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Abstract Constraint modelling is widely recognised as a key bottleneck in ap-
plying constraint solving to a problem of interest. The CONJURE automated con-
straint modelling system addresses this problem by automatically refining con-
straint models from problem specifications written in the ESSENCE language.
ESSENCE provides familiar mathematical concepts like sets, functions and re-
lations nested to any depth. To date, CONJURE has been able to produce a set
of alternative model kernels (i.e. without advanced features such as symmetry
breaking or implied constraints) for a given specification. The first contribution
of this paper is a method by which CONJURE can break symmetry in a model as
it is introduced by the modelling process. This works at the problem class level,
rather than just individual instances, and does not require an expensive detection
step after the model has been formulated. This allows CONJURE to produce a
higher quality set of models. A further limitation of CONJURE has been the lack
of a mechanism to select among the models it produces. The second contribution
of this paper is to present two such mechanisms, allowing effective models to be
chosen automatically.

1 Introduction and Background

For constraint programming to achieve its potential widespread industrial and academic
use, reducing the modelling bottleneck [29] is of central importance. This is the problem
of formulating a problem of interest as a constraint model suitable for input to a con-
straint solver. There are typically many possible models for a given problem, and the
model chosen can dramatically affect the efficiency of constraint solving. This presents
a serious obstacle for non-expert users, who have difficulty in formulating a good (or
even correct) model from among the many possible alternatives. Therefore, automat-
ing constraint modelling is a desirable goal. Numerous approaches have been taken to
automate aspects of constraint modelling, including: case-based reasoning [23]; theo-
rem proving [6]; automated transformation of medium-level solver-independent con-
straint models [27, 28, 30, 33]; and refinement of abstract constraint specifications [9]
in languages such as ESRA [8], ESSENCE [10], F [18] or Zinc [21, 25]. Some sys-
tems [2–4, 7, 22] aim to learn constraint models from positive or negative examples.

This paper focuses on the refinement-based approach, in which a user writes ab-
stract constraint specifications to describe a problem at a higher level than that where



modelling decisions are normally made. Abstract constraint specification languages,
e.g. ESSENCE and Zinc, support abstract variables with types for common mathemat-
ical structures such as sets, multisets, functions, and relations, as well as nested types,
such as set of sets and multiset of functions. Problems can often be specified very con-
cisely in this way. For example, the Social Golfers Problem [17], which is to find a set
of partitions of golfers subject to some constraints, can be specified directly (see Fig. 1)
without the need to model the sets or partitions as matrices of Integer variables.

We use ESSENCE in this paper [10]. An ESSENCE specification, such as that in
Fig. 1, identifies: the input parameters of the problem class (given), whose values
define an instance; the combinatorial objects to be found (find); and the constraints
the objects must satisfy (such that). An objective function may also be specified
(min/maximising) and identifiers may be declared (letting). Abstract constraint
specifications must be refined into concrete constraint models for existing constraint
solvers. Our CONJURE system4 [1] uses refinement rules to convert an ESSENCE spec-
ification into the solver-independent constraint modelling language ESSENCE′ [30].
From ESSENCE′ we use SAVILE ROW5 to translate the model into input for a particular
constraint solver while performing solver-specific model optimisations.

CONJURE has been able to produce the kernels of constraint models, without ad-
vanced features like symmetry breaking often used by experts to improve model perfor-
mance. The first contribution of this paper is to automate the generation of symmetry-
breaking constraints. Much symmetry enters constraint models through the process of
constraint modelling [11]. CONJURE exploits this by breaking symmetry as it enters
the model. This obviates the need for an expensive symmetry detection step following
model formulation, as used by other approaches [24,26]. The added symmetry breaking
constraints hold for the entire parameterised problem class — not just a single problem
instance — without the need to identify graph automorphisms.

The second contribution of this paper is to automate model selection. Previously,
CONJURE has been able to produce a (typically large) set of alternative models through
the application of alternative refinement rules, but not to select among these models.
CONJURE can now automatically select the best models for a problem class.

2 Automated symmetry breaking

Symmetry enters constraint models in two ways. Some problems have inherent symme-
tries, which if not broken get reflected in the model. Other symmetries are introduced
by the modelling process; in this case a single solution to the problem corresponds to
multiple assignments to the variables of the model. We call these model symmetries.
As an example, consider the Social Golfers Problem (Fig. 1), which requires finding a
set of w partitions. If this set is modelled as an array indexed by 1..w then all w! per-
mutations of the array correspond to the same set. This symmetry is introduced when
an arbitrary decision is made about which set element goes in which cell of the array.
Similarly, if the g∗sGolfers are modelled by the Integers 1..g∗s then g∗s symmetries
are introduced because of the arbitrary decision of which golfer corresponds to which

4 https://bitbucket.org/stacs_cp/conjure-public/
5 http://savilerow.cs.st-andrews.ac.uk



given w, g, s : int(1..)
letting Golfers be new type of size g * s
find sched : set (size w) of partition (regular, size g)

from Golfers
such that
forAll week1, week2 in sched, week1 != week2 .
forAll group1 in parts(week1) .
forAll group2 in parts(week2) .
|group1 intersect group2| < 2

Figure 1: ESSENCE specification of the Social Golfers Problem.

Integer. The problem-specification language ESSENCE has been designed such that, un-
like other modelling languages, problems can be specified without having to make the
arbitrary decisions that introduce model symmetries.

Frisch et al. [11] show how each modelling rule of CONJURE can be extended to
generate a description of the symmetries it introduces and how the generated descrip-
tions can be composed to form a description of the symmetries introduced into the
model. The intention was that this could then be used to generate symmetry-breaking
constraints, though these descriptions were never fully developed into a method for
automatically generating symmetry-breaking constraints.

The current version of CONJURE takes a different approach to generating symmetry
breaking constraints: every rule that introduces symmetries also generates a constraint
to break those symmetries. CONJURE has 28 such rules. There is only one rule which
does not break all symmetries it introduces – the rule that refines an unnamed type, such
as Golfers , to a range of Integers. This is because each unnamed type can be used in
multiple places, and the symmetry of an unnamed type must be broken in a globally
consistent way. All the other symmetries we introduce are independent, so we can add
constraints which immediately break each introduced group of symmetries in a valid
and complete manner. This leads to globally valid and complete symmetry breaking.
We plan to handle unnamed types in the future.

To illustrate how CONJURE rules can be extended to generate symmetry-breaking
constraints, consider the rule given below to build the explicit representation of a set.

Representation: Set~Explicit~Sym
Matches: set (size &n, ..) of &tau
Produces: refn : matrix indexed by [int(1..&n)] of &tau
Constraint: allDiff(refn)

This rule transforms a set of a size n into a matrix with n index values, where each
value in the matrix is a member of the set. A constraint is imposed to ensure that the cells
of the matrix are all different. For any tau other than Integers or Booleans, CONJURE
has to further decompose the allDiff constraint into O(n2) not-equal constraints.

Now consider extending this rule to generate a constraint to break the symmetry it
introduces, that the index values of the matrix can be permuted in any way. The sim-
plest way to break this symmetry is to impose a total order on the elements of the
matrix. As the elements of the matrix can be any type tau we introduce two new op-
erators, ≤̇ and <̇. These operators provide a total ordering (and a strict version of the
same total ordering) for all types in CONJURE. These orderings are not intended to be



“natural” and are not available to ESSENCE users. They are used only in refinement
rules to generate effective symmetry-breaking constraints. Using these orderings, the
Set~Explicit~Sym rule is modified to a rule that breaks all the symmetries it in-
troduces:
Representation: Set~Explicit
Matches: set (size &n, ..) of &tau
Produces: refn : matrix indexed by [int(1..&n)] of &tau
Constraint: forAll i : int(1..&n-1) . refn[i] .< refn[i+1]

Rather than introducing a chain of ≤̇ constraints, this rule exploits the fact that the
elements of the set are required to be all different and strengthens the ordering to <̇
constraint. This replaces O(n2) not-equal constraints with only O(n) <̇ constraints.

Other refinement rules can exploit the fact that symmetry breaking is performed im-
mediately to produce more efficient refinements. Consider refining the constraint S = T
by representing the sets S and T as matrices S′ and T ′ with the Set~Explicit~Sym
representation. To find if S′ and T ′ represent the same set we must check if each ele-
ment of S′ is equal to any element of T ′ and whether the two sets have the same cardi-
nality, since the order of elements in the matrices can be different. However, when the
Set~Explicit representation is used we can refine S = T to the constraint S′ = T ′,
because each assignment of S is represented by exactly one assignment to S′, which
satisfies the symmetry breaking constraint. This gives a much smaller constraint, which
propagates much more efficiently.

We illustrate the new approach to symmetry-breaking by showing how the SGP
specification (Fig. 1) is refined into a model with symmetry-breaking constraints. We
consider generating only one model. We will consider only how the decision variables
are refined, ignoring all constraints other than symmetry-breaking constraints. First,
CONJURE replaces type of size g*s with int(1..g*s):
given w, g, s : int(1..)
find sched’ : set (size w) of partition (regular, size g) from int(1..g*s)

After this, CONJURE refines the type of the decision variable by rewriting the outer
set constructor using the Set~Explicit rule given in the previous section. This
generates the following refinement.
given w, g, s : int(1..)
find sched’ : matrix indexed by [int(1..w)] of

partition (regular, size g) from int(1..g*s)
such that forAll i : int(1..w-1). sched’[i] .< sched’[i+1]

This refinement step shows all of the important features of our method. CONJURE
has introduced a new, compact constraint which both breaks symmetry, and ensures all
members of the matrix are distinct. Next, it transforms the partition into a set of sets:
given w, g, s : int(1..)
find sched’’ : matrix indexed by [int(1..w)] of

set (size g) of set (size (g*s)/g) of int(1..g*s)
such that forAll i : int(1..w-1). sched’’[i] .< sched’’[i+1],

forAll j : int(1..w).
forAll k1,k2 in sched’’[j], k1 != k2. | k1 intersect k2 | = 0

This refinement does not appear to have changed the symmetry-breaking constraint
but it has in fact been refined from a partition to a set of sets. CONJURE has also added a
constraint to impose that the cells of the partition are distinct. This structural constraint
constrains the sets to be disjoint. CONJURE now applies Set~Explicit again.



given w, g, s : int(1..)
find sched’’’ : matrix indexed by [int(1..w), int(1..g)]

of set (size (g*s)/g) of int(1..g*s)
such that forAll i : int(1..w-1). sched’’’[i,..] .< sched’’’[i+1,..],

forAll j : int(1..w). forAll k : int(1..g-1).
sched’’’[j,k] .< sched’’’[j,k+1]

The first constraint here is the refined version of the already existing symmetry-
breaking constraint. Once again by design the <̇ constraint maps naturally to the mat-
rices used in refinement. The second constraint is the symmetry breaking on matrix of
sets, now transformed into a matrix of matrices. CONJURE uses the same refinement
rule, even though we are now refining a set inside a matrix. CONJURE automatically
deals with the array indices and inserts the outer forAll j : int(1..w) in a
process called lifting. We finally apply Set~Explicit once more and change the <̇
and ≤̇ constraints to their final form – lexicographic ordering constraints on matrices
and ordering on Integers.
given w, g, s : int(1..)
find sched’’’ : matrix indexed by [int(1..w), int(1..g),int(1..(g*s/g))]

of int(1..g*s)
such that forAll i : int(1..w-1). sched’’’[i,..,..] <lex sched’’’[i+1,..,..],

forAll j : int(1..w). forAll k : int(1..(g*s)/g-1).
sched’’’[j,k,..] <lex sched’’’[j,k+1,..]

forAll j : int(1..w). forAll k : int(1..g)
forAll l : int(1..(g*s)/g-1). sched’’’[j,k,l] < sched’’’[j,k,l+1]

If CONJURE had not the broken symmetries immediately, but instead used the
Set~Explicit~Sym representation, the constraints requiring each partition in the
outermost set to be different would now be very complex. This shows the benefit of
breaking symmetries as soon as they are introduced, rather than delaying and using a
general technique for symmetry breaking after model generation is finished.

3 Automated Model Selection

Our previous work [1] shows that CONJURE can successfully refine a set of model
kernels (i.e. excluding symmetry breaking and implied constraints) from a given spec-
ification, and that this set contains the kernels of effective models. However, without
symmetry breaking the performance of these model kernels is poor since refinement of
abstract types naturally introduces a great deal of symmetry. Therefore, the symmetry
breaking approach described above is a necessary step in producing practically useful
models. Having thus enhanced CONJURE the natural next step is to provide a means to
select an effective model automatically. We propose and evaluate two such approaches:
a lightweight heuristic based purely on an analysis of model structure and an approach
that uses a set of training instances to perform model selection by means of a race.

3.1 The Compact heuristic

If time is limited it is sensible to provide a rapid model selection method, avoiding both
generating all models and training using instance data. Our solution is a heuristic em-
ployed during refinement to commit greedily to promising modelling choices at each
point where an abstract type or a constraint expression may be refined in multiple ways.



It is named Compact since it favours transformations that produce smaller expressions.
For an abstract type, we define an ordering as follows: concrete domains (such as bool,
matrix) are smaller than abstract domains; within concrete domains, bool is smaller
than int and int is smaller than matrix. These rules are applied recursively, so
that a one-dimensional matrix of int is smaller than any two-dimensional matrix. Ab-
stract type constructors have the ordering set < mset < function < relation

< partition, which is also applied recursively. Compact will select the smallest do-
main according to this order. For a constraint expression (and the objective), Compact
chooses the refinement with the most shallow abstract syntax tree.

3.2 Racing

Our second selection method takes as input a set of instances representative of the dis-
tribution of instances a user wishes to solve. Our measure of quality of a model with
respect to an instance is the time taken for SAVILE ROW to instantiate the model and
translate for input to the MINION constraint solver [13] plus the time taken for MINION
to solve the instance. We include the time taken by SAVILE ROW since it adds desirable
instance-specific optimisations to the model, such as common subexpression elimina-
tion [14]. Given a parameter ρ ≥ 1, a model is ρ-dominated on an instance by another
model if the measure for the second model is at least ρ times faster than the first.

We iterate over the set of instances and conduct a race [5] for each. The set of mod-
els entered into the race for instance i are the winners of the race for instance i−1, with
all models entered in the first race. The ‘winners’ of an instance race are the models
not ρ-dominated by any other model. After we have iterated over all of the supplied in-
stances, the subset of models remaining is selected for the specified class. This naturally
suggests the notion of a model portfolio, analogous to algorithm portfolios [16, 19].

A set of instances is ρ-fractured if every model is ρ-dominated on at least one in-
stance. If the supplied set of instances is fractured, races run with different instance
orderings can produce disjoint sets of models. We observe this experimentally in Sec-
tion 3.4 and discuss its consequences.

3.3 Case Study: Equidistant Frequency Permutation Arrays

We illustrate the model selection process using the Equidistant Frequency Permutation
Array (EFPA) problem [20]: ‘The problem has parameters v, q, λ, d and it is to find a
set E of size v, of sequences of length qλ, such that each sequence contains λ of each
symbol in the set {1, . . . , q}. For each pair of sequences in E, the pair are Hamming
distance d apart (i.e. there are d places where the sequences disagree)’.

This problem is specified in ESSENCE (see Fig. 2) with a single abstract decision
variable E and two constraints. The first ensures that each codeword must contain each
symbol λ times, the second that each pair of codewords must differ in exactly d places.
CONJURE refines this specification into 45 models. The type of E is a fixed size set of
total functions. The outer set is always modelled using the explicit representation (as a
vector of the inner type) and the symmetry is broken by constraining the elements of
the vector to be in increasing order according to <̇. The total function is refined in two
ways: to a vector, or to a relation. In the latter case the relation is refined in four different



given d, lambda, q, v : int(1..)
letting Character be domain int(1..q)
letting Index be domain int(1..lambda * q)
letting String be domain function (total)

Index --> Character
find E : set (size v) of String
such that forAll s in E . forAll a : Character .

(sum i : Index . toInt(s(i) = a)) = lambda,
forAll s1, s2 in E, s1 != s2 .

(sum i : Index . toInt(s1(i) != s2(i))) = d

Figure 2: ESSENCE specification of the EFPA Problem.

ways, giving five representations of E in total. Subsets of these five are channelled and
constraints are stated on different representations to create 45 models.

For EFPA we use 24 instances from Huczynska et al. [20], and 12 easier instances
that were created by taking the satisfiable instances from Huczynska et al. and reduc-
ing v by one. Identifying instances by the tuple 〈d, λ, q, v〉, the first instance we race is
〈3, 7, 7, 5〉. This instance is exceptionally discriminating. The number of winners is 4,
so we have eliminated 41 models at this stage. We will see in Section 3.4 that not all
problems converge so quickly. Second, the remaining models are raced on the instance
〈3, 8, 8, 6〉. This does not eliminate any models, although they are ranked in a different
order. This process is continued for another 30 instances that eliminate no models. In-
stance 〈6, 4, 3, 12〉 eliminates one model, leaving three. Finally, the last three instances
eliminate no more models so the final winning set has three models.

All of the final set of models contain the vector representation of the total function.
Two of the models refine the function to a relation, then to a two-dimensional matrix
of Boolean variables (which is channelled with the vector). These two models differ in
one constraint. The relative similarity of these three models shows that on this problem
there is a clear cluster of similar winners among a more diverse set of models.

For this problem, Compact generates the model which uses the vector representation
for the function variable without any channelling. Although it uses far less information
and is very quick in comparison to racing, it manages to find one of the ‘winner’ models.

3.4 Experimental Evaluation

In this section, we present the results of model selection for the five problem classes
presented in Table 1: EFPA [20], Social Golfers Problem (SGP) [15], Progressive Party
Problem (PPP) [32], the SONET network design problem [31], and Error Correcting
Codes (ECC) [12]. Although not generally feasible in practice, for the purpose of this
experiment we ran a race for every model on every instance with no pruning of models
between races. We set ρ = 2 and a timeout of one hour. Furthermore, a model that solves
an instance within ten seconds is considered to be non-dominated on that instance. The
results presented in the Winner set size column of Table 1 show the number of non-
dominated models in each case. For the second problem class, SGP, the set of instances
is fractured; every winner set contains either model 2 or model 3 but not both.

Now consider the performance of the racing scheme. Notice that the winner set of
a race must contain all the non-dominated models. It may contain further models that



Inputs Steps to convergence Results

Problem Models Instances Mean Std. Dev. Winner set size Compact

EFPA 45 36 9.64 4.65 1 Yes
SGP 4 37 5.14 1.78 Fractured Yes
PPP 81 11 5.67 1.47 4 No
ECC 108 26 2.75 0.43 4 No
SONET 27 47 4.30 1.93 1 Yes

Table 1: Experimental results.

were not eliminated because of the eager pruning policy. Such models are dominated
on some instance by models that were eliminated earlier in the racing process. The
number and identity of these extra models is dependent on the order that the instances
are considered. Also dependent on this order is the rate of convergence.

In order to test the importance of instance order, we ran 50 races with randomly-
selected instance orders. The racing scheme does not know if the problem instances
are fractured, though in some cases it may detect that it is. We make the distinction
solely for the sake of this study. For the four non-fractured problem classes, all 50
sample races yielded a winner set comprising exactly the non-dominated models. In
contrast, the SGP does exhibit fracturing. On the 50 runs every winner set is a singleton
comprising either model 1, 2 or 3. The mean and standard deviation of the number of
instances raced before reaching the final model set are given in Table 1 under the Steps
to convergence heading.

Table 1 also presents whether Compact manages to generate a model that is in one
of the winner sets found by racing. It finds a winner model for two out of four non-
fractured problem classes. Moreover, it finds a winner model for one of the subdivisions
in the fractured class, SGP. This is a promising result, considering that Compact works
with far less information than racing and is very cheap.

4 Conclusions

This paper has demonstrated significant progress towards the goal of automated con-
straint modelling. We have shown how symmetry can be broken cheaply and automat-
ically as it enters the model through the modelling process, increasing the quality of
the models that CONJURE can produce beyond model kernels. Furthermore, we have
shown how CONJURE can select effective models using a racing process and the Com-
pact heuristic.
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