Practical Machine Learning in R

Classification

Lars Kotthoff ${ }^{12}$
larsko@uwyo.edu

[^0]
Classification

Goal: Predict a class (discrete quantity), or membership probabilities

Logistic Regression

\triangleright estimates probability of binary response
\triangleright i.e. predict whether example belongs to one class or another
\triangleright logistic function has output between 0 and 1 , can be interpreted as probability
\triangleright essentially determines coefficients (importance) of each feature

Logistic Regression

$$
\begin{aligned}
f(x)= & -40.2447695+-1.7247776 x_{1}+-5.0182373 x_{2}+ \\
& 8.0163583 x_{3}+15.500357 x_{4}
\end{aligned}
$$

Binary vs. Multi-class

\triangleright some learners can handle only two classes (e.g. logistic regression)
\triangleright can distinguish between more classes with more models
\triangleright e.g. one-vs-all approach:

- for each class, learn to predict score of how likely data point is in class
\triangleright aggregate scores over all models (classes)

Linear Discriminant Analysis

\triangleright finds linear combination of features that separate classes
\triangleright maps feature space into lower-dimensional space (dimensions are linear combinations of features)
\triangleright determines centroid for each class in mapped space
\triangleright classifies by assigning data point to centroid

Linear Discriminant Analysis

3-class feature data

https://www.quora.com/How-does-Linear-Discriminant-Analysis-work-in-laymans-terms

Support Vector Machines

Support Vector Machines

\triangleright data points with minimal margin are the support vectors (SV)
\triangleright finding a hyperplane to maximize the margin is a straightforward optimization problem

Support Vector Machines

Non-separable data

maximal margin

minimal margin violations

Support Vector Machines - Kernel Trick

\triangleright Kernels allow to extend SVMs to non-linear separation and non-vectorial data
\triangleright maps the original feature space into higher-dimensional space
\triangleright classes become linearly separable in this higher-dimensional space
\triangleright input and output spaces can be infinite-dimensional

Support Vector Machines - Kernel Trick

Support Vector Machines - Kernel Trick

Examples:
\triangleright linear kernel
\triangleright polynomial kernel
\triangleright Gaussian kernel

Support Vector Machines - Kernel Trick

Classification Trees

\triangleright divide the feature space into rectangles and fit simple models (i.e. constant) in each
\triangleright prediction is class distribution / most frequent label in subspace
\triangleright rectangles can be further subdivided

Tree Induction Algorithms

\triangleright Greedy: Pick the best feature and it best split point in each iteration
\triangleright Binary splits vs. multi-way splits
\triangleright Criteria for the selection of a variable and its split point(s) (e.g. entropy)
\triangleright Stopping criteria (e.g. minimum number of data points)
\triangleright Handling missing values
\triangleright Pruning

Tree Building Example

Tree Building Example

Tree Building Example

Tree Building Example

Classification Forests

Random Forests:
\triangleright Example of an ensemble method: instead of a single model, use several and combine the results
\triangleright train trees on different subsamples (with replacement) of the data/features
\triangleright aggregate predictions across trees by counting "votes" for each class
\triangleright general method for improving unstable learners
\triangleright usually done without pruning to increase variance

Classification Forests

Exercises

http://www.cs.uwyo.edu/~larsko/ml-fac/ 01-classification-exercises.Rmd

[^0]: ${ }^{1}$ with slides from Bernd Bischl and Michel Lang
 ${ }^{2}$ slides available at http://www.cs.uwyo.edu/~larsko/ml-fac

