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Advanced Materials
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Advanced Materials – OLEDs

▷ efficiency, lifetime, light output need to be improved
▷ manufacturing expensive
▷ LEDs much more mature

https://www.energy.gov/eere/ssl/oled-rd-challenges
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Advanced Materials – Metal Alloys

▷ existing alloys cannot operate at high temperatures
▷ properties of new types of alloys not well understood
▷ advanced manufacturing methods required
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Advanced Materials – Graphene

▷ scaling up production difficult
▷ impurities during synthesis
▷ manufacturing expensive

https://www.nature.com/articles/s41563-019-0341-4
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Issues to Tackle

▷ designing and optimizing manufacturing processes
▷ designing and optimizing materials and their properties
▷ limited first-principles knowledge
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Challenges

▷ large design space for new materials and processes –
composition, structure, manufacturing steps…

▷ often multiple, competing objectives
▷ expensive to synthesize and test
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Challenges
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Challenges – Sound Familiar?

▷ large design space for new AI approaches, ML pipelines…
▷ often multiple, competing objectives
▷ expensive to test
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Modeling

▷ build models based on observations and theories
▷ use models to make predictions

https://en.wikipedia.org/wiki/Scientific_modelling 12
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Surrogate Models – Experiments

▷ around for thousands of
years

▷ takes minutes to weeks
▷ ground-truth results

13



Surrogate Models – High-Throughput Experimentation

▷ around for tens of years
▷ takes seconds to days
▷ ground-truth results
▷ expensive and complex

setups
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Surrogate Models – Computational Simulations

▷ developed since 1940s
▷ takes seconds to days
▷ results based on

mathematical models that
encapsulate our
understanding of
fundamental processes

▷ no
expensive/dangerous/bulky
experimental setup
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Surrogate Models – Machine Learning

▷ started ≈20 years ago
▷ takes seconds
▷ approximate results based

on statistical correlations
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Speed

Accuracy
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Lookman, Turab, Prasanna V. Balachandran, Dezhen Xue, and Ruihao Yuan. “Active Learning in Materials
Science with Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design.” Npj Computational
Materials 5, no. 1 (February 18, 2019): 21. https://doi.org/10.1038/s41524-019-0153-8.
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Materials Genome Initiative
▷ launched in 2011 to “discover, manufacture, and deploy

advanced materials twice as fast, at a fraction of the cost”
▷ US agencies and international partners
▷ AI, machine learning, and computation play central role

https://www.mgi.gov/ 19
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Materials Genome Initiative

The Problem Finding a New Material is Complex, Expensive and
Time-Consuming

The Answer Computers are Good at Complexity

https://www.nist.gov/mgi/about-material-genome-initiative
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Advanced Materials – OLEDs
▷ compute properties of candidates with quantum chemical

calculations
▷ machine learning model based on these calculations to

pre-screen
▷ human decision-making on what to synthesize and test
▷ improve OLED efficiency by 22%

Gómez-Bombarelli, Rafael, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, David Duvenaud, Dougal
Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, et al. “Design of Efficient Molecular Organic Light-Emitting
Diodes by a High-Throughput Virtual Screening and Experimental Approach.” Nature Materials 15 (August 8,
2016): 1120.
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Advanced Materials – OLEDs

Gómez-Bombarelli, Rafael, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, David Duvenaud, Dougal
Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, et al. “Design of Efficient Molecular Organic Light-Emitting
Diodes by a High-Throughput Virtual Screening and Experimental Approach.” Nature Materials 15 (August 8,
2016): 1120. 22



Advanced Materials – Metal Alloys
▷ Phase-Mapper system – identify crystal structure of materials

(specifically metal alloys) from x-ray diffraction (XRD) images
▷ find combination of basis patterns from observed pattern
▷ allows to rapidly interpret XRD patterns and identify new

materials with desirable properties
▷ automated previously manual work; speed up from days to

minutes

Bai, Junwen, Yexiang Xue, Johan Bjorck, Ronan Le Bras, Brendan Rappazzo, Richard Bernstein, Santosh K.
Suram, Robert Bruce van Dover, John M. Gregoire, and Carla P. Gomes. “Phase-Mapper: Accelerating Materials
Discovery with AI.” AI Magazine 39, no. 1 (2018): 15–26. 23



Advanced Materials – Metal Alloys

Bai, Junwen, Yexiang Xue, Johan Bjorck, Ronan Le Bras, Brendan Rappazzo, Richard Bernstein, Santosh K.
Suram, Robert Bruce van Dover, John M. Gregoire, and Carla P. Gomes. “Phase-Mapper: Accelerating Materials
Discovery with AI.” AI Magazine 39, no. 1 (2018): 15–26.
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Advanced Materials – Graphene
▷ irradiate graphene oxide film with laser to synthesize graphene
▷ Bayesian Optimization to tune parameters of laser
▷ improvement of 2x over best result in literature
▷ talk tomorrow 14.50h Data Science Meets Optimization

Workshop, Florence 2301

Kotthoff, Lars, Vivek Jain, Alexander Tyrrell, Hud Wahab, and Patrick Johnson. “AI for Materials Science:
Tuning Laser-Induced Graphene Production.” In Data Science Meets Optimisation Workshop at IJCAI 2019, 2019.
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Advanced Materials – Graphene
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Tuning Laser-Induced Graphene Production.” In Data Science Meets Optimisation Workshop at IJCAI 2019, 2019.
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Applications of AI in Materials Science

▷ predicting (machine learning surrogate models of properties)
▷ optimizing (matching explanations to observations)
▷ combinations of the two
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Optimize
▷ “predict” crystal structure using genetic algorithms – crystal

structure optimized to match desired properties
▷ evolutionary algorithm to create structures, first-principles

computations to compute fitness
▷ identification of new high-pressure crystal structures

Oganov, Artem R., and Colin W. Glass. “Crystal Structure Prediction Using Ab Initio Evolutionary
Techniques: Principles and Applications.” The Journal of Chemical Physics 124, no. 24 (2006): 244704.
https://doi.org/10.1063/1.2210932. 28



Predict
▷ SVM model to predict success of chemical reaction
▷ fit decision tree to SVM to understand model
▷ uses unpublished data from failed experiments
▷ better accuracy than humans
▷ model “could also be applied to exploration reactions”

Raccuglia, Paul, Katherine C. Elbert, Philip D. F. Adler, Casey Falk, Malia B. Wenny, Aurelio Mollo,
Matthias Zeller, Sorelle A. Friedler, Joshua Schrier, and Alexander J. Norquist. “Machine-Learning-Assisted
Materials Discovery Using Failed Experiments.” Nature 533 (May 4, 2016): 73.
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Combination
▷ surrogate model based on first-principles calculations
▷ Bayesian Optimization with infill criterion to choose next

point to evaluate
▷ iterative process

Lookman, Turab, Prasanna V. Balachandran, Dezhen Xue, and Ruihao Yuan. “Active Learning in Materials
Science with Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design.” Npj Computational
Materials 5, no. 1 (February 18, 2019): 21. https://doi.org/10.1038/s41524-019-0153-8.
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Bayesian Optimization
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Modular Framework for Model-Based Optimization of Expensive Black-Box Functions,” March 9, 2017.
http://arxiv.org/abs/1703.03373. 31



Bayesian Optimization
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Bayesian Optimization
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Bayesian Optimization
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Bayesian Optimization
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Bayesian Optimization
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https://www.automl.org/book/
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COMBO
▷ Bayesian Optimization framework for iterative design space

exploration
▷ optimize grain boundary in copper, evaluations are

first-principles simulations
▷ specific focus on scalability – thousands of data points

Ueno, Tsuyoshi, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and Koji Tsuda. “COMBO: An
Efficient Bayesian Optimization Library for Materials Science.” Materials Discovery 4 (2016): 18–21.
https://doi.org/10.1016/j.md.2016.04.001.
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Phoenics
▷ Bayesian Optimization for optimizing benchmarks of chemical

reactions, evaluations are first-principles simulations
▷ Bayesian Neural Networks to estimate parameters of Bayesian

kernel density distribution
▷ parallel evaluations through batching of different acquisition

functions

Häse, Florian, Loïc M. Roch, Christoph Kreisbeck, and Alán Aspuru-Guzik. “Phoenics: A Bayesian Optimizer
for Chemistry.” ACS Central Science 4, no. 9 (September 26, 2018): 1134–45.
https://doi.org/10.1021/acscentsci.8b00307. 39



Matpredict
▷ Bayesian Optimization for shear and bulk modulus in

MAX-phase materials, which consist of layers of different
elements and can behave like metals or ceramics

▷ Bayesian Model Averaging for feature selection
▷ evaluations are first-principles simulations

Talapatra, Anjana, Shahin Boluki, Thien Duong, Xiaoning Qian, Edward Dougherty, and Raymundo
Arróyave. “Autonomous Efficient Experiment Design for Materials Discovery with Bayesian Model Averaging.”
Phys. Rev. Materials 2, no. 11 (November 2018): 113803. https://doi.org/10.1103/PhysRevMaterials.2.113803. 40



Materials Generation

▷ Bayesian Optimization for surface area (energy absorption) of
material

▷ evaluations are first-principles simulations
▷ patterns can be 3D-printed and evaluated experimentally
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Common Themes

▷ fundamentally, efficient design space exploration problems
▷ avoid expensive evaluations
▷ Bayesian Optimization and variants emerging as state of the

art
▷ application-agnostic black-box methods
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Common Themes

AI, Machine Learning
▷ approaches

▷ Spearmint
▷ SMAC
▷ mlrMBO
▷ …

▷ repositories
▷ OpenML
▷ UCI ML repo
▷ …

Materials Science
▷ approaches

▷ COMBO
▷ Phoenics
▷ Matpredict
▷ …

▷ repositories
▷ JARVIS https:

//jarvis.nist.gov/
▷ Materials Project

https://www.
materialsproject.
org/

▷ …
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Challenges and Opportunities

▷ sparsity of data – common repositories
▷ parallelization, scalability
▷ multi-scale measurements
▷ combination with experiments and simulations
▷ avoiding duplication
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Beyond Design Space Exploration

▷ high-throughput experiments – robotics, computer vision…
▷ natural language processing for mining papers for data
▷ understanding of models/experiments/data
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Do Try This at Home

Simulator optimizers available at
https://www.cs.uwyo.edu/~larsko/aimat-tut/
▷ build surrogate model based on (relatively) large amount of

data
▷ Bayesian Optimization based on this surrogate model
▷ playground to try your own approaches
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Summary

▷ lots of applications for AI in Materials Science, especially
Bayesian Optimization and surrogate modeling

▷ tools used in Materials Science are not as comprehensive and
mature as in AI

▷ applications to real-world problems pose interesting challenges
for AI
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