Practical Machine Learning in R

Regression

Lars Kotthoff ${ }^{12}$
larsko@uwyo.edu

[^0]
Regression

Goal: Predict a continuous quantity

Linear Models

\triangleright assumes linear relationship between features and variable of interest
\triangleright prediction is linear combination of feature values with coefficients (similar to logistic regression)
\triangleright determine coefficients by minimizing loss (e.g. sum of squared error) wrt training data

Linear Models

Linear Models

Regression Splines

\triangleright Multivariate Adaptive Regression Splines (MARS)
\triangleright non-parametric technique - no assumptions about the underlying relationship
\triangleright prediction is weighted sum of basis functions
\triangleright construction similar to trees - repeatedly add basis functions to improve performance (recursive partitioning), then remove some to improve generality (pruning)

Regression Splines

Boosting

\triangleright "boost" a weak learner by training set of models that fix each other's errors (ensemble)
\triangleright after adding each model, reweigh training data such that examples with higher error get more weight
\triangleright aggregate by combining weighted predictions from each model
\triangleright idea similar to random forests
\triangleright technique not specific to regression

Boosting

blackboost: mstop=1
Train: mse=73.9; CV: mse.test.mean=74.7

Boosting

blackboost: mstop=2
Train: mse=65.3; CV: mse.test.mean=66.6

Boosting

blackboost: mstop=3
Train: mse=58.2; CV: mse.test.mean=59.7

Boosting

blackboost: mstop=5
Train: mse=47.5; CV: mse.test.mean=49.7

Boosting

blackboost: mstop=10
Train: mse=33.5; CV: mse.test.mean=36.5

Boosting

blackboost: mstop=100
Train: mse=22.4; CV: mse.test.mean=29.3

Boosting

blackboost: mstop=1e+03
Train: mse=14.8; CV: mse.test.mean=34.7

Support Vector Machines and Random Forests

\triangleright regression versions exist
\triangleright SVMs: minimize error of support vectors
\triangleright Random Forests: predict constant quantity (or simple linear model) at leaves

Exercises

http://www.cs.uwyo.edu/~larsko/ml-fac/
02-regression-exercises.Rmd

[^0]: ${ }^{1}$ with slides from Bernd Bischl and Michel Lang
 ${ }^{2}$ slides available at http://www.cs.uwyo.edu/~larsko/ml-fac

