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ABSTRACT
The languages of current dynamic constraint detection techniques
are often specified by fixed grammars of universal properties. These
properties may not be sufficient to express more subtle facts that
describe the essential behavior of a given program. In an effort to
make the dynamically recovered specification more expressive and
program-specific we propose the state space partitioning technique
as a solution which effectively adds program-specific disjunctive
properties to the language of dynamic constraint detection. In this
paper we present ContExt, a prototype implementation of the state
space partitioning technique which relies on Daikon for dynamic
constraint inference tasks.

In order to evaluate recovered specifications produced by Con-
tExt, we develop a methodology which allows us to measure quan-
titatively how well a particular recovered specification approximates
the essential specification of a program’s behavior. The proposed
methodology is then used to comparatively evaluate the specifica-
tions recovered by ContExt and Daikon on two examples.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Ver-
ifying and Reasoning about Programs—Invariants, Specification
techniques

General Terms
Algorithms

Keywords
dynamic constraint inference, disjunctive constraint, behavioral spec-
ification

1. INTRODUCTION
Dynamic constraint detection is a dynamic program analysis which

strives to recover (part of) a program’s specification in the form of
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if (x < 0) {. . .} P1 ≡ x < 0,
else if (y > 0) {. . .} ⇒ P2 ≡ x ≥ 0 ∧ y > 0,
else {. . .} P3 ≡ x ≥ 0 ∧ y ≤ 0

Figure 1: An if-then-else statement and its corresponding
partition

constraints. The languages of current dynamic constraint detec-
tion techniques are often specified by fixed grammars of universal
properties [7, 13]. While a fixed universal language serves well
for problems which require the discovery of a well-defined set of
problem-specific, but program-independent properties, it may be
insufficient to capture the logic of a particular program.

Our goal is to extend dynamically recovered specifications with
program-specific properties that capture the subtle essential prop-
erties of a program under analysis automatically. With this goal
in mind, we propose the state space partitioning technique which
combines static and dynamic program analysis to automatically
specialize the language of constraint detection to a particular pro-
gram on a per-program basis. The key observation for the technique
is that certain constructs from the source code can be mapped to the
assumptions about the target program. Such assumptions are then
used to infer likely constraints on partitions by observing execution
traces.

The constraints produced by the technique are about what the
state space of a particular class in an object oriented program looks
like based on the way the programmer appears to partition this
space with if-then-else statements. In particular, each test
in an if-then-else-statement exclusive of the preceding tests
defines a partition on the values of attributes that participate in the
tests of the statement. For example, the tests x < 0 and y > 0 in
Figure 1 partition the state space {〈x, y〉 | − 231 ≤ x, y < 231}
consisting of all possible pairs of int values1 for attributes x and
y into three disjoint subspaces, or states, that are characterized by
the additional facts that either x < 0, or x ≥ 0 ∧ y > 0, or
x ≥ 0 ∧ y ≤ 0. Once these spaces are identified for a class, then
methods of this class can be viewed as potentially inducing transi-
tions between state subspaces.

In such a way the state space partitioning technique introduces a
number of different types of disjunctive constraints into the lan-
guage of constraint detection. Disjunctive constraints based on
state space partitions include an object invariant, constraints on dis-
tinct behavior for each abstract state, as well as constraints on tran-
sitions between abstract states induced by the methods of a class.
Our object invariant is of the form ¬a ∨ ¬b which says that prop-
erties a and b are mutually exclusive. Transitions induced by a

1Assuming 32 bit integer representation.
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method m are depicted as p ⇒ q, where p is an abstract state on
variables at precondition of m while q is a disjunction of abstract
states on variables at postcondition of m. Our preliminary evalua-
tion results in Section 4 seem to suggest that such disjunctive con-
straints provide for models that capture the essential behavior of
certain programs more completely than traditional dynamic anal-
ysis as implemented in Daikon which avoids general disjunctive
relations since they are expensive to compute.

In this paper we provide an overview of the state space partition-
ing technique and describe its prototype implementation in a tool
called ContExt. ContExt relies on a cursory static analysis to de-
termine its property spaces and on Daikon for dynamic constraint
inference tasks.

The rest of this paper is organized as follows. The next section
presents a motivational example, introduces the state space parti-
tioning technique, details the implementation of the technique in
ContExt and concludes with comparative complexity analysis. Sec-
tion 3 discusses the limitations of our approach. Section 4 intro-
duces an evaluation methodology and then applied it to two exam-
ples in order to comparatively evaluate the recovered specifications
produced by ContExt and Daikon. Section 5 presents related work.
And Section 6 concludes.

2. OUR APPROACH
We start this section with a simple, but illustrative example for

the state space partitioning technique which serves as both our mo-
tivational example and running example for the rest of the section.

2.1 The Calculator Example
The CalcEngine class in Figure 2a represents a state-based

calculator. The values of the newNumber,adding, and subtract-
ing attributes participate in the state of a CalcEngine object and
determine the action taken when a button on the calculator’s key-
board is pressed. For example, when a number button is pressed,
the numberPressedmethod is called. The behavior of the num-
berPressedmethod is determined by the newNumber value. If
newNumber is true, then displayValue is assigned the num-
ber that was pressed; if newNumber is false then display-
Value is set to displayValue * 10 + number.

Our technique forms two state spaces for the CalcEngine ob-
jects based on the tests of the conditional statements in the source
code of the class. The first space IP1 is derived from the if-
statement in the body of the numberPressed method and con-
sists of two abstract states, one called P1 where newNumber is
true and one called P2 where newNumber is false. The sec-
ond space IP2 originates from the if-statement in the body of the
equals method and consists of three abstract states Q1, Q2, and
Q3 defined by the predicates adding,¬adding∧subtracting,
and ¬adding ∧ ¬subtracting respectively.

The constraints automatically inferred by our technique are pre-
sented on Figure 2b. The precondition on the numberPressed
method indicates that this method was called by CalcEngine ob-
jects in every abstract state of IP1 and IP2. The precondition on
clear, however, suggests that this method was only invoked by
objects in P1, P2, or Q3. Preconditions reveal the “use-cases” of
each method observed over a set of execution traces.

Postconditions reflect the state transitions induced by a method,
if any, by relating an initial abstract state observed at the precondi-
tion to the disjunction of abstract states that were observed at the
postcondition of this method. For example the postconditions for
the numberPressed method reveal that this method performs a
transition from any initial IP 1-state into P2 and serves as identity
function on the IP2 states.

pub l i c c l a s s CalcEngine {

//number which appears in the Calculator display
pr i va t e i n t d i sp layValue ;
//store a running total
pr i va t e i n t t o t a l ;
//true if #’s pressed should overwrite display
pr i va t e boolean newNumber;
//true if adding
pr i va t e boolean adding ;
//true if subtracting
pr i va t e boolean sub t ra c t i ng ;

pub l i c vo id numberPressed ( i n t number ) {
i f ( newNumber)

d i sp layValue = number ;
e l s e

d i sp layValue = di sp layValue ∗ 10 + number ;
newNumber = f a l s e ;
}

pub l i c vo id equa l s ( ) {
i f ( adding )

d i sp layValue = di sp layValue + t o t a l ;
e l s e i f ( s ub t ra c t i ng )

d i sp layValue = t o t a l − disp layValue ;
. . .

}

pub l i c vo id c l e a r ( ) { . . . }

pub l i c vo id p lus ( ) { . . . }

pub l i c vo id minus ( ) { . . . }

}

a. Code fragment for the Calculator class

Object Invariant:
con t ex t CalcEngine inv:
(!this.adding || !this.subtracting)

Method Constraints:
con t ex t CalcEngine::numberPressed(int number)
pre: P1 || P2, Q1 || Q2 || Q3
pos t: orig(P1) ==> P2, orig(P2) ==> P2
orig(Q1) ==> Q1, orig(Q2) ==> Q2
orig(Q3) ==> Q3
orig(P1) <==> (displayValue == orig(number))
orig(P2) ==>
(displayValue ==

10*orig(displayValue)+orig(number))
con t ex t CalcEngine::clear()
pre: P1 || P2, Q3
pos t: orig(P1) ==> P1, orig(P2) ==> P1,
orig(Q3) ==> Q3

b. Constraints inferred by ContExt

Figure 2: Calculator Example

Our technique also automatically infers the object invariant
¬adding ∨ ¬subtracting for the CalcEngine class. This
object invariant is an essential constraint which says that adding
and subtracting are mutually exclusive in all CalcEngine
instances.

Next we proceed to present the overview of the state space parti-
tioning technique. The Calculator example is used as a running
example to illustrate the key concepts.

2.2 Overview of the State Space Partitioning
Technique

Every if-then-else statement defines a sequence of boolean
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expressions consisting of the test expressions mentioned by the
statement in the order in which they appear in the statement. The
technique starts by forming disjoint partitions of the state spaces
of the program variables involved in expressing these tests. Such
a partition is obtained by conjoining each test with the negations
of all the tests preceding it in the sequence. To account for the
complete state space of the involved variables, we form an explicit
else-partition that is the combined negation of all the tests in the
if-then-else sequence. Thus, an if-then-else statement
with n tests results in n + 1 disjoint state partitions. For exam-
ple, adding followed by subtracting defines the sequence
of boolean expressions from the if-then-else statement of
the equals method of the CalcEngine class. Following the
above procedure, the tests are conjoined into three disjoint parti-
tions Q1 = adding, Q2 = ¬adding ∧ subtracting, and
Q3 = ¬adding ∧ ¬subtracting. Let us also note that a
partition, such as Q1, is used to denote both a logical formula,
adding is true, and the respective subspace of all object states
where the adding attribute is true.

The state space partitioning technique considers partitions of two
scopes: class and input. Class-scoped partitions are expressed in
terms of instance variables and constants alone and can be eval-
uated anywhere in the class. Input-scoped partitions also contain
a variable which serves as an input parameter to the method from
which the partition has been extracted, and as such, they can only
be evaluated in the context of this method. In the Calculator
example all partitions are expressed in terms of CalcEngine’s
attributes and are therefore class-scoped.

Intuitively, the partitions constructed above represent the abstract
states explicitly identified by the developer with the conditional
logic of the class. Having identified potentially interesting par-
titions in terms of program variables, we now define the precon-
ditions, postconditions and object invariants based on these parti-
tions. The preconditions are designed to identify the use cases of a
particular method. A precondition is then represented by a disjunc-
tion of states, P1, ..., Pn, from the same partition space,

W

j∈[1..n]

Pj .

For instance, Q1 ∨ Q2 ∨ Q3 is the precondition to the plus
method of the CalcEngine class.

The postconditions considered by the state space partitioning ap-
proach take the form of transitions on the identified abstract states
induced by a particular method of a class. For example, the plus
method induces the transition from the abstract state Q2 into the ab-
stract state Q1 in the CalcEngine object, denoted as Q2 ⇒ Q1.

Object invariant expressions are designed to check whether the
tests of the corresponding if-then-else statement are mutu-
ally exclusive. For this purpose object invariants are constructed
on the test expressions from an if-then-else statement rather
than partitions. A hypothesized object invariant is a disjunct that
asserts that each test in the sequence of boolean tests is disjoint
from the others. For example, the object invariant hypothesis for
the space IP 2 checks for the mutual exclusion of adding and
subtracting attributes and is denoted by (adding∧¬subtrac-
ting)∨ (¬adding∧subtracting)∨ (¬adding∧¬subtracting).

The constraints presented above are all disjunctions. If a dis-
junctive template were to be used in the computation of disjunctive
pre- and postconditions, it would require a number of state com-
binations exponential in the size of each abstract state space. This
approach is computationally prohibitive, instead we designed an al-
gorithm that only considers a linear number of such combinations.

The following algorithm allows a dynamic constraint detector to
approximate transitional postconditions with potentially stronger
ones. Let IP be an abstract space that consists of three abstract

states, P1, P2, and P3. To support the inference of state transitions,
the initial state is considered over variable values at precondition,
denoted as Ppre

i , while the disjunctive result is inferred over vari-
able values at postcondition, denoted as Ppost

i for some i ∈ [1..3].
At the postcondition program point for a method M compute the
transitional postcondition for each Ppre

i , i ∈ [1..3], as follows:

1. Assume that P pre
i ⇒ ¬P post

1 , P pre
i ⇒ ¬P post

2 , and P pre
i ⇒

¬P post
3 are all possible transitions. Denote this by the set S

of indices S = {1, 2, 3}.

2. Perform dynamic analysis, and whenever Ppre
i and P post

j

both hold, remove j from S.

3. Approximate the transitional postcondition for Pi with a dis-
junction of abstract states whose indices are contained in the
complement of S, Ppre

i ⇒ W

k∈Sc

P post
k .

The algorithm for precondition inference is analogous to the one
above, except that no transitional relation is computed.

The following example is used to provide the intuition behind the
algorithm. Suppose that i = 1 and after step 2, S = {1, 3}. This
means that P pre

1 ⇒ ¬P post
1 and P pre

1 ⇒ ¬P post
3 are consistent

with the observed data. Also, Ppost
1 ∨P post

2 ∨P post
3 is true by con-

struction. Then, the transition P pre
1 ⇒ P post

2 , which is computed
by the algorithm, follows by propositional logic.

Currently our approach considers a Cartesian product of the par-
titions which originate from separate conditionals in order to refine
the state space and improve the precision of the inferred constraints.
This section presents an overview of the state space partitioning
technique. To keep the discussion short, some details, such as the
use of product partitions and refined transition relations for post-
conditions, have been omitted [10].

The main advantage of the technique is the efficient introduction
of the program-specific disjunctive constraints into the language of
dynamic constraint inference.

2.3 ContExt: Implementation
The implementation for the state space partitioning technique

uses lightweight static analysis of Java source code for abstract
state extraction. Dynamic analysis tasks are delegated to Daikon [1,
12] which is a general and publicly available tool for dynamic con-
straint detection implemented in Java. At the end, ContExt com-
bines the constraints inferred by our approach with those inferred
by Daikon in its output. For better understanding of our approach
as well its advantages and limitations, we start with a short intro-
duction to the dynamic constraint inference mechanism of Daikon.
We then proceed on to the description on the implementation for
the state space partitioning technique.

The constraints inferred by Daikon are determined by program
points, a fixed grammar of properties, and the variables visible at
the various program points. A program point is a location within
the target program where constraints are inferred. A fixed gram-
mar of properties is a list of templates that describe possible re-
lationships between variables. Each template is instantiated with
all possible combinations of the program variables of correct type
visible at a program point. In the end Daikon reports the likely con-
straints as the instantiated templates that are never invalidated by
any data trace.

Daikon attempts to minimize the number of reported constraints.
First, it uses statistical justification to distinguish chance relation-
ships from likely constraints. Daikon establishes the properties that
hold on the given data trace, and then for each property, it computes
the probability that the observed property could have happened by
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chance alone on a random set of samples. Only properties whose
probability is smaller than the user-defined confidence parameter
qualify as likely constraints and are reported. Second, Daikon sup-
presses constraints that are easily derived from one that is reported.

Daikon outputs two kinds of likely constraints: accidental prop-
erties and true constraints. The latter are constraints in the tradi-
tional sense, whereas accidental properties are an artifact of the
values observed during the examined executions and are not uni-
versally true for all program runs.

A fixed grammar of properties is used to describe the language of
constraints. In general, the grammar is insensitive to the context of
a particular program. However, Daikon also supports a mechanism
to infer conditional constraints in the form of implications p ⇒ q
(if p holds then q holds). An antecedent in a conditional constraint
can be thought to provide context sensitivity with respect to some
state of the target program.

Checking conditional hypotheses for all properties in the gram-
mar of properties is computationally prohibitive. Instead, Daikon
uses splitting conditions, or splitters for short, for the computation
of implications. A splitting condition is a boolean expression in
terms of some program variables visible at a program point T . A
splitter a partitions the data trace into two mutually exclusive sub-
sets: the first subset Ta contains the data values that satisfy the
splitting condition a, and the second, T¬a, contains the data values
such that the splitting condition a does not hold. After splitting
the data, constraints are independently inferred on each set, Ta and
T¬a. Then, constraints inferred over Ta and T¬a are combined
into implications based on the key observation that each mutually
exclusive constraint implies the other constraints inferred over its
own subset of data. The algorithm for the creation of implications
in Daikon is described in [5].

In our approach, static analysis extracts the sequence of boolean
test expressions cond1, cond2, ..., condn from each if-statement
with class-scoped test conditions in the source code for a class C.
This sequence is then used to construct a state space partition IP =
{P1, P2, ..., Pn, Pn+1} for the objects of class C, such that P1 =
cond1, P2 = cond2 ∧ ¬cond1, ..., Pn = condn ∧ ¬condn−1 ∧
... ∧ ¬cond1, and Pn+1 = ¬condn ∧ ¬condn−1 ∧ ... ∧ ¬cond1

as described in section 2.2.
After the partitions for class C have been identified, partition-

based constraints are created. Each sequence of condition tests
drives the construction of an object invariant hypothesis. Each par-
tition participates in the creation of two types of constraints: a dis-
junctive constraint on the partition states as a precondition to each
method of class C and transition constraints between the state par-
titions as postconditions to methods of class C.

An object invariant initially assumes that all conditions in a se-
quence are mutually exclusive. As data samples are observed, an
object invariant may be weakened so that only some of the condi-
tions are mutually exclusive. In its weakest form, an object invari-
ant says that some conditions always hold throughout the lifetime
of the object. For the partition IP , the strongest form of the object
invariant is (cond1∧¬cond2∧ ...∧¬condn)∨(¬cond1∧cond2∧
...∧¬condn)∨ (¬cond1∧¬cond2 ∧ ...∧condn) and the weakest
form is cond1 ∨ cond2 ∨ ... ∨ condn.

The inference of transition constraints involves the splitting mech-
anism of Daikon. Each abstract state Pi from partition IP is used
as a splitter on the data trace at postcondition program points of the
enclosing class. This arrangement provides for convenient checks
when P pre

i and P post
j both hold. The algorithm from Section 2.2

is then executed for each splitter Pi from partition IP in order to
obtain transition relations for Pi. For example let P1 be a split-
ting state from the set IP . Then the data trace for the postcondi-

tion of some method M of class C is split into the data samples
that satisfy P pre

1 and the data samples that satisfy ¬Ppre
1 . Sup-

pose, that method M induces the transformation of P1 into P2

or P3 and both cases are present in the data trace. Then, the dis-
junctive constraint inferred at the postcondition to method M over
the data samples in Ppre

1 is P post
2 ∨ P post

3 . And the transition
P pre

1 ⇒ P post
2 ∨P post

3 is inferred for the postcondition of method
M . Let us also note that Daikon’s built-in implication inference is
also performed for all splitters that originate from the state space
partitions. Daikon-inferred implications potentially provide insight
into the state of a class not covered by partitions, which may be
referred to as the “what is being controlled” part of the state. For
example, the displayValue in the CalcEngine class serves
as the controlled part of the CalcEngine’s state.

A precondition to method M is determined to be the disjunction
of all abstract states from which a transition was observed.

Since partition creation may result in lengthy formulas that are
hard to read, we simplify partition formulas into their prime impli-
cants [11]. This simple approach eliminates some logically false
formulas and performs well on our examples. For instance, the ob-
ject invariant for the CalcEngine class is simplified from (add-
ing ∧¬subtracting)∨ (¬adding∧ subtracting)∨ (¬adding∧
¬subtracting) to ¬adding ∨ ¬subtracting with this proposi-
tional reasoning.

At the present moment our implementation is capable of evalu-
ating any Java expression on the variables visible to Daikon. Con-
ditional expressions which contain local variables or method calls
with parameters are currently ignored. Our future work involves
augmenting the implementation to consider conditional tests which
contain pure method calls or local variables that can be expressed in
terms of class attributes and input parameters. The types of condi-
tional expressions considered by ContExt include if-then-else
statements as well as switch-statements. The need to be able to
evaluate arbitrary Java expressions on the data trace prohibits us
from using the template mechanism for constraint creation. In-
stead, a test expression is compiled into Java bytecode and eval-
uated by the JVM on the supplied variable values.

2.4 Comparative Complexity Analysis
The state space partitioning technique effectively computes dis-

junctions. This section compares the time and space costs of our
approach to those of Daikon.

First let us consider the costs of introducing a generalized dis-
junctive template into Daikon’s grammar of properties. In this case
Daikon would have to consider the powerset of all hypothesized
constraints at each program point. The total number of hypothe-
sized constraints would then increase to 2k for each program point,
where k is the number of hypothesized non-disjunctive constraints.
Obviously, this number of hypothesized constraints is computation-
ally prohibitive.

Second let us compare the time and space complexity of Daikon’s
algorithm to those of the state space partitioning technique. Let
us approximate2 the space complexity of Daikon’s constraint in-
ference with S = O(P ∗ C) and the time complexity with T =
O(P ∗ C ∗ L), where P is the number of program points in the
target program, C is the number of hypothesized constraints at a
program point, and L is the number of data samples observed [12].

The approximate complexities of the state space partitioning ap-
proach are presented next. Suppose, there are m class-scoped par-
titions. Let n be the maximum number of states per class-scoped

2For simplicity, we approximate Daikon’s space and time complex-
ities with those of the simple incremental algorithm for constraint
detection.
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partition. Then, the total number of states considered by the state
space partitioning technique is m ∗ n. So, the state space par-
titioning approach increases the number of program points, P′,
at which the constraints are inferred by a factor of m ∗ n. The
number of hypothesized constraints per program point, C′, is in-
creased by an additive factor m ∗ n. Therefore, for the state space
partitioning technique the relative worst-case space complexity is
S′ = P ′C′ = O(mnP ∗ (mn + C)) and the relative worst-case
time complexity is T ′ = O(P ′∗C′ ∗L) = mn∗P ∗(mn+C)∗L.
As expected, the state space partitioning technique is more expen-
sive than plain Daikon inference, but not prohibitively so.

If the technique considers the Cartesian product of all m par-
titions, then the analysis contends with one partition of size nm

rather than m partitions with n states each. This exponential cost is
to be expected for the more path sensitive analysis. Cartesian prod-
uct analysis is an option that can be used to increase the precision
of the inferred constraints at an extra cost.

3. LIMITATIONS
The state space partitioning technique is primarily a dynamic

analysis which results in the unsoundness of the reported constraints.
When a transition on a state is missing, the technique is unable to
distinguish between truly unreachable states and states omitted by
the test suite. The unsoundness of the transitions results in report-
ing potentially stronger constraints.

Daikon’s implication inference is performed on the splitters which
originate from the state space partitioning technique. This infer-
ence often provides the insight into the controlled part of the state
of a class, however it also results in the increase in the number of
accidental constraints reported and loss of precision of the results.

Given the same test suite, the state space partitioning approach
may not infer some unconditional constraints that Daikon would.
State space partitioning technique infers constraints at split pro-
gram points. A split program point observes less data samples than
the corresponding program point which may result in some con-
straints being statistically unjustified at a split program point. If a
constraint is not statistically justified at a split program point, it will
not be reported.

At the moment, we applied the technique only to one class at a
time. The future work involves extending the state space partition-
ing technique to consider the state interactions between composed
classes.

4. COMPARATIVE EVALUATION
A quantitative evaluation of constraint inference techniques presents

a challenge due to the subjective nature of recovered constraints. In
this section we propose a methodology for a quantitative evaluation
of constraint inference techniques and then present the results of
applying this methodology to comparatively evaluate Daikon and
ContExt on several examples.

Our evaluation methodology is based on the Alloy modeling lan-
guage [9]. First, the class under analysis is modeled in Alloy. Sec-
ond, the behavior of this model is constrained with inferred con-
straints, and then the essential specification is checked against the
model as depicted in Figure 3. The percentage of the essential spec-
ification that Alloy finds valid serves as a quantitative measure of
how well a particular recovered specification captures the essential
behavior of the class under analysis.

The Alloy model for the class consists of three parts: represen-
tation of the class, the essential specification of its behavior, and
constraints on the behavior of the model. The representation for
the class under analysis is defined in terms of several Alloy signa-

tures, which can be automatically derived from the class fields and
method signatures in the source code.

Alloy facts constraining the model are automatically translated
from the constraints produced by a particular constraint inference
tool (e.g., ContExt or Daikon). Each inferred constraint corre-
sponds to exactly one Alloy fact. In this way two Alloy models
are created for the target class, one for each tool. Each model uses
the same signatures but is constrained by the automatically inferred
constraints produced by its respective tool. To check that the re-
sulting model is not over-constrained, we use a show predicate to
produce a number of representative non-trivial instances.

In order to evaluate the recovered specification, one needs the
“goal” set of constraints that define the essential specification of
the class. By its nature, this “goal” set of constraints has to be
produced manually. The essential specification can be manually
translated into Alloy unit assertions. A unit assertion is a state-
ment about a single aspect of behavior. For example, the fact that
pressing a number of the Calculator after the plus sign results
in this number being displayed. Alloy assertions provide a high-
level abstraction from the constraints expressed in the language of
a particular inference tool.

This step introduces the sensitivity of the evaluation methodol-
ogy to the subject who performs the translation of the specification
into Alloy. The subject may potentially introduce errors or skew
the specification in favor of one tool. One possible solution to this
problem is to have a neutral person perform the translation. How-
ever, in the situation of the absence of such a person with the knowl-
edge of Alloy’s language, we to operate under the assumption of a
fair translation of the specification.

After the Alloy model has been created, the Alloy solver is used
to check each assertion about the expected behavior of the model
against the facts produced by a particular inference tool. If Alloy
does not find a counterexample to an assertion, the essential behav-
ior corresponding to this assertion is said to have been recovered by
the tool. In short, we check how many of specification assertions
hold given the inferred constraints (facts). This approach allows
us to evaluate quantitatively how much of the essential behavior
is captured by a particular constraint inference tool. It provides a
means to measure the completeness of the recovered specification,
also known as recall. We also plan to extend this procedure in order
to be able to measure the correctness, or precision, of the inferred
specification by approximating the minimum set of facts that en-
able Alloy to check the assertions.

The advantages of the presented methodology include abstrac-
tion from the languages of particular constraint detection tools,
higher-level specification of the essential behavior of the class un-
der analysis, and an objective criterion for the evaluation of the
recovered specification.

4.1 Evaluation Case Studies
The two case studies present preliminary results of comparative

evaluation of the specifications recovered by ContExt and Daikon
based on the methodology introduced in Section 4.

The first case study was performed on the Puzzle example,
which was given as a homework assignment in a programming
class. The Puzzle class represents an environment with an agent.
The environment is a 3x3 board which tracks the location of the
agent with the x and y fields and the status of two doors at one
end of the room. Each door toggles from open to closed depend-
ing on its previous state and where the agent moves next. The
agent is allowed to move left, right, forward and backward in the
environment. The moves respectively correspond to moveLeft,
moveRight, moveForward, and moveBackward methods of
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Figure 3: Evaluation technique

Assertion in Alloy English-language specification
a s s e r t moveForward_1 {

a l l p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>
(p’.yPosition = p.yPosition <=> p’.yPosition = 0)

}

The y-coordinate of the agent is to remain
the same only when it attempts a moveForward
from the top edge of the board (y is 0).

a s s e r t moveForward_2 {
a l l p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>
(p’.yPosition - 1 = p.yPosition <=> p’.yPosition > 0)

}

Otherwise, an agent moves forward exactly
one square (y-coordinate decreases by one).

a s s e r t moveForward_3 {
a l l p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>
p.yPosition =< p’.yPosition

}

The y-position of the agent at the post-
condition of the moveForward method is
less than or equal to the y-position at
precondition.

assert moveForward_4 {
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>
(p.xPosition = p’.xPosition)

}

Moving forward does not affect the
x-coordinate of the agent.

Figure 4: Specification of the moveForward method of the Puzzle.

number of number of number of
assertions checked facts

assertions
Daikon 35 18 (51%) 35
Daikon (w/split) 35 23 (66%) 124
ContExt 35 28 (80%) 554

Figure 5: Comparative evaluation of the inferred constraints for Con-
tExt and Daikon on the Puzzle example

number of number of
number of checked facts
assertions assertions

Daikon 15 12 (80%) 55
ContExt 15 15 (100%) 89

Figure 6: Comparative evaluation of the inferred constraints for Con-
tExt and Daikon on the Employee example

the Puzzle class. The goal is for the agent to cross the room to
the location of the doors with both doors open.

Figure 4 presents the specification in terms of the unit assertions
in Alloy for the moveForward method of the Puzzle and their
respective translation into the English language. The unit assertions
for the moveLeft, moveRight, and moveBackward methods
of the Puzzle are similar to the moveForward method. We
believe that the presented assertions provide a fair specification for
the Puzzle example. These assertions are used on Alloy models
for both Daikon and ContExt.

For a preliminary quantitative comparison of Daikon and Con-
tExt on the Puzzle example, both tools were run with the same
test suite. An Alloy model with signatures and assertions for the
Puzzle example was constructed manually. One copy of this
model was constrained with the facts inferred by Daikon to pro-
duce Daikon’s recovered specification. Another copy of this model
was constrained with the facts inferred by ContExt to produce Con-
tExt’s recovered specification. Comparison of the two specifica-
tions is presented in the first and third rows of Figure 5.

The second row shows the results for Daikon when its native
splitting mechanism is enabled. At first we used Daikon’s own
static analysis tool [5] to generate context sensitive program points.
This caused Daikon to use the boolean expressions in the Puzzle
to establish context at points corresponding to the methods where
the expressions were found. Somewhat surprisingly, the outcome
was the same as for pure Daikon. Next we distributed the statically
established contexts at program points non-local to the expressions
in order to mimic class scoped partitions. These results are shown
in the second row.

Figure 5 shows that in this example ContExt recovered about
60% more of the essential behavior than pure Daikon at the cost of
increasing the number of inferred constraints. For instance, while
Daikon-recovered facts failed to demonstrate the stronger asser-
tion that an agent moves exactly one square forward by using the
moveForward method when not on the top edge of the board
(assertion moveForward_2 on Figure 4), they were sufficient to
validate the weaker assertion that an agent either moves one square
forward or remains on its current square when the moveForward
is called (assertion moveForward_3 on Figure 4). The condi-
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tional logic of the moveForwardmethod distinguishes the agent’s
locations in which either no move occurs (top row) from the ones
where a one square move forward occurs (second and third row).
By considering the partitions which are based on the conditional
tests, ContExt is able to recover the facts which enable the Alloy
Analyzer to show both assertions moveForward_1 and moveFor-
ward_2.

Between the results for pure Daikon and ContExt, on Figure 5
is row two which corresponds to the naive mimicking of the state
space partitioning technique in Daikon. This row illustrates an im-
provement of 30% over pure Daikon at the cost of increasing the
number of inferred constraints. These results seem to suggest that
even a naive application of the state space partitioning technique
considerably improves specification recovery.

The second case study is based on the initial design of the Emp-
loyee example from Fowler’s Refactoring book [8]. The Employ-
ee class provides a payAmountmethod which computes the month-
ly earnings of an employee based on his or her occupation. The
same approach was taken for evaluating the recovered specifica-
tions for Daikon and ContExt on the Employee example as on
the Puzzle example. The results are presented on Figure 6. On
this example, the partitions enable ContExt to distinguish between
Employees with different occupations and the equations used to
compute their respective salaries.

In summary, the results suggest that the inference of disjunctive
constraints improves the completeness of the recovered behavioral
specification over plain dynamic constraint inference.

5. RELATED WORK
Csallner et al. [3] employ a dynamic symbolic execution tech-

nique, which performs symbolic execution over an existing test
suite, in order to obtain program-specific constraints. The con-
straints inferred by this approach may overlap with those produced
by state space partitioning. It is, however, unlikely that either set
will contain the other. Since state space partitioning transplants
context that it finds in one part of a class to other parts, it is likely
to infer certain pre- and postconditions that an approach like DySy,
which holds to the letter of the source code, cannot. On the other
hand, symbolic execution is likely to net DySy many program spe-
cific expressions that would prove useful for full specification re-
covery. Further comparison of the results produced by the two tools
on the same programs certainly deserves a closer investigation.

Engler et al. [6] and Yang et al. [13] focus on a relatively small
number of error-revealing properties. The latter consider temporal
properties, which can also be thought of as transitions, and as such
are similar to the postconditions inferred by our approach. The state
space partitioning technique, in contrast, pursues the different goal
of providing a flexible program-specific language for constraint in-
ference which captures the essential behavior of programs.

Dallmeier et al. [4] use a combination of static and dynamic anal-
ysis to construct state machines that represent an object’s behavior
in terms of the object’s inspector and mutator methods. Concrete
values are abstracted via a state abstraction function. Our approach
is similar to that of Dallmeier at al. in that both seek to recover an
abstract state model of a program. The difference lies in the state
construction techniques and dynamic inference mechanisms. Our
approach relies on the conditional logic identified by the developer
of a class to provide the states of the automaton, while Dallmeier at
al. represent the state with the abstracted return values of inspector
methods.

Similar to our work, Arumuga Nainar et al. [2] are interested
in finding relevant boolean formulae. In their case, the formulae
partition the program state space into only two subspaces, one in

which a bug is expressed and the other one in which it is not.

6. CONCLUSIONS
Fully specifying the essential behavior of an arbitrary program

remains beyond the state-of-the-art automatic techniques. On the
bright side, our work demonstrates that a combination of static and
dynamic methods can be used to make a step towards this goal.
The state space partitioning technique described in this paper de-
vises a flexible language for constraint inference which provides
for detection of program-specific disjunctive properties. The pre-
liminary results suggest that the technique performs well on classes
that function as explicit or implicit state machines as well as union
classes.
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