Practical Machine Learning in R

Regression

Lars Kotthoff¹² larsko@uwyo.edu

¹with slides from Bernd Bischl and Michel Lang

²slides available at http://www.cs.uwyo.edu/~larsko/ml-fac

Regression

Goal: Predict a continuous quantity

Linear Models

- assumes linear relationship between features and variable of interest
- prediction is linear combination of feature values with coefficients (similar to logistic regression)
- determine coefficients by minimizing loss (e.g. sum of squared error) wrt training data

Linear Models

Linear Models

Regression Splines

- Multivariate Adaptive Regression Splines (MARS)
- non-parametric technique no assumptions about the underlying relationship
- ▷ prediction is weighted sum of basis functions
- construction similar to trees repeatedly add basis functions to improve performance (recursive partitioning), then remove some to improve generality (pruning)

Regression Splines

- "boost" a weak learner by training set of models that fix each other's errors (ensemble)
- after adding each model, reweigh training data such that examples with higher error get more weight
- $\,\triangleright\,$ aggregate by combining weighted predictions from each model
- ▷ idea similar to random forests
- ▷ technique not specific to regression

Support Vector Machines and Random Forests

- ▷ regression versions exist
- ▷ SVMs: minimize error of support vectors
- Random Forests: predict constant quantity (or simple linear model) at leaves

http://www.cs.uwyo.edu/~larsko/ml-fac/ 02-regression-exercises.Rmd