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Classification
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Goal: Predict a class (discrete quantity), or membership
probabilities
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Logistic Regression

▷ estimates probability of binary response
▷ i.e. predict whether example belongs to one class or another
▷ logistic function has output between 0 and 1, can be

interpreted as probability
▷ essentially determines coefficients (importance) of each feature
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Logistic Regression
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logreg: model=FALSE
Train: acc=0.94; CV: acc.test.mean=0.94

f(x) =− 40.2447695 +−1.7247776x1 +−5.0182373x2+

8.0163583x3 + 15.500357x4
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Binary vs. Multi-class

▷ some learners can handle only two classes (e.g. logistic
regression)

▷ can distinguish between more classes with more models
▷ e.g. one-vs-all approach:

▷ for each class, learn to predict score of how likely data point is
in class

▷ aggregate scores over all models (classes)
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Linear Discriminant Analysis

▷ finds linear combination of features that separate classes
▷ maps feature space into lower-dimensional space (dimensions

are linear combinations of features)
▷ determines centroid for each class in mapped space
▷ classifies by assigning data point to centroid

6



Linear Discriminant Analysis

https://www.quora.com/How-does-Linear-Discriminant-Analysis-work-in-laymans-terms
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Support Vector Machines
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Support Vector Machines

▷ data points with
minimal margin are
the support vectors
(SV)

▷ finding a hyperplane
to maximize the
margin is a
straightforward
optimization problem

gamma
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Support Vector Machines
Non-separable data

gamma

maximal margin

gamma

minimal margin violations
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Support Vector Machines – Kernel Trick

▷ Kernels allow to extend SVMs to non-linear separation and
non-vectorial data

▷ maps the original feature space into higher-dimensional space
▷ classes become linearly separable in this higher-dimensional

space
▷ input and output spaces can be infinite-dimensional
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Support Vector Machines – Kernel Trick
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Support Vector Machines – Kernel Trick

Examples:
▷ linear kernel
▷ polynomial kernel
▷ Gaussian kernel

13



Support Vector Machines – Kernel Trick
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Classification Trees

▷ divide the feature space into rectangles and fit simple models
(i.e. constant) in each

▷ prediction is class distribution / most frequent label in
subspace

▷ rectangles can be further subdivided
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Tree Induction Algorithms

▷ Greedy: Pick the best feature and it best split point in each
iteration

▷ Binary splits vs. multi-way splits
▷ Criteria for the selection of a variable and its split point(s)

(e.g. entropy)
▷ Stopping criteria (e.g. minimum number of data points)
▷ Handling missing values
▷ Pruning
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Tree Building Example
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Tree Building Example
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Tree Building Example
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Tree Building Example
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Classification Forests

Random Forests:
▷ Example of an ensemble method: instead of a single model,

use several and combine the results
▷ train trees on different subsamples (with replacement) of the

data/features
▷ aggregate predictions across trees by counting “votes” for

each class
▷ general method for improving unstable learners
▷ usually done without pruning to increase variance
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Classification Forests
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Exercises

http://www.cs.uwyo.edu/~larsko/ml-fac/
01-classification-exercises.Rmd
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