inl(<N1,p1>) =>

if (N1 = <T(N), b::F(N)>) then

case tableau(<T(N), a::F(N)>::remove(N;S))

of inl(<N2,p2>) =>

inl(if (N2 = <T(N), a::F(N)>)

then <N, mk proof(N,<N2,p2>,<N1,p1>)>

else <N2, p2>)

| inr(K) => inr(K)

else inl(<N1, p1>)

| inr(K) => inr(K)

| inr(V19) => let < ,V21> = V19 in

case V21

of inl() =>

case

tableau(<T(N), a::F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <T(N), a::F(N)>)

178

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr(K)

| inr() =>

case tableau(<T(N), b::F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <T(N), b::F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr(K)

) (S)

BIBLIOGRAPHY

[ACHA90] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William
Aitken. The semantics of reflected proof. In Proceedings of the Fifth
Symposium on Logic in Computer Science, pages 95–197. IEEE, June
1990.

[ACU] William Aitken, Robert Constable, and Judith Underwood. Metalog-
ical frameworks II: Using reflected decision procedures. To Appear
Journal of Symbolic Computation.

[All87a] Stuart F. Allen. A non-type theoretic definition of Martin-Löf’s types.
In Proceedings of the Second Annual Symposium on Logic in Computer
Science, pages 215–221. IEEE, 1987.

[All87b] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic
Language. PhD thesis, Cornell University, 1987.

[Avr93] Arnon Avron. Gentzen-type systems, resolution and tableaux. Jour-
nal of Automated Reasoning, 10(2):265–281, April 1993.

[Bar81] Henk P. Barendregt. The lambda calculus: its syntax and semantics.
In Studies in Logic, volume 103. Amsterdam:North-Holland, 1981.

[Bar92] Henk P. Barendregt. Lambda calculi with types. In Handbook of Logic
in Computer Science, volume 2, pages 117–309. Oxford University
Press, 1992.

[BC85] J.L. Bates and Robert L. Constable. Definition of micro-PRL. Tech-
nical Report 82–492, Cornell University, Computer Science Dept.,
Ithaca, NY, 1985.

[Bet59] E. W. Beth. The Foundations of Mathematics. North-Holland, 1959.

179

180

[BHP95] Peter Baumgartner, Reiner Hähnle, and Joachim Posegga, editors.
Theorem Proving with Analytic Tableaux and Related Methods, volume
918 of Lecture Notes in Artificial Intelligence. Springer, 1995.

[BM79] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press,
New York, 1979.

[Cal97] James Caldwell. Moving proofs-as-programs into practice. In Proceed-
ings, 12th IEEE International Conference Automated Software Engi-
neering. IEEE Computer Society, 1997.

[CC98] Robert L. Constable and Karl Crary. Computational complexity and
induction for partial computable functions in type theory. In Preprint,
1998.

[CCF+95] Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Gérard
Huet, Pascal Manoury, Christine Paulin-Mohring, César Muñoz,
Chetan Murthy, Catherine Parent, Amokrane Säıbi, and Benjamin
Werner. The Coq Proof Assistant reference manual. Technical re-
port, INRIA, 1995.

[CGU99] James Caldwell, Ian Gent, and Judith Underwood. Search algorithms
in type theory. To Appear in: Theoretical Computer Science, 1999.
Special Issue on Proof Search in Type Theoretic Languages.

[CH85] Thierry Coquand and G. P. Huet. Constructions: A higher order
proof system for mechanizing mathematics. In EUROCAL ’85, Lec-
ture Notes in Computer Science, Vol. 203. Springer-Verlag, 1985.

[CH88a] Thierry Coquand and G. Huet. The Calculus of Constructions. In-
formation and Computation, 76:95–120, 1988.

[CH88b] Thierry Coquand and Gerard Huet. The calculus of constructions.
Information and Computation, 76:95–120, 1988.

[CH90] Robert L. Constable and Douglas J. Howe. Implementing metamathe-
matics as an approach to automatic theorem proving. In R.B. Banerji,
editor, Formal Techniques in Artificial Intelligence: A Source Book,
pages 45–76. Elsevier Science Publishers (North-Holland), 1990.

[CM85] Robert L. Constable and N.P. Mendler. Recursive definitions in type
theory. In Proceedings of the Logics of Programming Conference, pages
61–78, January 1985. Cornell TR 85–659.

181

[Con71] Robert L. Constable. Constructive mathematics and automatic pro-
gram writers. In Proceedings of the IFIP Congress, pages 229–233.
North-Holland, 1971.

[Con83] Robert L. Constable. Mathematics as programming. In Proceedings
of the Workshop on Programming and Logics, Lectures Notes in Com-
puter Science 164, pages 116–128. Springer-Verlag, 1983.

[Con85] Robert L. Constable. Constructive mathematics as a programming
logic I: Some principles of theory. In Annals of Mathematics, Vol. 24,
pages 21–37. Elsevier Science Publishers, B.V. (North-Holland), 1985.
Reprinted from Topics in the Theory of Computation, Selected Papers
of the International Conference on Foundations of Computation The-
ory, FCT ’83.

[Con86] Robert L. Constable, et al. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1986.

[CT98] R. Constable and The Nuprl Group. The Nuprl web pages.
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html,
1998.

[CU96] James Caldwell and Judith Underwood. Classical tools for con-
structive proof search. In Didier Galmiche, editor, Proceedings of
the CADE-13 Workshop on Proof search in type-theoretic languages.,
Rutgers N.J., July 1996.

[CZ84] Robert L. Constable and D.R. Zlatin. The type theory of PL/CV3.
ACM Transactions on Programming Languages and Systems, 6(1):94–
117, January 1984.

[deB70] N. G. deBruijn. The mathematical language Automath: Its usage and
some of its extensions. In J. P. Seldin and J. R. Hindley, editors, Sym-
posium on Automatic Demonstration, Lecture Notes in Mathematics,
Vol. 125, pages 29–61. Springer-Verlag, 1970.

[DFH+93a] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent,
C. Paulin-Mohring, and B. Werner. The Coq Proof Assistant User’s
Guide. INRIA, Version 5.8, 1993.

[DFH+93b] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner.

182

The Coq proof assistant user’s guide. Rapport Techniques 154, IN-
RIA, Rocquencourt, France, 1993. Version 5.8.

[Dra87] A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof
Theory, volume 67 of Translations of Mathematical Monographs.
American Mathematical Society, 1987.

[DS77] M. Davis and J. Schwartz. Metamathematical extensibility for theo-
rem verifiers and proof checkers. Technical Report 12, Courant Insti-
tute of Mathematical Sciences, New York, 1977.

[dS98] H. de Swart, editor. Automated Reasoning with Analytic Tableaux
and Related Methods, volume 1397 of Lecture Notes in Artificial In-
telligence. Springer, 1998.

[Dum77] Michael Dummett. Elements of Intuitionism. Oxford Logic Series.
Clarendon Press, 1977.

[Dyc92] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
In The Journal of Symbolic Logic, pages Vol.57, Number 3, September
1992.

[ES98] Uwe Egly and Stephan Schmitt. Intuitionistic proof transformations
and their application to constructive program synthesis. In Proceed-
ings of the Fourth International Conference on Artificial Intelligence
and Symbolic Computation, AISC’98, Plattsburg, N.Y., 1998.

[Fef79] Solomon Feferman. Constructive theories of functions and classes. In
Logic Colloquium ’78, pages 159–224. North Holland,, 1979.

[Fit69] Melvin Fitting. Intuitionistic Logic, Model Theory, and Forcing.
North-Holland, 1969.

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics,
volume 169 of Synthese Library. D. Reidel, 1983.

[Gal86a] J. H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper and Row, 1986.

[Gal86b] J. H. Gallier. Logic for Computer Science, Foundations of Automatic
Theorem Proving. Harper and Row, NY, 1986.

183

[Gal97] D. Galmiche, editor. Theorem Proving with Analytic Tableaux and Re-
lated Methods, number 1227 in Lecture Notes in Artificial Intelligence.
Springer, 1997.

[Gen69] Gerhard Gentzen. Investigations into logical deduction. In M. E.
Szabo, editor, The collected papers of Gerhard Gentzen, pages 68–
131. North-Holland, 1969. Originally published 1935.

[Gir86] J-Y. Girard. The system F of variable types: Fifteen years later.
Theoretical Computer Science, 45:159–192, 1986.

[GMW79] Michael Gordon, Robin Milner, and Christopher Wadsworth. Ed-
inburgh LCF: a mechanized logic of computation, Lecture Notes in
Computer Science, Vol. 78. Springer-Verlag, NY, 1979.

[Göd65] Kurt Gödel. On intuitionistic arithmetic and number theory. In Davis,
M., editor, The Undecidable, pages 75–81. Raven Press, 1965.

[Har60] R. Harrop. Concerning formulas of the types A → B ∨ C, A →
(Ex)B(x) in intuitionistic formal systems. Journal of Symbolic Logic,
25(1):27–32, March 1960.

[Har95] John Harrison. Metatheory and reflection in theorem proving: A sur-
vey and critique. Technical Report CRC-053, SRI Cambridge, Millers
Yard, Cambridge, UK, 1995.

[Hay94] S. Hayashi. Singleton, union, and intersection types for program ex-
traction. Information and Computation, 109:174–210, 1994.

[Hed91] M. Hedberg. Normalizing the associative law: An experiment with
Martin-Löf’s type theory. Formal Aspects of Computing, 3:218–252,
1991.

[HN88] Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic.
Foundations of Computing. MIT Press, Cambridge, MA, 1988.

[How88] Douglas J. Howe. Automating Reasoning in an Implementation of
Constructive Type Theory. PhD thesis, Cornell University, 1988.

[How93] Douglas J. Howe. Reasoning about functional programs in Nuprl. In
Functional Programming, Concurrency, Simulation and Automated
Reasoning, volume 693 of Lecture Notes in Computer Science, Berlin,
1993. Springer Verlag.

184

[Hud92] J. Hudelmaier. Bounds for cut-elimination in intuitionistic proposi-
tional logic. Archive for Mathematical Logic, 31:331 – 353, 1992.

[Hud97] J. Hudelmaier. A note on Kripkean countermodels for intuitionisti-
cally unprovable sequents. In W. Bibel, U. Furbach, R. Hasegawa, and
M. Stickel, editors, Seminar on Deduction, February 1997. Dagstuhl
report 9709.

[Jac95a] Paul Jackson. The Nuprl proof development system, version 4.2
reference manual and user’s guide. Computer Science Department,
Cornell University, Ithaca, N.Y. Manuscript available at
http://www.cs.cornell.edu/Info/Projects/NuPrl/manual/it.html,
July 1995.

[Jac95b] Paul B. Jackson. Enhancing the Nuprl proof development system and
applying it to computational abstract algebra. PhD thesis, Cornell
University, 1995.

[Kle52] Stephen C. Kleene. Introduction to Metamathematics. van Nostrand,
Princeton, 1952.

[Kri63] S. Kripke. Semantical analysis of modal logic I. Zeit. für Math. Logic
u. Grund. der Math., 9:67–96, 1963.

[Kri65] S. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Cross-
ley and M. A. E. Dummett, editors, Formal Systems and Recursive
Functions, pages 92–130, Amsterdam, 1965. North Holland.

[Les81] J. Leszczylowski. An experiment with Edinburgh LCF. In W. Bibel
and R. Kowalski, editors, 5th International Conference on Automated
Deduction, volume 87 of Lecture Notes in Computer Science, pages
170–181, New York, 1981. Springer-Verlag.

[LP92] Z. Luo and R. Pollack. LEGO proof development system: User’s man-
ual. Technical Report ECS-LFCS-92-211, University of Edinburgh,
1992.

[LSS91] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic
implication. In Proceedings of the Sixth Annual IEEE Symposium on
Logic in Computer Science, pages 51 – 62, Amsterdam, Netherlands,
1991. IEEE Computer Society Press.

185

[Luo89] Zhaohui Luo. ECC, an extended calculus of construction. In Pro-
ceedings of the 4th Symposium on Logic in Computer Science, pages
385–395, Pacific Grove, CA, June 1989.

[Luo94] Zhaohui Luo. Computation and Reasoning, A Type Theory for Com-
puter Science. Oxford University Press, New York, 1994.

[Mag95] Lena Magnusson. The Implementation of ALF—A Proof Editor Based
on Martin-Löf ’s Monomorphic Type Theory with Explicit Substitu-
tion. PhD thesis, Chalmers University of Technology and Göteborg
University, January 1995.

[Men79] Elliott Mendelson. Introduction to Mathematical Logic. D. Van Nos-
trand, second edition, 1979.

[Men88] P.F. Mendler. Inductive Definition in Type Theory. PhD thesis, Cor-
nell University, Ithaca, NY, 1988.

[ML73] Per Martin-Löf. An intuitionistic theory of types: Predicative part.
In Logic Colloquium ’73, pages 73–118. North-Holland, Amsterdam,
1973.

[ML82] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Proceedings of the Sixth International Congress for Logic,
Methodology, and Philosophy of Science, pages 153–175, Amsterdam,
1982. North Holland.

[MMMO96] P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors. The-
orem Proving with Analytic Tableaux and Related Methods, volume
1071 of Lecture Notes in Artificial Intelligence. Springer, 1996.

[MN94] L. Magnusson and B. Nordström. The ALF proof editor and its proof
engine. In Springer-Verlag, editor, Types for Proofs and Programs,
volume 806 of Lecture Notes in Computer Science, pages 213–237,
1994.

[Moh86] Christine Mohring. Algorithm development in the Calculus of Con-
structions. In Proceedings of the First Annual Symposium on Logic
in Computer Science, pages 84–91. IEEE, 1986.

[MW90] Zohar Manna and Richard Waldinger. The Logical Basis for Computer
Programming: Volume II: Deductive Systems. Addison Wesley, 1990.

186

[Nor81] Bengt Nordstrom. Programming in constructive set theory: Some ex-
amples. In Proceedings 1981 Conference on Functional Programming
Languages and Computer Architecture, pages 290–341. Portsmouth,
England, 1981.

[Nor93] Bengt Nordström. The ALF proof editor. In Proceedings of the Work-
shop on Types for Proofs and Programs, pages 253–266, Nijmegen,
1993.

[NPS90] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-
Löf ’s Type Theory. Oxford Sciences Publication, Oxford, 1990.

[NS94] A. Nerode and R. Shore. Logic for Applications. Springer-Verlag, New
York, 1994.

[OS95] Sam Owre and Natarajan Shankar. The formal semantics of PVS.
Computer Science Laboratory, SRI International, Menlo Park, CA.
Draft Manuscript available at
http://www.csl.sri.com/~shankar/shankar-drafts.html, Octo-
ber 1995.

[Pau86a] Lawrence Paulson. Constructing recursion operators in intuitionistic
type theory. Journal of Symbolic Computation, 2:325–355, 1986.

[Pau86b] Lawrence Paulson. Proving termination of normalization functions
for conditional expressions. Journal of Automated Reasoning, 2:63–
74, 1986.

[PD95] L. Pinto and R. Dyckhoff. Loop-free construction of counter-models
for intuitionistic propositional logic. In Symposia Gaussiana, pages
225–232, Berlin, New York, 1995. Walter de Gruyter and Co.

[PM89] Christine Paulin-Mohring. Extracting F ′
ws programs from proofs in

the calculus of constructions. In Proceedings of the 16th ACM Sympo-
sium on Principles of Programming Languages, pages 89–104, 1989.

[PMW93] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in
the system Coq. Journal of Symbolic Computation, 15(5-6):607–640,
1993.

[Pol90] R. Pollack. LEGO user’s guide. Technical report, University of Edin-
burgh, 1990.

187

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.
Computational Intelligence, pages 268–299, 1993.

[Sal89] Anne Salvesen. On specifications, subset types and interpretation
of propositions in type theory. In Proceedings of the Workshop on
Programming Logic, pages 209–230, Bȧstad, Sweden, May 1989. Pro-
gramming Methodology Group, University of Göteborg and Chalmers
University of Technology.

[Sco70] D. Scott. Constructive validity. In D. Lacombe M. Laudelt, edi-
tor, Symposium on Automatic Demonstration, volume 5(3) of Lecture
Notes in Mathematics, pages 237–275. Springer-Verlag, New York,
1970.

[Sha85] N Shankar. Towards mechanical metamathematics. J. Automated
Reasoning, 1(4):407–434, 1985.

[Smi89] S.F. Smith. Partial Objects in Type Theory. PhD thesis, Cornell
University, Ithaca, NY, 1989.

[Smo73] C. A. Smorynski. Applications of Kripke models. In Troelstra [Tro73],
pages 324–391.

[Smu68] Raymond M. Smullyan. First–Order Logic. Springer–Verlag, New
York, 1968.

[SS87] Anne Salvesen and Jan M. Smith. The strength of the subset type
in intuitionistic type theory. In Proceedings of the Workshop on
Programming Logic, pages 327–332, Marstrand, Sweden, October
1987. Programming Methodology Group, University of Göteborg and
Chalmers University of Technology.

[SS88] Anne Salvesen and Jan M. Smith. The strength of the subset type in
Martin-Löf’s type theory. In Proceedings, Third Annual Symposium
on Logic in Computer Science, pages 384–391, Edinburgh, Scotland,
5–8 July 1988. IEEE Computer Society.

[Thé98] Laurent Théry. A Certified Version of Buchberger’s Algorithm. In
H. Kirchner and C. Kirchner, editors, 15th International Conference
on Automated Deduction, LNAI 1421, pages 349–364, Lindau, Ger-
many, July 5–July 10, 1998. Springer-Verlag.

188

[Tho91] Simon Thompson. Type Theory and Functional Programming. Addi-
son Wesley, 1991.

[Tho92] Simon Thompson. Are subsets necessary in Martin-Lof type theory?
In J. P. Myers Jr. and M. J. O’Donnell, editors, Constructivity in
Computer Science, volume 613 of Lecture Notes in Computer Science,
pages 46–57. Springer-Verlag, January 1992.

[Tro73] A. Troelstra, editor. Metamathematical Investigation of Intuitionistic
Mathematics, volume 344 of Lecture Notes in Mathematics. Springer-
Verlag, 1973.

[TvD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An
Introduction, Vol. I. North-Holland, Amsterdam, 1988.

[Und90] J. Underwood. A constructive completeness proof for the intuitionistic
propositional calculus. Technical Report 90-1179, Cornell University,
1990.

[Und93] Judith Underwood. The tableau algorithm for intuitionistic proposi-
tional calculus as a constructive completeness proof. In Proceedings of
the Workshop on Theorem Proving with Analytic Tableaux, Marseille,
France, pages 245–248, 1993.

[Und94] J. Underwood. Aspects of the Computational Content of Proofs. PhD
thesis, Cornell University, 1994.

[Und95] Judith Underwood. Tableau for intuitionistic predicate logic as
metatheory. In Baumgartner et al. [BHP95].

[vD94] D. van Dalen. Logic and Structure. Springer-Verlag, third edition,
1994.

[Vor52] N. N. Vorob’ev. The derivability problem in the constructive proposi-
tional calculus with strong negation. Doklady Akademii Nauk SSSR,
58:689–692, 1952. (In Russian.).

[Vor70] N. N. Vorob’ev. A new algorithm for derivability in the constructive
propositional calculus. Translations of the American Mathematical
Society, 94(2):37–71, 1970.

[Wal90] L. A. Wallen. Automated Deduction in Non-Classical Logics. MIT
Press, 1990.

189

[Wei98a] K. Weich. Decision procedures for intuitionistic propositional logic by
program extraction. In de Swart [dS98], pages 292–306.

[Wei98b] K. Weich. Private communication. February 1998.

