
A machine checked model of MGU axioms: applications of finite

maps and functional induction

Sunil Kothari and James Caldwell ∗

Department of Computer Science
4093 Engineering Hall
University of Wyoming

Laramie, WY 82071-3315, USA

Abstract

The most general unifier (MGU) of a pair of terms can be specified by four axioms. In this paper
we generalize the standard presentation of the axioms to specify the MGU of a list of equational
constraints and we formally verify that the unification algorithm satisfies the axioms. Our constraints
are equalities between terms in a language of simple types. We model substitutions as finite maps
from the Coq library Coq.FSets.FMapInterface. Since the unification algorithm is general recursive
we show termination using a lexicographic ordering on lists of constraints. Coq’s method of functional
induction is the main proof technique used in proving the axioms.

1 Introduction

As a step toward a comprehensive library of theorems about unification and substitution we verify
the unification algorithm over a language of simple types. We take the axioms presented in [UN09]
as our specification and show that the first-order unification algorithm is a model of the axioms. In
the formalization we represent substitutions using Coq’s finite map library. This verification is a step
toward a formal verification of an extended version of Wand’s constraint based type reconstruction
algorithm [KC08]. The main idea behind our approach there is to have a multi-phase unification in
the constraint solving phase. By formalizing the first-order unification, we will be able to extend the
first-order unification to this multi-phase unification. We believe that the verification described here may
be of interest in and of itself to researchers in the unification community.

In recent literature on machine certified proof of correctness of type inference algorithms (mostly on
substitution-based type reconstruction algorithms), the most general unifier is axiomatized by a set of
four axioms. In this paper, we follow Urban and Nipkow’s [UN09] axioms.

(i) mgu σ (τ1
e= τ2) ⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
e= τ2) ∧ σ′(τ1) = σ′(τ2) ⇒ ∃δ.σ′ ≈ σ ◦ δ

(iii) mgu σ (τ1
e= τ2) ⇒ FTV (σ) ⊆ FVC (τ1

e= τ2)
(iv) σ(τ1) = σ(τ2) ⇒ ∃σ′. mgu σ′(τ1

e= τ2)

We give an axiomatic presentation of substitutions and provide a model using substitutions formalized
with the Coq’s Finite map library. Using this presentation of substitutions, we prove the correctness of
first order unification - by showing that the unification algorithm satisfies the four axioms. Since the
unification algorithm is not structurally recursive, we have to also prove the termination of the first-
order unification algorithm by giving a measure and showing that it reduces on each recursive call. The
entire verification is done in Coq [Cdt07] - a theorem prover based on calculus of inductive constructions
[CH88].

The rest of this paper is organized as follows: Section 2 introduces the concepts and terminologies
needed for this paper and includes a description of substitutions as finite functions. Section 3 describes

∗The work of the authors was partially supported by NSF 0613919.

1

the formalization of first-order unification algorithm in Coq. Section 4 describes the proof that the
unification algorithm satisfies the four axioms and presents a number of supporting lemmas. Section 5
summarizes our current work and mentions further work.

2 Types and Substitutions

Unification is implemented here over a language of types for (untyped) lambda terms. The language of
types is given by the following grammar:

τ ::= TyVar x | τ1 → τ2

where x ∈ Var is a variable and τ1, τ2 ∈ τ are type terms.

Thus, a type is either a type variable or a function type.
We have adopted the following conventions in this paper. Atomic types (of the form TyVar x) are

denoted by α, β, α′ etc., compound types by τ, τ ′, τ1 etc., substitutions by σ, σ′, σ1 etc. By convention,
the type constructor → associates to the right. List append is denoted by ++. We use { } to denote
small finite substitutions. For example, a substitution that binds x to τ and y to τ ′ is denoted as
{x 7→ τ, y 7→ τ ′}. When necessary we follow Coq’s namespace conventions; every library function has a
qualifier which denotes the library it belongs to. For example, M .map is a function from the finite maps
library whereas List .map is a function from list library.

The work described here is being extended to the polymorphic case and so the language of types
will be extended to include universally quantified type variables. Anticipating this, although all type
variables occurring in types as defined here are free, we define the list of free variables of a type (FTV)
as:

FTV (TyVar x) = [x]

FTV (τ → τ ′) = FTV (τ) ++ FTV (τ ′)

We also have a notion of equational constraints of the form τ
e= τ ′.

The list of free variables of a constraint list, denoted by FVC, is given as:

FVC [] = []

FVC ((τ1
e
= τ2) :: C) = FTV (τ1) ++ FTV (τ2) ++ FVC (C)

2.1 Substitutions

Substitutions are finite functions mapping type variables to types. Application of a substitution to a
type is defined as:

σ (TyVar(x))
def
= if 〈x, τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1) → σ(τ2)

Thus, if a variable x is not in the domain of the substitution, it lifts that variable to TyVar(x). Application
of a substitution to a constraint is defined similarly:

σ(τ1
e= τ2)

def
= σ(τ1)

e= σ(τ2)

Since substitutions are functions their equality is extensional; they are equal if they behave the same on
all type variables.

σ ≈ σ′
def
= ∀α. σ(α) = σ′(α)

Two type terms τ1 and τ2 are unifiable if there exists a substitution σ such that σ(τ1) = σ(τ2). In such
a case, σ is called a unifier. More formally, we denote solvability of a constraint by |= (read solves’). We
write σ |= (τ1

e= τ2), if σ(τ1) = σ(τ2). We extend the solvability notion to a list of constraints and we
write σ |= C if and only if for every c ∈ C, σ |= c. A unifier σ is the most general unifier if there is a
substitution σ′ such that for any other unifier σ′′, σ ◦ σ′ ≈ σ′′.

We define composition of substitutions as follows:

σ ◦ σ′ = λτ.σ′(σ(τ))

Composition of substitutions is associative but not commutative.

2

2.2 Implementing Substitutions as Finite Maps

The representation of substitutions plays an important role in the formalization exercise. In the verifica-
tion literature substitutions have been represented as functions, lists of pairs, and as sets of pairs. The
literature on representing substitutions as finite maps is sparse.

We use the Coq finite map library (Coq.FSets.FMapInterface) which provides an axiomatic presen-
tation of finite maps and a number of supporting implementations. It does not provide an induction
principle and forward reasoning is the predominate style of proof required to use the library. The fact
that we were able to reason about substitution composition without using induction principle explains
the power and expressiveness of the existing library. We found we did not need induction to reason on
finite maps, though there are natural induction principles we might have proved [CS95, MW85]. The
most recent release of the library (v. 8.2) supports one.

To consider the domain and range of a finite function (and this is the key feature of the function
being finite) we use the finite map library function M.elements. M.elements(σ) returns the list of pairs
corresponding to the finite map σ. The domain and the range of a substitution are defined as:

Definition 1. [Domain subst]

dom(σ)
def
= List.map (λt.fst (t)) (M.elements(σ))

Definition 2. [Range subst]

range(σ)
def
= List.flat map (λt.FTV (snd (t))) (M.elements(σ))

The function List.flat map is defined in the Coq library Coq.List.List as:
flat map f [] = []
flat map f h :: t = (f h) ++ flat map f t

The free type variables of a substitution, denoted by FTV subst, is defined in terms of domain and
range of a substitution as:

Definition 3. [Free type variables of a substitution]

FTV subst(σ)
def
= dom(σ) ++ range(σ)

Applying a substitution σ′ to a substitution σ means applying the σ′ to the range elements of σ.

Definition 4. [Apply subst subst]

σ′(σ)
def
= M.map (λt.σ′(t)) σ

The function choose subst chooses a binding from the two different bindings. The binding in the first
argument is preferred over the binding in the second argument.

Definition 5. [choose subst]

choose subst T1 T2
def
= match (T1, T2) with

| Some T3,SomeT4 ⇒ Some T3
| Some T3,None ⇒ Some T3
| None,Some T4 ⇒ Some T4
| None,None ⇒ None

Definition 6. [Subst diff]

subst diff σ σ′
def
= M.map2 choose subst σ σ′

The function M.map2 is defined in Coq library as the function that takes two maps σ, σ′, and a
function (choose subst) and creates a map whose binding belongs to either one of σ or σ′ depending
upon the function.

Definition 7. [compose subst]

σ ◦ σ′
def
= subst diff σ′(σ) σ′

Theorem 1. [Composition Apply]
∀τ.(σ ◦ σ′)(τ) = σ′(σ(τ))

3

Proof. The proof is by induction on the type τ followed by case analysis on the binding’s occurrence in
the composed substitution and the individual substitutions.

Interestingly, the base case (when τ is a type variable) is harder compared to the inductive case
(τ is a compound type). Incidentally, the same theorem has been formalized in Coq [DM99], where
substitutions are represented as a list of pairs, but required 600 proof steps. We proved in about 100
proof steps.

3 Unification

3.1 The algorithm

We use the following standard presentation of first-order unification algorithm.

unify (α
e
= α) ∪ C = unify C

unify (α
e
= τ) ∪ C = if α occurs in τ then Fail else {α 7→ τ} ◦ unify ({α 7→ τ}C)

unify (τ
e
= α) ∪ C = if α occurs in τ then Fail else {α 7→ τ} ◦ unify ({α 7→ τ}C)

unify (τ1 → τ2
e
= τ3 → τ4) ∪ C = unify (τ1

e
= τ3, τ2

e
= τ4 ∪ C)

unify ∅ = Id

The algorithm presented above is still not quite ready for formalization since we have not represented
failure. Coq provides a option type (also available in OCaml as a standard data type) to allow for failure.

Inductive option (A : Set) : Set := Some (: A) | None.

We use the option None to indicate failure and in the result Some(σ), σ is the resulting substitution.
The unification algorithm is fully formalized as shown in Appendix 7.1.

The above presentation of the unification algorithm is general recursive, i.e. the recursive call is not
necessarily on structurally smaller argument. Various papers have described the non-structural recursion
aspect of first-order unification [Bov01, McB03]. To allow Coq to accept our definition of unification,
we have to either give a measure that shows that recursive argument is smaller or give a well-founded
ordering relation. We chose the latter. The {wf meaPairMLt} annotation in the specification is precisely
that. The advantage of specifying the unification algorithm as shown above is that we get an induction
principle for free. This induction principle will be used later in a Coq tactic named as functional induction
for the axiom proofs. We will have more to say about the induction principle and the tactic later in
Section 4.1. satisfy

3.2 Termination

Since the unification algorithm is general-recursive, we need to give an ordering that is well-founded.
We use the lexicographic ordering (≺3) on the triple (see below). The lexicographic ordering on the two
triples 〈n1, n2, n3〉 and 〈m1,m2,m3〉 is defined as
〈n1, n2, n3〉 ≺3 〈m1, m2, m3〉

def
= (n1 < m1) ∨ (n1 = m1 ∧ n2 < m2) ∨ (n1 = m1 ∧ n2 = m2 ∧ n3 < m3),

where <, = are the ordinary less-than inequality and equality on naturals.

Our triple is similar to the triple proposed by others [Bov01, BS01, Apt03], but a little simpler. The
triple is 〈|CFV C |, |C→ |, |C |〉, where

• |CFV C | - number of unique free variables in a constraint list;

• |C→ | - total number of arrows in the constraint list;

• |C | - the length of the constraint list.

Table 1 shows how these components vary depending on constraint at the head of the constraint list.
The table closely follows the reasoning we did to satisfy the proof obligations (shown in the Appendix
7.3) generated by the above specification. We use -, ↑, ↓ to denote the component is unchanged, increased
or decreased, respectively. We could have used the finite sets here (for counting the unique free variables
of a constraint list). But we went ahead with the unique lists (in Coq they are referred as NoDup).
We found the existing Coq list library offering plenty of support for lists in general, and unique lists in

4

Original call Recursive call Conditions, if any |CFV C | |C→ | |C |
(α

e
= α) :: C C α ∈ (FVC C) - - ↓

(α
e
= α) :: C C α /∈ (FVC C) ↓ - ↓

(α
e
= β) :: C {α 7→ β}C α 6= β ↓ - ↓

(α
e
= τ) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α /∈ (FVC C) ↓ ↓ ↓

(α
e
= τ) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α ∈ (FVC C) ↓ ↑ ↓

(τ
e
= α) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α /∈ (FVC C) ↓ ↓ ↓

(τ
e
= α) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α ∈ (FVC C) ↓ ↑ ↓

(τ1 → τ2
e
= τ3 → τ4) :: C (τ1

e
= τ3) - - ↓ ↑

:: (τ2
e
= τ4) :: C

Table 1: Variation of termination measure components on the recursive call

particular. We also had to use the following lemma mentioned in the formalization of Sudoku puzzle by
Laurent Théry [The06].

Lemma 1. [list subset membership and unique list length]
∀l1, l2 : listD, NoDup l1 ⇒ NoDup l2 ⇒ List.incl l1 l2 ⇒ ¬List.incl l2 l1 ⇒ (List.length l1) <
(List.length l2)

The lemma is essential for our termination proofs. Coq also provide a library to reason about lists
modulo permutation. Together we were able to reason with the lists as finite sets.

4 MGU axioms

Note that each of the axioms, introduced earlier in Section 1, is characterizing the mgu behavior on a
single constraint (a pair of terms). In our verification, we will lift these axioms to a constraint list. This
is necessary since constraint-based type reconstruction algorithms solve all the constraints in one go.
The new axioms are:

(i) unify C = Some σ ⇒ σ |= C
(ii) (unify C = Some σ ∧ σ′ |= C) ⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′

(iii) unify C = Some σ ⇒ FTV(σ) ⊆ FVC (C)
(iv) σ |= C ⇒ ∃σ′. unify C = Some σ′

We can now go into the proof of the above axioms. The underlying theme in all of the proofs below
is the use of functional induction tactic in Coq. The tactic ensures that we have the right induction
hypothesis, when we want to prove a property for the inductive case. We mention this general technique
next.

4.1 Functional Induction in Coq

In Coq, the functional induction technique generates uses the induction principle which is generated for
the definitions defined using the Function keyword. The induction principle is shown in the Appendix
7.2. The induction principle is rather long because of the following two reasons. Firstly, as a result of
rewriting step above the specification has become verbose and, secondly, because of the cases involved;
there are 3 cases with 3 outcomes each.

In the next few sections, we mention only the important lemmas involved in the proofs of each of the
axioms. For many of these lemmas, we give the main technique involved in the proofs.

4.2 Axiom i

Lemma 2. [satisfy and compose subst]
∀x. ∀C. ∀σ. ∀τ. σ |= {x 7→ τ}(C) ⇒ ({x 7→ τ} ◦ σ) |= C

Proof. By induction on C.

5

Lemma 3. [membership in a constraint list is an invariant under substitution]

∀x. ∀C. ∀τ, τ1, τ2. (τ1
e= τ2) ∈ C ⇒ {x 7→ τ}(τ1

e= τ2) ∈ {x 7→ τ}(C)

Proof. By induction on τ .

Lemma 4. ∀C. ∀σ. ∀τ, τ ′. (τ e= τ ′) ∈ C ∧ unify C = Some σ ⇒ σ |= (τ e= τ ′)

Proof. By functional induction on unify C and theorem 1.

Theorem 2. ∀σ. ∀C. unify C = Some σ ⇒ σ |= C

Proof. By functional induction on unify C and the theorem 1 and lemma 3.

4.3 Axiom ii

Lemma 5. [Equal substitution instance for singleton subst]
∀σ. ∀α. ∀τ, τ ′. α /∈ (FTV τ) ∧ σ(α) = σ(τ) ⇒ σ(τ ′) = σ({α 7→ τ}(τ ′))

Proof. By induction on τ ′.

Lemma 6. [Constraint satisfaction extended to a substitution instance of a constraint]
∀C. ∀σ. ∀α. ∀τ. σ |= C ∧ α /∈ (FTV τ) ∧ σ(α) = σ(τ) ⇒ σ |= {α 7→ τ}(C)

Proof. By induction on C and lemma 5.

The following lemma lifts the extensional equality on type variables to any type.

Lemma 7. [Squiggle extensionality extended to any type]
∀σ, σ′. ∀α. σ(α) = σ′(α) ⇔ ∀τ. σ(τ) = σ′(τ)

Proof. (⇒) By induction on τ .
(⇐) Trivial.

Theorem 3. ∀σ. ∀C. (unify C = Some σ ∧ σ′ |= C) ⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′

Proof. By functional induction on unify C and the theorem 1, and the lemma 6, 7.

4.4 Axiom iii

Lemma 8. [Compose and domain membership]
∀α, α′. ∀τ.∀σ. α′ ∈ dom subst ({α 7→ τ} ◦ σ))
⇒ α′ ∈ dom subst {α 7→ τ} ∨ α′ ∈ dom subst σ

Lemma 9. [Compose and range membership]
∀α, α′. ∀τ. ∀σ. (α /∈ (FTV τ) ∧ α′ ∈ range subst ({α 7→ τ} ◦ σ))
⇒ α′ ∈ range subst {α 7→ τ} ∨ α′ ∈ range subst σ

Without going into details, the following lemma helps us in proving Lemma 9. Note that the definition
of range subst contains references to higher order functions M.map2 and this lemma helps in not having
to reason about M.map2.

Lemma 10. [Subst range abstraction]
∀α. ∀σ. α ∈ range subst (σ) ⇔ ∃α′.α′ ∈ dom subst (σ) ∧ α ∈ σ(α′)

Theorem 4. ∀σ, σ′. ∀C. unify C = Some σ ⇒ FTV subst(σ) ⊆ FVC(C)

Proof. By functional induction on unify C and the lemmas 8 and 9.

6

4.5 Axiom iv

This axiom requires the notion of subterms, which we define below:

subterms α = []
subterms (τ1 → τ2) = τ1 :: τ2 :: (subterms τ1) ++ (subterms τ2)

Then we can define what it means to for a term to be contained in another term.

Lemma 11. [Containment]
∀τ, τ ′. τ ∈ (subterms τ ′) ⇒ ∀τ ′′. τ ′′ ∈ (subterms τ) ⇒ τ ′′ ∈ (subterms τ ′)

Proof. By induction on the τ ′.

A somewhat related lemma is used to show well foundedness of types.

Lemma 12. [Well founded types]
∀τ. ¬ τ ∈ (subterms τ)

Proof. By induction on the τ and by lemma 11.

Lemma 13. [Member subterms unequal]
∀τ, τ ′. τ ∈ (subterms τ ′) ⇒ τ 6= τ ′

Proof. By case analysis on τ = τ ′ and by lemma 12.

The following obvious but powerful lemma helps in proving the axiom:

Lemma 14. [member subterms and apply subst]
∀σ. ∀α. ∀τ. α ∈ (subterms τ) ⇒ σ(α) 6= σ(τ)

Proof. By induction on τ and by lemma 13.

Lemma 15. [Member arrow and subterms]
∀σ. ∀α. ∀τ1, τ2. member α (FTV τ1) = true ∨member α (FTV τ2) = true
⇒ α ∈ subterms(τ1 → τ2)

Proof. By induction on τ1, followed by induction on τ2.

A corollary from the above two gives us the required lemma:

Corollary 1. [Member apply subst unequal]
∀σ. ∀α. ∀τ1, τ2. member α (FTV τ1) = true ∨member α (FTV τ2) = true
⇒ σ(α) 6= σ(τ1 → τ2)

Proof. By lemma 14 and 15.

Theorem 5. ∀σ. ∀C. σ |= C ⇒ ∃σ′. unify C = Some σ′

Proof. By functional induction on unify C and the Lemma 6 and Corollary 1.

5 Related Work and Conclusions

5.1 Related Work

There are formalizations of the unification algorithm in a number of different theorem provers [Bla08,
Pau85, Rou94]. Unification is fundamentally used in type inference. Many of the existing verifications
of type inference algorithms [DM99, NN99, NN96, UN09] axiomatize the behavior of the MGU rather
than provide an implementation as we do here.

We comment on the implementation in the CoLoR library [BDCG+06]. CoLoR is an extensive and
very successful library supporting reasoning about termination and rewriting. This Coq implementation

7

of the unification algorithm was recently released [Bla08]. Our implementation differs from theirs in
a number of ways. Perhaps the most significant difference is that we represent substitutions as finite
maps whereas in the implementation in CoLoR they are represented by functions from variables to a
generalized term structure. The axioms verified here are not explicitly verified in CoLoR, however the
library there could serve as a basis for doing so. We believe that the lemmas supporting our verification
could be translated into their more general framework but that the proofs would be significantly different
because we use function induction which follows the structure of our algorithm. The algorithm in CoLoR
is a specified in a significantly different style, as an iterated step function.

5.2 Future Work

The current work serves as a first step in verification of various constraint-based type reconstruction
algorithms. The entire formalization is done in Coq 8.1.pl3 version in about 4400 lines of specifications
and tactics, and is available online at http://www.cs.uwyo.edu/∼skothari. The choice of representing
substitutions as finite functions was crucial, but it still leaves some question unanswered. An induction
principle for finite maps would have been useful for some of the proofs and indeed there is a new version
of the library in Coq 8.2 which provides this. We believe that this entire work should lead to a better
understanding and appreciation of the finite maps library in Coq. These proofs are part of a larger
effort to verify our extended version of Wand’s algorithm which handles the polymorphic let construct
[Kot07, KC08].

6 Acknowledgments

We would like to thank Santiago Zanella (INRIA - Sophia Antipolis) for showing us how to encode
lexicographic ordering for 3-tuples in Coq. Thanks also to Frederic Blanqui for answering our queries
regarding the new release of CoLoR library. We are also thankful to Laurent Théry for making his
Coq formulation of Sudoku available on the web, to Stéphane Lescuyer and other Coq-club members for
answering our queries on the Coq-club mailing list.

References

[Apt03] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[BDCG+06] F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski. CoLoR, a Coq
library on rewriting and termination. In 8th International Workshop on Termination (WST
’06), pages 69–73, 2006.

[Bla08] Frederic Blanqui. CoLor, a Coq library on rewriting and termination., January 2008.
http://color.inria.fr/doc/CoLoR.Term.WithArity.AUnif.html.

[Bov01] Ana Bove. Simple General Recursion in Type Theory. Nordic J. of Computing, 8(1):22–42,
2001.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532. Elsevier Science,
2001.

[Cdt07] The Coq development team. The Coq proof assistant reference manual. INRIA, LogiCal
Project, 2007. Version 8.1.3.

[CH88] Thierry Coquand and Gerard Huet. The Calculus of Constructions. Inf. Comput., 76(2-
3):95–120, 1988.

[CS95] Graham Collins and Don Syme. A Theory of Finite Maps. In Proceedings of the 8th
International Workshop on Higher Order Logic Theorem Proving and Its Applications, pages
122–137. Springer-Verlag, 1995.

8

[DM99] C. Dubois and V. M. Morain. Certification of a Type Inference Tool for ML: Damas–Milner
within Coq. J. Autom. Reason., 23(3):319–346, 1999.

[KC08] Sunil Kothari and James Caldwell. On Extending Wand’s Type Reconstruction Algorithm
to Handle Polymorphic Let. In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt
Löwe, editors, Logic and Theory of Algorithms, Fourth Conference on Computability in
Europe, CiE 2008, pages 254–263. University of Athens, 2008.

[Kot07] Sunil Kothari. Wand’s Algorithm Extended For The Polymorphic ML-Let. Technical report,
University of Wyoming, 2007.

[McB03] Conor McBride. First-order unification by structural recursion. J. Funct. Program.,
13(6):1061–1075, 2003.

[MW85] Zohar Manna and Richard Waldinger. The logical basis for computer programming. Volume
1: deductive reasoning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1985.

[NN96] Dieter Nazareth and Tobias Nipkow. Theorem Proving in Higher Order Logics, volume 1125,
chapter Formal Verification of Alg. W: The Monomorphic Case, pages 331–345. Springer
Berlin / Heidelberg, 1996.

[NN99] Wolfgang Naraschewski and Tobias Nipkow. Type Inference Verified: Algorithm W in
Isabelle/HOL. J. Autom. Reason., 23(3):299–318, 1999.

[Pau85] L. C. Paulson. Verifying the Unification Algorithm in LCF. Sci. of Computer Programming,
5:143–169, 1985.

[Rou94] J. Rouyer. Developpement d’Algorithmes dans le Calcul des Constructions. PhD thesis,
Institut National Polytechnique de Lorraine, Nancy, France, 1994.

[The06] Laurent Thery. Sudoku in Coq. 2006.

[UN09] Christian Urban and Tobias Nipkow. From Semantics to Computer Science, chapter Nom-
inal verification of algorithm W. Cambridge University Press, Not yet published 2009.

9

7 Appendix

7.1 First-order unification specification in Coq

Function unify (c:list constr){wf meaPairMLt} :(option (M.t type)) :=

match c with

nil => Some (M.empty type)

| h::t => (match h with

EqCons (TyVar x) (TyVar y) =>

if eq_dec_stamp x y

then unify t

else (match unify (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t) with

Some p => Some (compose_subst (M.add x (TyVar y)(M.empty type)) p)

| None => None

end)

| EqCons (TyVar x) (Arrow ty3 ty4) =>

if (member x (FTV ty3)) || (member x (FTV ty4))

then None

else (match (unify (apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type))

t) with

Some p => Some (compose_subst (M.add x (Arrow ty3 ty4) (M.empty type)) p)

| None => None

end)

| EqCons (Arrow ty3 ty4)(TyVar x) =>

if (member x (FTV ty3)) || (member x (FTV ty4))

then None

else (match (unify (apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type))

t)) with

Some p => Some (compose_subst (M.add x (Arrow ty3 ty4) (M.empty type)) p)

| None => None

end)

| EqCons (Arrow ty3 ty4)(Arrow ty5 ty6)=> unify ((EqCons ty3 ty5)::((EqCons ty4 ty6)::t))

end)

end.

7.2 Induction principle used in the functional induction

unify_ind

: forall P : list constr -> option (M.t type) -> Prop,

(forall c : list constr, c = nil -> P nil (Some (M.empty type))) ->

(forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall x y : nat,

h = EqCons (TyVar x) (TyVar y) ->

forall _x : x = y,

eq_dec_stamp x y = left (x <> y) _x ->

P t (unify t) -> P (EqCons (TyVar x) (TyVar y) :: t) (unify t)) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall x y : nat,

h = EqCons (TyVar x) (TyVar y) ->

forall _x : x <> y,

eq_dec_stamp x y = right (x = y) _x ->

P (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0)

(unify

(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type))

t0)) ->

forall p : M.t type,

10

unify

(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0) =

Some p ->

P (EqCons (TyVar x) (TyVar y) :: t0)

(Some (compose_subst (M.add x (TyVar y) (M.empty type)) p))) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall x y : nat,

h = EqCons (TyVar x) (TyVar y) ->

forall _x : x <> y,

eq_dec_stamp x y = right (x = y) _x ->

P (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0)

(unify

(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type))

t0)) ->

unify

(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0) =

None -> P (EqCons (TyVar x) (TyVar y) :: t0) None) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall (x : nat) (ty3 ty4 : type),

h = EqCons (TyVar x) (Arrow ty3 ty4) ->

member x (FTV ty3) || member x (FTV ty4) = true ->

P (EqCons (TyVar x) (Arrow ty3 ty4) :: t0) None) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall (x : nat) (ty3 ty4 : type),

h = EqCons (TyVar x) (Arrow ty3 ty4) ->

member x (FTV ty3) || member x (FTV ty4) = false ->

P

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->

forall p : M.t type,

unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = Some p ->

P (EqCons (TyVar x) (Arrow ty3 ty4) :: t0)

(Some (compose_subst (M.add x (Arrow ty3 ty4) (M.empty type)) p))) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall (x : nat) (ty3 ty4 : type),

h = EqCons (TyVar x) (Arrow ty3 ty4) ->

member x (FTV ty3) || member x (FTV ty4) = false ->

P

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->

unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = None ->

P (EqCons (TyVar x) (Arrow ty3 ty4) :: t0) None) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall (ty3 ty4 : type) (x : nat),

h = EqCons (Arrow ty3 ty4) (TyVar x) ->

member x (FTV ty3) || member x (FTV ty4) = true ->

11

P (EqCons (Arrow ty3 ty4) (TyVar x) :: t0) None) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall (ty3 ty4 : type) (x : nat),

h = EqCons (Arrow ty3 ty4) (TyVar x) ->

member x (FTV ty3) || member x (FTV ty4) = false ->

P

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->

forall p : M.t type,

unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = Some p ->

P (EqCons (Arrow ty3 ty4) (TyVar x) :: t0)

(Some (compose_subst (M.add x (Arrow ty3 ty4) (M.empty type)) p))) ->

(forall (c : list constr) (h : constr) (t0 : list constr),

c = h :: t0 ->

forall (ty3 ty4 : type) (x : nat),

h = EqCons (Arrow ty3 ty4) (TyVar x) ->

member x (FTV ty3) || member x (FTV ty4) = false ->

P

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->

unify

(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = None ->

P (EqCons (Arrow ty3 ty4) (TyVar x) :: t0) None) ->

(forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall ty3 ty4 ty5 ty6 : type,

h = EqCons (Arrow ty3 ty4) (Arrow ty5 ty6) ->

P (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t)

(unify (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t)) ->

P (EqCons (Arrow ty3 ty4) (Arrow ty5 ty6) :: t)

(unify (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t))) ->

forall c : list constr, P c (unify c)

7.3 Proof Obligations

There are 5 proof obligations related to the 5 recursive call sites in the specification. The sixth proof
obligation is to show that the ordering relation is well founded.

forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall t0 t1 : type,

h = EqCons t0 t1 ->

forall x : nat,

t0 = TyVar x ->

forall y : nat,

t1 = TyVar y ->

forall anonymous : x = y,

eq_dec_stamp x y = left (x <> y) anonymous ->

meaPairMLt t (EqCons (TyVar x) (TyVar y) :: t)

12

______________________________________(2/6)

forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall t0 t1 : type,

h = EqCons t0 t1 ->

forall x : nat,

t0 = TyVar x ->

forall y : nat,

t1 = TyVar y ->

forall anonymous : x <> y,

eq_dec_stamp x y = right (x = y) anonymous ->

meaPairMLt (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t)

(EqCons (TyVar x) (TyVar y) :: t)

______________________________________(3/6)

forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall t0 t1 : type,

h = EqCons t0 t1 ->

forall x : nat,

t0 = TyVar x ->

forall ty3 ty4 : type,

t1 = Arrow ty3 ty4 ->

member x (FTV ty3) || member x (FTV ty4) = false ->

meaPairMLt

(apply_subst_to_constr_list (M.add x (Arrow ty3 ty4) (M.empty type)) t)

(EqCons (TyVar x) (Arrow ty3 ty4) :: t)

______________________________________(4/6)

forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall t0 t1 : type,

h = EqCons t0 t1 ->

forall ty3 ty4 : type,

t0 = Arrow ty3 ty4 ->

forall x : nat,

t1 = TyVar x ->

member x (FTV ty3) || member x (FTV ty4) = false ->

meaPairMLt

(apply_subst_to_constr_list (M.add x (Arrow ty3 ty4) (M.empty type)) t)

(EqCons (Arrow ty3 ty4) (TyVar x) :: t)

______________________________________(5/6)

forall (c : list constr) (h : constr) (t : list constr),

c = h :: t ->

forall t0 t1 : type,

h = EqCons t0 t1 ->

forall ty3 ty4 : type,

t0 = Arrow ty3 ty4 ->

forall ty5 ty6 : type,

t1 = Arrow ty5 ty6 ->

meaPairMLt (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t)

(EqCons (Arrow ty3 ty4) (Arrow ty5 ty6) :: t)

______________________________________(6/6)

well_founded meaPairMLt

13

