E Christian Bessiere - Luc De Raedt

5 Lars Kotthoff - Siegfried Nijssen

FT. Barry O’Sullivan - Dino Pedreschi (Eds.)
5

Lz

85

(Vo N Ve

Data Mining
and Constraint Programming

LNAI 10101

Foundations of a Cross-Disciplinary Approach

User ﬁ Solution Data \

Constraints .

CarsiEi Deployment Collection Knowledge

» Solver Discovery
K Adaptive Constraints 4)

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

10101

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Christian Bessiere - Luc De Raedt
Lars Kotthoff - Siegfried Nijssen
Barry O’Sullivan - Dino Pedreschi (Eds.)

Data Mining
and Constraint Programming

Foundations of a Cross-Disciplinary Approach

@ Springer

Editors

Christian Bessiere Siegfried Nijssen
Université Montpellier 2 Université Catholique de Louvain
Montpellier Louvain-la-Neuve
France Belgium

Luc De Raedt Barry O’Sullivan

KU Leuven University College Cork
Heverlee Cork

Belgium Ireland

Lars Kotthoff Dino Pedreschi
University of British Columbia University of Pisa
Vancouver, BC Pisa

Canada Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence

ISBN 978-3-319-50136-9 ISBN 978-3-319-50137-6 (eBook)

DOI 10.1007/978-3-319-50137-6
Library of Congress Control Number: 2016959176
LNCS Sublibrary: SL7 — Atrtificial Intelligence

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

In industry, society, and science, advanced software is used for planning, scheduling,
and allocating resources in order to improve the quality of service, reduce costs, or
optimize resource consumption. Examples include power companies generating and
distributing electricity, hospitals planning their surgeries, and public transportation
companies scheduling their time-tables. This type of problem is often referred to as
constraint satisfaction and combinatorial optimization problems.

Despite the availability of effective and scalable solvers that are applicable to a wide
range of applications, current approaches to this problem are still unsatisfactory. The
reason is that in all these applications it is very hard to acquire the constraints and
criteria (that is, the model) needed to specify the problem, and, even if one has suc-
ceeded in capturing the model at one point, it is likely that it needs to be to changed
over time to reflect changes in the environment. Therefore, there is an urgent need for
optimizing and revising a model over time based on data that should be continuously
gathered about the performance of the solutions and the environment they are used in.

Exploiting gathered data to modify the model is difficult and labour intensive with
state-of-the-art solvers, as these solvers do not support data mining (DM) and machine
learning (ML). However, existing frameworks for constraint satisfaction and combi-
natorial optimization problems do not support ML/DM techniques. In current ICT
technology, DM and ML have almost always been studied independently from solving
technology such as constraint programming (CP). On the other hand, a growing
number of studies indicate that significant benefits can be obtained by connecting these
two fields.

This led us to believe — almost five years ago — that it was the right time to develop
the foundations of an integrated and cross-disciplinary approach to these two fields.
A successful integration of CP and DM has the potential to lead to a new ICT paradigm
with far-reaching implications that would change the face of DM/ML as well as CP
technology. It would not only allow one to use DM techniques in CP to identify and
update constraints and optimization criteria, but also to employ such constraints and
criteria in DM and ML in order to discover models compatible with such prior
knowledge. This book reports on the key results obtained on this research topic within
the European FP7 FET Open project no. 284715 on “Inductive Constraint Program-
ming” and a number of associated workshops and Dagstuhl seminars.

The book is structured in five parts. Part I contains an introduction to CP by Barry
Hurley and Barry O’Sullivan and an introduction to DM by Valerio Grossi, Dino
Pedreschi, and Franco Turini.

The next two parts address different challenges related to using ML and DM in a CP
context. The first of these is the model acquisition problem, which aims at learning the
different components of the CP model. This includes the identification of the domains
to use, the constraints and possibly the preference or optimization function to be used.
This is the topic of Part II. The first contribution, by Christian Bessiere, Abderrazak

VI Preface

Daoudi, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Younes Mechqrane,
Nina Narodytska, Claude-Guy Quimper, and Toby Walsh, discusses an algorithm that
acquires constraints by querying the user. The contribution by Nicolas Beldiceanu and
Helmut Simonis describes a system for generating finite domain constraint models
based on a global constraint catalog. The contribution by Luc De Raedt, Anton Dries,
Tias Guns, and Christian Bessiere investigates the problem of learning constraint
satisfaction problems from an inductive logic programming perspective. The contri-
bution by Andrea Passerini discusses Learning Modulo Theories, a novel learning
framework capable of dealing with hybrid domains.

The second challenge is that once the model is known, it needs to be solved.
Reformulating models, optimizing the parameters of the solver, or considering alter-
native solvers is needed to solve the problem efficiently. Hints on how to improve a
model and the best technique for solving it can be obtained by analyzing data collected
during the run of solvers, or data collected from user studies. Part III reports on a
number of techniques for model reformulation and solver optimization, that is: tech-
niques for learning how to find solutions faster and more easily. In this part, a con-
tribution by Lars Kotthoff provides a survey of algorithm selection techniques.
Subsequently, Barry Hurley, Lars Kotthoff, Yuri Malitsky, Deepak Mehta, and Barry
O’Sullivan present the Proteus portfolio solver and several improvements to portfolio
techniques. Finally, Amine Balafrej, Christian Bessiere, Anastasia Paparrizou, and
Gilles Trombettoni present techniques that adapt the level of consistency ensured by a
solver during the search.

Part IV reports on the use of constraints and CP within a DM and ML context. This
is motivated by the observation that many DM and ML tasks are essentially constraint
satisfaction and optimization problems and that, therefore, they may benefit from CP
principles and techniques. By specifying the constraints and optimisation criteria
explicitly, DM and ML problem specifications become declarative and can potentially
be solved by CP systems. Furthermore, several high-level modeling languages have
been developed within CP that can potentially be applied or extended to ML and DM.
The contribution by Anton Dries, Tias Guns, Siegfried Nijssen, Behrouz Babaki,
Thanh Le Van, Benjamin Negrevergne, Sergey Paramonov, and Luc De Raedt intro-
duces MiningZinc, a unifying framework and modeling language with associated
solvers for DM and CP. Subsequently, Valerio Grossi, Tias Guns, Anna Monreale,
Mirco Nanni, and Siegfried Nijssen show how many clustering problems can be for-
malized as constraint optimization problems.

Finally, Part V takes a more practical perspective. The first chapter by Christian
Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff, Mirco Nanni, Siegfried Nijssen,
Barry O’Sullivan, Anastasia Paparrizou, Dino Pedreschi, and Helmut Simonis reports
on the iterative approach to inductive CP. The key idea is that the CP and ML com-
ponents interact with each other and with the world in order to adapt the solutions to
changes in the world. This is an essential need in problems that change under the effect
of time, or problems that are influenced by the application of a previous solution. It is
also very effective for problems that are only partially specified and where the ML
component learns from observation of applying a partial solution, e.g., in the case of
constraint acquisition. In addition, it reports on a number of applications of inductive
CP in the areas of carpooling (with a contribution by Mirco Nanni, Lars Kotthoff,

Preface VII

Riccardo Guidotti, Barry O’Sullivan, and Dino Pedreschi), health care (with a con-
tribution by Barry Hurley, Lars Kotthoff, Barry O’Sullivan, and Helmut Simonis), and
energy (with a contribution by Barry Hurley, Barry O’Sullivan, and Helmut Simonis).

The editors would like to thank the European Union for supporting the EU FET FP7
ICON project, the reviewers of the project, Alan Frisch, Bart Goethals, and Francesca
Rossi, and the project officer Aymard de Touzalin for their constructive feedback and
support, all participants of the ICON project for their contributions (Behrouz Babaki,
Amine Balafrej, Remi Coletta, Abderrazak Daoudi, Anton Dries, Valerio Grossi,
Riccardo Guidotti, Tias Guns, Barry Hurley, Nadjib Lazaar, Yuri Malitsky, Younes
Mechqrane, Wannes Meert, Anna Monreale, Benjamin Negrevergne, Anastasia
Paparrizou, Sergey Paramanov, Andrea Romei, Salvatore Ruggiero, Helmut Simonis,
and Franco Turini), as well as the participants of the Dagstuhl seminars 11201 and
14411 and the Cocomile workshop series. Furthermore, they are grateful to all
reviewers of chapters in this book.

September 2016 Christian Bessiere
Luc De Raedt

Lars Kotthoff

Siegfried Nijssen

Barry O’Sullivan

Dino Pedreschi

Blockeel, Hendrik
Dao, Thi-Bich-Hanh
Davidson, Ian

De Causmaecker, Patrick
Dries, Anton

Frisch, Alan

Gent, lan

Guns, Tias

Hoos, Holger
Lazaar, Nadjib
Mauro, Jacopo
Nanni, Mirco
Nightingale, Peter
Passerini, Andrea
Pearson, Justin
Simonis, Helmut
Tack, Guido
Vanschoren, Joaquin
Vrain, Christel
Zelezny, Filip

Reviewers

KU Leuven, Belgium

Université d’Orléans, France

UC Davis, USA

KU Leuven, Belgium

KU Leuven, Belgium

University of York, UK

University of St. Andrews, UK

KU Leuven, Belgium

University of British Columbia, Canada
Université de Montpellier, France
University of Oslo, Norway

ISTI - CNR, Italy

University of St. Andrews, UK
Universita degli Studi di Trento, Italy
Uppsala University, Sweden
University College Cork, Ireland
Monash University, Australia

Technische Universiteit Eindhoven, The Netherlands

Université d’Orléans, France

Czech Technical University in Prague, Czech Republic

Contents

Background

Introduction to Combinatorial Optimisation in Numberjack.
Barry Hurley and Barry O’Sullivan

Data Mining and Constraints: An Overview
Valerio Grossi, Dino Pedreschi, and Franco Turini

Learning to Model

New Approaches to Constraint Acquisition.
Christian Bessiere, Abderrazak Daoudi, Emmanuel Hebrard,
George Katsirelos, Nadjib Lazaar, Younes Mechqrane,
Nina Narodytska, Claude-Guy Quimper, and Toby Walsh

ModelSeeker: Extracting Global Constraint Models
from Positive Examples.
Nicolas Beldiceanu and Helmut Simonis

Learning Constraint Satisfaction Problems: An ILP Perspective.
Luc De Raedt, Anton Dries, Tias Guns, and Christian Bessiere

Learning Modulo Theories
Andrea Passerini

Learning to Solve

Algorithm Selection for Combinatorial Search Problems: A Survey........
Lars Kotthoff

Advanced Portfolio Techniques.
Barry Hurley, Lars Kotthoff, Yuri Malitsky, Deepak Mehta,
and Barry O’Sullivan

Adapting Consistency in Constraint Solving.
Amine Balafrej, Christian Bessiere, Anastasia Paparrizou,
and Gilles Trombettoni

Constraint Programming for Data Mining

Modeling in MiningZine
Anton Dries, Tias Guns, Siegfried Nijssen, Behrouz Babaki, Thanh Le Van,
Benjamin Negrevergne, Sergey Paramonov, and Luc De Raedt

http://dx.doi.org/10.1007/978-3-319-50137-6_1
http://dx.doi.org/10.1007/978-3-319-50137-6_2
http://dx.doi.org/10.1007/978-3-319-50137-6_3
http://dx.doi.org/10.1007/978-3-319-50137-6_4
http://dx.doi.org/10.1007/978-3-319-50137-6_4
http://dx.doi.org/10.1007/978-3-319-50137-6_5
http://dx.doi.org/10.1007/978-3-319-50137-6_6
http://dx.doi.org/10.1007/978-3-319-50137-6_7
http://dx.doi.org/10.1007/978-3-319-50137-6_8
http://dx.doi.org/10.1007/978-3-319-50137-6_9
http://dx.doi.org/10.1007/978-3-319-50137-6_10

XII Contents

Partition-Based Clustering Using Constraint Optimization

Valerio Grossi, Tias Guns, Anna Monreale, Mirco Nanni,
and Siegfried Nijssen

Showcases

The Inductive Constraint Programming Loop

Christian Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff,
Mirco Nanni, Siegfried Nijssen, Barry O Sullivan, Anastasia Paparrizou,
Dino Pedreschi, and Helmut Simonis

ICON Loop Carpooling Show Case.

Mirco Nanni, Lars Kotthoff, Riccardo Guidotti, Barry O’Sullivan,
and Dino Pedreschi

ICON Loop Health Show Case.

Barry Hurley, Lars Kotthoff, Barry O’Sullivan, and Helmut Simonis

ICON Loop Energy Show Case,

Barry Hurley, Barry O’Sullivan, and Helmut Simonis

Author Index e

http://dx.doi.org/10.1007/978-3-319-50137-6_11
http://dx.doi.org/10.1007/978-3-319-50137-6_12
http://dx.doi.org/10.1007/978-3-319-50137-6_13
http://dx.doi.org/10.1007/978-3-319-50137-6_14
http://dx.doi.org/10.1007/978-3-319-50137-6_15

Background

Introduction to Combinatorial Optimisation
in Numberjack

Barry Hurley®™) and Barry O’Sullivan

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland
{barry.hurley,barry.osullivan}@insight-centre.org

Abstract. This chapter presents an introduction to combinatorial
optimisation in the context of the high-level modelling platform, Num-
berjack. The process of developing an effective model for a combinatorial
problem is presented, along with details on how such problems can be
solved using three of the most prominent solution paradigms.

1 Introduction

Combinatorial optimisation problems arise in many important real-world appli-
cations such as scheduling, planning, configuration, rostering, timetabling, vehi-
cle routing, network design, bioinformatics, and many more. Intelligent, auto-
mated approaches to these problems can provide high quality solutions from a
number of perspectives such as sustainability, energy efficiency, cost, time, etc.,
and can scale to tackle large problems far beyond the reach of manual methods.
Optimisation technologies have been used to design a fibre optical network for
entire countries, minimising the amount of cable to be laid, while also maintain-
ing certain levels of redundancy [40]; to design electricity, water, and data net-
works [50]; to schedule scientific experiments on the Rosetta-Philae mission [49];
assign gates to airplanes [51]; as well as numerous timetabling, scheduling, and
configuration applications [47,54].

There exist a number of alternative approaches to solve combinatorial prob-
lems, three of the most prominent methods being Constraint Programming
(CP) [47], Boolean Satisfiability (SAT) [10], and Mized Integer Programming
(MIP) [56]. These techniques provide a generic platform to tackle a broad range
of problems, from simple puzzles to large scale industrial applications. They pro-
vide a framework upon which real-world problems can be specified declaratively,
largely relieving the user of the task of specifying how a solution should be found.

It is generally possible to solve the same problem with any of these methods,
however they differ in terms of problem representation and solution methodology.
In a nutshell, in the constraint programming paradigm variables take their values
from finite sets of possibilities, with solutions typically found using a combination
of systematic backtracking search and polynomial-time inference algorithms that
reduce the size of the search space. A satisfiability problem is defined in terms
of Boolean variables and a single form of constraint, namely a disjunction of

© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 3-24, 2016.
DOI: 10.1007/978-3-319-50137-6_1

4 B. Hurley and B. O’Sullivan

Boolean variables or their negations. Instances are also solved using backtracking
search, using unit-propagation for inference, as well as learning new clauses when
failures are encountered. The mixed integer programming problem is defined by
a set of linear expressions over integer and real-valued variables. Solutions are
typically found by branch and bound search, using linear relaxations to make
decisions, and the generation of cutting planes to prune the search space.

It is often not clear which approach is best for a particular problem, thus
we may employ a higher-level modelling language to aide in the process. Mod-
elling platforms such as Numberjack! [29], MiniZinc [42], and Essense [21] offer
the user the ability to declare their model in a high-level language and the
framework will handle the interface and encodings to the various paradigms.
This enables rapid prototyping of different models with numerous solvers. This
chapter presents an introduction to combinatorial optimisation, with examples
given in Numberjack’s modelling language.

The following sections introduce various facets of combinatorial optimisation.
First, Sect. 2 introduces the basic building blocks of variables, constraints, and
inference, as well as giving examples of how effective models can be declared
in a modelling framework such as Numberjack. Section 3 introduces three of the
most prominent approaches for solving combinatorial problems. Some underlying
details of systematic search methods and their associated heuristics are detailed
in Sect. 4.

2 Modelling Using Numberjack

Numberjack is a library, written in Python, which allows the user to model and
solve combinatorial optimisation problems. It provides a common interface to a
number of underlying C/C++ solvers seamlessly and efficiently. The remainder
of this section details the process of building an effective solution to combinato-
rial problems.

A combinatorial optimisation model of a problem consists of a declarative
specification, separating in so far as possible the formulation and the search
strategy. However, modelling a problem effectively can be seen as an art in
itself. The difficulty lies in producing a solvable model, i.e. one that quickly
finds optimal solutions or determines that none exist. Naturally, there are many
alternative models for a single problem, often it is not clear which one is best.

The basic process of developing a model consists of first defining what con-
stitutes the variables and their corresponding domains, i.e. what decisions need
to be made and what are the possible outcomes that can be taken for each one.
Next, the constraints on the relationships between the variables must be defined.
If some criterion is to be optimised, an objective function needs to be specified.
Finally, if the model is well defined it can be passed off directly to a solver which
will search for a (optimal) solution. Often, we may need to specify some heuris-
tics for how the solver should perform the search, such as the variable or value
ordering before the solver can effectively solve the problem.

! http://numberjack.ucc.ie/.

http://numberjack.ucc.ie/

Introduction to Combinatorial Optimisation in Numberjack 5

Problem

Human

|

Model

Solver

/ﬁ\,

Does not terminate Wrong Solution

Fig. 1. Abstract process of modelling a problem.

For a user, the process of developing a suitable model often requires a number
of iterations, depicted in Fig. 1. Two common issues arise in the development of
a solution: the model either does not accurately represent the problem, or a
solution is not found by the solver in reasonable time. The former is more of a
real-world problem requiring the assistance of a domain expert, where eliciting
the true constraints of the problem, which may not even be well understood, is a
challenge. The latter can pose a larger challenge from a number of perspectives
and may require the input of an expert in combinatorial optimisation.

Many different viewpoints can be taken in modelling a problem, so it can
be easy to come up with a single model, but it may not necessarily be an effi-
cient model. Important choices are to be made such as what are the variables,
what are their domains, and what restrictions should be stated between them.
Such decisions naturally affect the form of constraints which can be applied and
unquestionably the effectiveness of the solver in finding a solution. Empirical
performance may not be clear until it is actually evaluated.

Furthermore, solvers vary in terms of their capabilities, e.g. despite the hun-
dreds of global constraints that have been developed [6], each solver typically
implements a relatively small subset. Thus, the choice of which solver to use
may be dictated by the global constraints required for a problem. Modelling
languages lift the limitation of developing a model using a single solver. Instead,
the model is implemented in a high-level solver-independent language that can
be translated or encoded for a number of solvers. Nevertheless, these systems
still rely on the user to produce a good model of their problem.

The next sections describe in more detail the primary components of a com-
binatorial optimisation model.

2.1 Variables

The variables constitute a fundamental component of a combinatorial problem.
They are each represented by the finite set of values from which they can be
assigned, often defined by a lower and upper bound. Typically these are restricted
to integer values but some extensions do consider real-valued, set [24,58], and
graph [16,17] variables. Boolean variables can take the values true or false, but

6 B. Hurley and B. O’Sullivan

are often interpreted interchangeably as 1 and 0, respectively. The ultimate task
is to assign each variable to a value from its domain. The product of the variable
domains defines the search space. Thus, it is important that each domain is
defined as tightly as is permissible.

Some examples of how variables may be declared in Numberjack are given
below. The VarArray and Matrix constructs serve as convenience methods for
declaring groups of related variables.

Variable() # Boolean variable

Variable(’x’) # Boolean variable called ‘z’

Variable(u) # Variable with domain of [0..u—1]
Variable(], u) # Variable with domain of [l..u]
Variable(alist) # Variable with domain specified as a list
VarArray(N) # Array of N Boolean variables

VarArray (N, u) # Array of N variables with domains [0..u—1]
VarArray(N, 1, u) # Array of N variables with domains [l..u]
Matrix(N, M) # N x M matriz of Boolean variables
Matrix(N, M, 1, u) # N x M matriz of variables with domains [l..u]

2.2 Constraints

Constraints define relationships between the variables, forbidding invalid solu-
tions to the problem. A wunary constraint is the simplest form of constraint
involving a single variable and is satisfied by preprocessing the domain of the
variable. Binary constraints relate two variables, such as saying they cannot be
equal, and global constraints [6] involve a larger set of variables, modelling more
complex relations. The remainder of this section presents some common binary
constraints, whereas Sect. 2.4 is devoted to the presentation of global constraints.

One of the most basic binary constraints is the disequality constraint which
simply states that two variables must not be assigned the same value, for exam-
ple X # Y. Inequalities such as (<, <,>,>) state a relationship which must
hold between the respective assignments. In terms of their respective abilities
to narrow the search space, these inequality constraints are stronger than the
disequality constraint.

The tightness of a constraint is a measure of how many assignment tuples
are forbidden, and subsequently how much of the search space is pruned. In
particular, for a disequality constraint, with a tightness of é, we may only infer
that a value may be removed from the domain of the opposite variable when one
of the variables has been assigned, whereas for the inequalities, changes in the
bounds or absence of certain values may reduce the domain of the other variable
in the constraint. Such constraints are trivially specified in Numberjack using
operator overloading, examples of which are presented in Table 1.

The expressivity of these binary constraints may be augmented by using
expressions of the form X + ¢ < Y, where c is a constant. Here, the expression

Introduction to Combinatorial Optimisation in Numberjack 7

Table 1. Example binary constraint definitions in Numberjack.

Constraint Numberjack code

Disequality |x!=z

Greater than |x >y

Less-or-equal |y <=z

Logical-or x|y

Logical-and |y \& z

X + ¢ becomes a view on the variable X, mirroring the offset domain without
increasing the search space. Such constraints are useful in many scenarios, for
example in scheduling if we would like to express the constraint that task2 starts
after taskl has finished, we might specify a constraint of the form:

taSklstart + taSklduration < taSkzstart

In many applications the model requires knowledge of the satisfiability of a
particular constraint. In this case, we may reify the truth value of a constraint
to a Boolean variable by writing something of the form:

z==(x<y) z<=(x<y) (x==y)!=(a==Db)

The first statement reifies the less-than relationships between x and y, enforc-
ing that z is 1 iff x is less than y and 0 otherwise. The second example ensures
that z is 0 if x is not less than y, if z is 1 then the less than relationship must hold,
and other relationships are undefined. Finally, the third statement constrains the
two pairs (X, y) and (a, b) such that exactly one pair must be assigned the same
value and one pair must be assigned different values.

2.3 Inference

A central component in solving a CSP involves inferring variable information
based on the constraints and the current state of the search, removing values
from the domains that cannot possibly participate in any solution [38]. Based on
the current partial assignment to variables during search, a value in a domain of
an unassigned variable may, if assigned, violate a constraint then it is said to be
inconsistent. Therefore it can be removed from the domain. No possible extension
of the current assignment allows such a value to participate in a solution. These
values are said to be pruned from the domain and consequently parts of the
search tree will not be explored.

Figure 2 depicts the outcome of performing inference on a Sudoku problem
which has been modelled as a CSP. Figure2(a) shows the initial state of the
CSP, where each cell corresponds to a single variable and its domain is the
values from 1 to 9. Some cells have been pre-assigned with clues from the input.

8 B. Hurley and B. O’Sullivan

8 e he el [8]2]7]5]3]6]4]9
] BN RS 9/4(3[6|8]2[1]7]|5
o 7 fese]s [9 0 2 s [BE 6|7|5|4l9]1|2]8]3
RN B RS 1]15]al2]3]7]8]9]e
Vil e a5 T] 3/6|9[8lal5]|7]2]1
gl s] 1] o] oe] 8] 3 [+% 2/8]/7|1]6]9]|5|3]4a
L L R R N R s[2]1]9]7]4[3]6]8
REEIHE N RS 413|8|5/2|6]|9]1]7
S5 R L B e B S 7l9l6[3|1]|8]4a]5]2
(a) Initial domains with pre- (b) After propagating the (c) Complete solution.
set clues. preset clues.

Fig. 2. Example of CP propagation on a Sudoku instance.

Constraints of the problem enforce that cells within each row, column, and 3
by 3 block take unique values, i.e. a series of all-different constraints. Evidently,
where an initial clue is given as input, no cell in the corresponding row, column,
or block may take this value, and so these values can be removed from their
domains. Before we start any search, inference can be performed based on the all-
different constraints, and the information given by the present clues, to remove
inconsistent values in corresponding variables. Figure 2(b) depicts the result of
propagating this knowledge, and values that cannot participate in any solution
are removed from the domains of variables, resulting in a smaller search space.
During search, this process is repeated in circumstances such as when a new
variable has been assigned or backtracking has occurred.

Note that iteratively propagating the constraints to the domains is typi-
cally enough to solve quintessential Sudoku problems. However, the example
Sudoku presented in Fig. 2 requires a combination of search, albeit a very small
amount, and inference to find the complete solution depicted in Fig.2(c). We
must remark that the Sudoku example depicts a rather simple aspect of consis-
tency, nevertheless it serves to illustrate the concept. Constraint programming
and other combinatorial optimisation systems offer the ability to perform much
more sophisticated reasoning, some of which is discussed in the following section.

Enforcing consistency during search reduces the search space but comes at an
increased computational cost at each node. A trade-off must be made between
pruning the search space and searching at a faster rate. Thus, constraint pro-
gramming offers different levels of consistency that can be enforced, from con-
straint level local consistency to global consistency [9]. Local consistency concerns
individual constraints in isolation, whereas global consistency equates to a com-
plete solution satisfying all constraints. Generally speaking, each additional level
of consistency has the capability to prune larger parts of the search space but
entails a higher computational complexity.

The following definition, from [9], formally defines the concept of generalised
arc consistency for a constraint network.

Introduction to Combinatorial Optimisation in Numberjack 9

Definition 1 ((Generalised) Arc-Consistency ((G)AC)). Given a CSP
network N'= (X,D,C), a constraint c € C, and a variable X; € X(c),

o A wvalue v; € D(X;) is consistent with ¢ in D iff there exists a valid tuple T
satisfying ¢ such that v; = 7[X;]. Such a tuple is called a support for (X;,v;)
on c.

e The domain D is (generalised) arc consistent on ¢ for X; iff all the values in
D(X;) are consistent with ¢ in D.

e The network N is (generalised) arc consistent iff D is (generalised) arc con-
sistent for all variables in X on all constraints in C.

e The network N is arc inconsistent if () is the only domain tighter than D
which is (generalised) arc consistent for all variables on all constraints.

2.4 Global Constraints

Global constraints define constraints over an arbitrarily sized set of variables,
presenting many benefits for constraint programming [53]. Notably, they can
succinctly convey complex relationships between variables, allowing for a concise
specification of a problem. More importantly, from a pragmatic perspective,
this enables higher levels of reasoning to be performed by dedicated inference
algorithms, reducing the search space significantly. For example, propagation
for global constraints such as all-different and cardinality constraints can be
achieved in low polynomial time using flow-based algorithms [45,46], much more
efficiently than general purpose consistency algorithms.

To illustrate an example of such reasoning, consider an all-different constraint
over the variables X = {X3,..., X5}, with initial domains D(X) = {1,...,5},
declaring that each variable in the set must be assigned a unique value. Suppose
that the domains have been reduced during search to those listed is Fig. 3(a).
Note that the domain of variables { X7, X5, X3} constitute the Hall set {1, 2,5},
whereby these three variables must each be assigned a unique value from the Hall
set. Thus, any assignment of these values to other variables in the constraint
can never result in a satisfying assignment, so they can be removed from the
domains of the remaining variables, {X4, X5}. Had the all-different constraint
been decomposed into a clique of dis-equalities, then such reasoning could not
have been performed.

The Global Constraint Catalogue [6] collects definitions for all global con-
straints defined in the CP literature, at the time of writing this listing contains

X, € {1,2, 5} X, € {1,2, 5}

X, € {1,2, 5} X, € {1,2, 5}

X3 € {1,2, 5} X3 € {1,2, 5}

X, € { 2,34 } Xy, € | 3,4 }

X5 € {1,2,3,4,5} Xs € | 3,4 }

(a) Initial domains. (b) After propagating the
Hall set.

Fig. 3. Example of propagation on a Hall set {1,2,5}.

10 B. Hurley and B. O’Sullivan

over 400 constraints and is continually increasing. Such a vast catalogue provides
many opportunities for the application of constraint programming, however one
practical issue faced by users is in identifying which one is appropriate for their
problem.

2.4.1 Example Global Constraints

In practice, most constraint solving libraries only provide implementations for
a small number of those listed in the global constraint catalogue. This section
describes some of the most prominent and widely used global constraints.

Linear Sum. This general expression constrains the dot-product linear combi-
nation of a vector of variables and a vector of coefficients. Mathematically, these
constraints take the form:
Z w;-x; AN ¢
K3

where w is a vector of integer or real valued weights, x is a vector of variables,
A is a relational operator from the set (<, <,=,>,>), and ¢ is a constant.

This is the only constraint type expressible in integer linear programming
but it provides a flexible representation since a number of high-level constraints
can be decomposed or encoded in this form. For example, the constraint x > y
can be written in linear form as z —y > 0. Additionally, since they only deal with
problems in a standard form it enables integer programming solvers to perform
high-levels of reasoning, proving extremely powerful [56].

A linear sum of variables can be expressed in a number of ways in Number-
jack, for example each of the following are equivalent:

2xa + b + 0.5%xc + 3xd
Sum([2%a, b, 0.5%c, 3xd])
Sum([a,b,c,d], [2,1,0.5,3])

e

In general, it is expensive and difficult for a constraint programming solver to
perform alarge amount of reasoning on linear sum constraints, particularly if there
is a large number of variables or their domains are large. For example, in a linear
sum with a large number of variables, there is a huge number of possible assignment
permutations in which to check for supports, at least until a number of variables
are fixed. Thus, in practice, their use with constraint programming solvers is often
limited to cases with a small number of variables and small domains.

All-Different. One of the most widely known, intuitive, and well studied global
constraints is the all-different constraint [36,45] which simply specifies that a set
of variables must be assigned distinct values. Such a relation arises in many prac-
tical applications such as resource allocation, e.g. to state that a resource may
not be used more than once at a single time point. An all-different constraint may
be specified in Numberjack simply by passing a list of variables (or a VarArray)
as follows:

ANDiff([x1, x2, x3, x4])
AllDiff(vararray)

Introduction to Combinatorial Optimisation in Numberjack 11

An intuitive application of the all-different constraint is the Sudoku problem, as
illustrated in Fig. 2, whereby each row, column, and 3 x 3 cell is constrained to
take distinct values. Such a condition can be modelled using an all-different for
each row, column, and cell, giving a model with a total of 27 global constraints.

The all-different constraint may also be decomposed into a clique of dis-
equalities between every pair of variables (Vi < j : X; # X;). This decomposition
requires (§) binary constraints for each all-different, equating to a total of 972
(810 unique) binary disequality constraints for the Sudoku problem. However,
this formulation looses the strong propagation that all-different enables, resulting

in a larger search space to be explored.

Global Cardinality. The global cardinality constraint [1] places lower and
upper bounds on the number of occurrences of certain values amongst a set of
variables. The global cardinality constraint models restrictions in applications
such as timetabling when there may be a limit on the number of consecutive
activity types. For example in Numberjack, we can write the following:

myvariablearray = VarArray(10, 1, 5)
Gcece(myvariablearray, {3: [2, 2], 2: [0, 3], 4: [1, 10]})

to state that amongst the variables in ‘myvariablearray’, the value 3 must occur
exactly twice, the value 2 at most three times, and the value 4 at least once.

Element. The element constraint [30] allows indexing into a variable or value
array, at solving time, by the value of another variable. This can provide a very
powerful modelling construct. A simple example of its use in Numberjack is:

myvariablearray = VarArray(10, 1, 20)
indexvar = Variable(10)
y == Element(myvariablearray, indexvar)

This uses the value assigned to ‘indexvar’ as an index into the variable array
‘myvariablearray’, binding the resulting variable to be equal to the variable ‘y’.

Cumulative. The cumulative constraint [2] proves extremely useful in many
scheduling and packing problems. Two significant and important application
areas for constraint programming. For example, in a scheduling scenario with
a given set of tasks, each requiring a specific quantity of resource, the cumula-
tive constraint restricts the total consumption of the resource to not exceed a
predefined limit at each time point. Tasks are allowed to overlap but their cumu-
lative resource consumption must not exceed a predefined fixed limit. Figure4
illustrates an example schedule of five overlapping tasks on a resource with a
capacity of 5. Given the scheduling of task 1 at time point 0, the earliest task
2 can start is 3 since its resource consumption is 2. Task 4 on the other hand
can also start at 0, since its resource consumption of 1 fits within the remaining
capacity. The cumulative constraint may also be viewed as modelling the packing
of two-dimensional rectangles.

12 B. Hurley and B. O’Sullivan

Resource Use

Time

Fig. 4. Example task assignment on a cumulative resource.

2.5 Optimisation

Numerous industrial applications of combinatorial optimisation require going
beyond a single satisfiable solution. Frequently the interest is in finding good,
or the absolute best, quality solution. For example, we might wish to define the
objective function to minimise cost, wastage, loss, or to maximise profit, yield,
customer satisfaction, and so on. These expressions can intuitively be specified
in Numberjack as follows:

Minimise(openingcosts + supplycosts)
Maximise(Sum/(items, weights))

Different approaches are taken to solve such optimisation problems. Con-
straint programming can treat the objective function as another variable, per-
forming branch and bound search on its range. It solves a series of satisfaction
sub-problems, searching for a solution with an objective value below a certain
threshold. On each subsequent call, the threshold is reduced until the problem
is proven unsatisfiable or a resource limit has been exceeded. A satisfiability
solver can similarly be used to solve some optimisation approaches, although
its practicality is limited to problems where the domain of the objective func-
tion is small. Graphical model solvers perform sophisticated reasoning on the
feasibility of bounds and values of local cost functions to tighten bounds on the
objective. The application of the technology tends to be targeted at small, highly
non-linear objective functions. Mixed integer programming solvers are most nat-
urally suited to solving (linear) optimisation problems. The linear relaxations at
their core yields effective lower-bounds. Critically, a MIP solver also examines
the dual of the problem, yielding an upper-bound. Combining the two gives a
precise indication of the range within which the optimal solution lies; when the
two bounds are equal, optimality has been proven.

3 Solving Technologies

This section presents a more formal description of the aforementioned approaches
to solving combinatorial problems.

Introduction to Combinatorial Optimisation in Numberjack 13

3.1 Constraint Programming

Constraint programming problems are defined by a tuple (X, D,C), defining
the variables, domains, and constraints respectively. A variable X; € X has a
domain of possible assignments from D, denoted by D(X;) € D. Constraints in C
restrict the set of values which can be assigned to interconnected variables of the
problem. For a given constraint ¢ € C, we will refer to the relevant variables by
the set X(c), i.e. the scope of the constraint. In a binary constraint satisfaction
problem, whereby Ve € C : |X(c¢)| < 2, we may refer to a constraint between
variables X; and X; by c¢;;. The graph composed of nodes representing the
variables and (hyper-)edges between the nodes representing the scopes of each
constraint is often referred to as the constraint network.

In so far as is possible, constraint programming attempts to separate the
definition of a problem from the solving process, to the extent that it is said
to represent the holy grail of programming: “the user states the problem, the
computer solves it” [19]. A solution to a CSP consists of a mapping from each
variable to one of the values in its domain such that all constraints are satisfied.
Solutions are typically found using a combination of backtracking-style search
and inference; which are covered in Sects. 4 and 2.3 respectively.

3.2 Satisfiability

The satisfiability problem (SAT) [10] is one of the most prominent and long-
standing areas of study in computer science, most notably by being the first

problem to be proven AP-complete and lying at the heart of the P Z NP
question [14]. The problem consists of a set of Boolean variables and a proposi-
tional formula over these variables. The task is to decide whether or not there
exists a truth assignment to the variables such that the propositional formula
evaluates to true, and, if this is the case, to find this assignment.

SAT instances consist of a propositional logic formula, usually expressed in
conjunctive normal form (CNF). The representation consists of a conjunction of
clauses, where each clause is a disjunction of literals. A literal is either a Boolean
variable or its negation. Each clause is a disjunction of its literals and the formula
is a conjunction of each clause. The following SAT formula is in CNF:

(.’L‘l VxoV —\334) A (_\31‘2 V _\I3) AN (.’IJ3 V .’L‘4)

This instance consists of four SAT variables. One assignment to the variables
which would satisfy the above formula would be to set 1 = true, o = false,
r3 = true, and x4 = true.

3.3 Mixed Integer Programming

The mixed integer programming (MIP) [56] problem consists of a set of linear
constraints over integer and real-valued variables, where the goal is to find an

14 B. Hurley and B. O’Sullivan

assignment to the variables minimising a linear objective function. More formally,
a MIP problem takes the form:

min cx+dy (1)
st. Az + By >0 (2)
2,y >0 3)

y integer (4)

where x and y are two vectors of real-valued and integer variables, respectively. ¢
and d are vectors of coefficients defining the objective function to be minimised.
The matrices A and B represent coefficients of a set of linear constraints.

Analogous to the constraint and satisfiability solving techniques seen in pre-
vious sections, modern techniques for solving a mixed integer programming prob-
lems consist of a combination of search and various forms of inference. Firstly,
a number of pre-solving techniques are applied which rewrite and reduce some
parts of the constraints. This maintains the same form of problem, while gener-
ally resulting in a reduced, tighter problem.

Subsequently, the space of solutions is explored using branch and bound
search. At each node in the search tree, the integrality constraints on vari-
ables in y are relaxed, the resulting formulation, namely the LP relazation, is
solved to optimality using linear programming techniques such as the simplex
algorithm [41]. If it happens that the solution also satisfies the integrality con-
straints, then a feasible solution has been found. The best integer solution found
during search is called the incumbent and its objective value provides an upper-
bound on the optimal solution value.

In practice however, an integer solution to the LP relaxation rarely occurs
and so the fractional solution is used to guide the search. Furthermore, the
objective value of the non-integral solution also provides a lower-bound on the
solution of the integral problem. The distance between the best lower and upper
bound is deemed the optimality gap, when its value reaches zero, optimality has
been proved. The search procedure then branches on one of the y variables for
which a non-integral value was assigned. For example, if integer variable y; was
assigned the value 2.8 in the LP relaxation solution, then two sub-problems are
created with constraints y; < 2 and y; > 3 respectively. If the solution to the
LP relaxation in any of the resulting sub-problems is infeasible or is greater
than the incumbent, then that node can be dropped and another node explored.
This process is repeated recursively until optimality is proven or the problem is
proved infeasible.

3.4 Choice Is Good

As the previous sections have outlined, the solution technologies for constraint
programming, satisfiability, and mixed integer programming problems are all
operationally different. Specifically: CP uses constraint propagation with back-
tracking search; SAT utilises unit-propagation, clause learning, and search; and

Introduction to Combinatorial Optimisation in Numberjack 15

MIP exploits linear relaxations, cutting planes, with branch and bound search.
Often, it is not clear which solution technology is best suited for a particular
problem so it can be worthwhile to experiment with different approaches. For-
tunately, the user does not need to manually produce a different model for each
approach since many problems can be encoded between CP, SAT, and MIP; a
process which can be significantly simplified by using modelling frameworks. The
following sections illustrate the performance differences between approaches on
some example problems.

3.4.1 Example: Warehouse Location Problem

The Warehouse Location Problem [31] considers a set of existing shops and
a candidate set of warehouses to be opened, the problem is to choose which
warehouses are to be opened and consequently the respective shops which each
one will supply. There is a cost associated with opening each warehouse, as well
as a supply cost for each warehouse-shop supply pair, the objective being to
minimise the total cost of warehouse operations and supply costs. A complete
Numberjack model for the warehouse location problem is given in Fig. 5.

Table2 compares the performance of a mixed integer programming solver
and a constraint programming solver, namely SCIP and Mistral respectively, on
some instances of the Warehouse Location Problem. SCIP is able to solve each
of instance to optimality very quickly, whereas the CP solver takes over one hour
of CPU-time to find solutions of worse quality. In this case, the CP solver is not
able to perform much reasoning on the objective function for this problem, a
weighted linear sum, whereas the MIP solver is able to produce tight bounds
very quickly and narrow the search.

3.4.2 Example: Highly Combinatorial Puzzles
We compare a constraint programming, a satisfiability, and a mixed integer
programming solver on some benchmarks of two arithmetic puzzles. Specifically,
constructing a Costas Array and constructing a Golomb ruler of minimal size.
Both of these problems are parameterised by a single value specifying the size
of the instance. The Costas Array problem [15] is to place n points on an n x n
board such that each row and column contains only one point, and the pairwise
distances between points is also distinct. This can be modelled using a vector
of m variables to decide the column of each point, and enforcing all-different
constraints on the vector of variables and on the triangular distance matrix. A
Golomb ruler [52] is defined by placing a set of m marks at integer positions
on a ruler such that the pairwise differences between marks are distinct. The
objective is to find rulers of minimal length. Numberjack models for the Costas
Array and Golomb Ruler problems are presented in Figs.6 and 7 respectively.
Problems such as these are not limited to academic interest but do map to many
real world applications.

Table 3 illustrates the empirical performance differences between CP, SAT,
and MIP approaches on these problems. Here, the constraint programming solver
(Mistral) is very effective. The satisfiability solver performs comparably well on

16 B. Hurley and B. O’Sullivan

I | model = Model()

3 | # 0/1 for each warehouse to decide which ones to open
WareHouseOpen = VarArray(data.NumberOfWarehouses)

6 | # 0/1 matrizfor each shop (row) decide which warehouse (col) will supply it
7 | ShopSupplied = Matrix(data.NumberOfShops, data.NumberOfWarehouses)

9 | # Cost of running warehouses
10 | warehouseCost = Sum(WareHouseOpen, data.WareHouseCosts)

12 | # Cost of shops using warehouses
13 | transpCost = Sum([Sum(varRow, costRow) for varRow, costRow in zip(
ShopSupplied, data.SupplyCost)])

15 | # Objective function
16 |obj = warehouseCost + transpCost
17 | model += Minimise(obj)

19 | # Channel from store opening to store supply matriz
20 | for col, store in zip(ShopSupplied.col, WareHouseOpen):
21 model += [var <= store for var in col]

23 | # Make sure every shop is supplied by one warehouse
24 |for row in ShopSupplied.row:
25 model += Sum(row) ==

27 | # Make sure that each warehouse does not exceed it’s supply capacity
28 | for col, cap in zip(ShopSupplied.col, data.Capacity):
29 model += Sum(col) <= cap

31 | # Load the model with a named solver
32 | solver = model.load(”SCIP”)

34 | # Ask the solver to solve
35 | solver.solve()

37 | if solver.is_sat():

38 ... # print solution
39 | elif solver.is_unsat():
40 print 7 Unsatisfiable”

Fig. 5. Model of the Warehouse Location Problem in Numberjack.

the Costas array problem, but when dealing with the optimisation problem of
the Golomb ruler, it fails to scale. However, it does outperform the mixed integer
programming solver which performs very poorly on these problems.

Introduction to Combinatorial Optimisation in Numberjack 17

Table 2. Comparison between a mixed integer programming solver (SCIP) and a
constraint programming solver (Mistral) on some instances of the Warehouse Location
Problem.

10
11
12
13
15
16

Instance | SCIP Mistral

Objective | Nodes | Time | Objective | Nodes Time
cap44 1184690 1 0.84 | 1468957 | 10008044 | >3600
cap63 1087190 |14 1.82 | 1388391 |10683754 >3600
cap71 957125 1 0.69 | 1297505 |11029722 | >3600
cap81 811324 1 0.65 | 1409091 |3497095 | >3600
cap131 954894 5 5.30 | 1457632 |1281009 |>3600

model = Model()

N wvariables with domains 1..N representing the column of point in each row
seq = VarArray(N, 1, N)

Points must be placed in distinct columns
model += AlIDiff(seq)

Fach row of the triangular distance matriz contains no repeat distances
for i in range(N—2):
model += AlIDiff([seq[j] — seq[j+i+1] for j in range(N—i—1)])

Fig. 6. Model of the Costas Array Problem in Numberjack.

model = Model()

A wector of finite domain variables for the position of each mark
marks = VarArray(m, 2x(m—1))

Pairwise distances are distinct
distance = [marksl[i] — marks[j] for i in range(1, m) for j in range(i)]
model += AlIDiff(distance)

Symmetry breaking
model += marks[0] ==
for i in range(1, m):
model += marks[i—1] < marks][i]

Minimise the position of the last mark
model += Minimise(marks[—1])

Fig. 7. Model of the Golomb Ruler Problem in Numberjack.

18 B. Hurley and B. O’Sullivan

Table 3. Performance of a constraint programming, satisfiability, and mixed integer
programming solver on two arithmetic puzzles of increasing size. Values are CPU time

in seconds, ‘-’ represents a timeout, and ‘M’ a memory limit of 2 GB exceeded.
Instance Mistral | MiniSat | SCIP
Costas (11) 0.0 0.0 27.0
Costas (12) 0.0 0.0 166.0
Costas (13) 0.0 0.0 286.0
Costas (14) 1.0 0.0 1065.0
Costas (15) 9.0 0.0 |2564.0
Costas (16) 52.0 | 16.0 |-
Costas (17) | 562.0 1163.0 |-
Costas (18) | 529.0 | 677.0 |-
Golomb (6) 0.0 0.0 2.0
Golomb (7) 0.0 0.0 17.0
Golomb (8) 0.0 2.0 59.0
Golomb (9) 0.0 | 34.0 1778.0
Golomb (10) 3.0 |M -
Golomb (11)| 133.0 |M -
Golomb (12) | 3006.0 | M M

4 Systematic Search

Chronological backtracking search plays a central role in the solution process
for combinatorial problems. Nodes in the search correspond to variables, and
branches to assignments, thus the search explores the tree of possible partial
solutions. Figure8 illustrates a partial example of the search tree generated by
backtracking search. Initially, from the root node, the variable X is branched on,
taking one branch for each possible value in its domain.

EEENAED
m

Fig. 8. An partial example of the search tree generated by backtracking search.

Introduction to Combinatorial Optimisation in Numberjack 19

Modern constraint programming solvers typically perform binary-branching
on the assignment or removal of a value from the domain. The process of main-
taining arc-consistency (MAC) [48] during search has been shown to be highly
effective. This consists of making the initial CSP arc-consistent before starting
search, then again after every assignment and every backtrack. A domain wipe-
out occurs when a variable has no values remaining in its domain. When this
occurs search must backtrack and explore a different path. A solution has been
found when all variables have been assigned a value in their domain which is
globally consistent with the constraints.

Notably, if a bad decision is made early in the search, then the resulting
sub-tree may be unsatisfiable. It may take exponential time for the search to
prove that no solution exists in the sub-tree, a refutation, before backtracking
to the bad decision node [32]. The thrashing phenomenon occurs when the cur-
rent partial assignment cannot be extended to a solution but search continues
backtracking on the remaining variables, trying all possible values when the real
source of inconsistency is a bad decision higher up the tree.

To avoid such worst-case behaviour, a number of methods such as randomised
restarting, back-jumping, and explanation-based search have been proposed.
Nevertheless, an important decision to be made arises concerning what order
the tree should be explored. These topics are discussed in the following sections.

4.1 Search Heuristics in Constraint Programming

Two closely-related decisions which are vital for success are the choice of variable
to branch on and the subsequent value it will be assigned. These decisions have a
dramatic affect on the size of the search tree that will be explored. Interestingly,
an oracle proposing the value ordering could lead search directly to a solution
without backtracking (if the problem is satisfiable), regardless of the variable
ordering. In practice however, such an oracle is implausible so heuristic methods
must be used.

The CSP community has devised a number of generic, problem independent
heuristics for users to choose from. Options range from static heuristics such a
selecting the variables in order of their domain size or degree of connectivity in
the constraint-graph, to dynamic heuristics based on the activity of the solver
during search such as weighted heuristics [11], and impact-based [44] to name
a few.

To avoid bad decisions early in the search tree, the variable ordering heuristic,
in general, follows a fail-first principle [28] whereby variables likely to lead to
failure should be chosen first. Effort should be focused on difficult parts of the
problem likely to lead to failure, which should ideally occur early in the search.
Value ordering heuristics on the other hand try to select the most promising
value, one most likely to lead to a solution [22].

Choosing an effective heuristic is a highly problem dependant task, often
requiring intimate knowledge of the underlying technology, an undertaking often
beyond the reach of many users. Automating such a task, simplifying the bar-
rier to entry for users, has been proposed as one of the grand challenges for

20 B. Hurley and B. O’Sullivan

constraint programming [20]. One approach to this is to use a machine learning
model to automatically select the heuristic based on instance specific features
[12,23,35,39].

4.2 Restarting and Randomness

In practice, the search procedure will encounter many failures and have to back-
track. As mentioned previously, one risk occurs if a bad decision has been made
early in the search process and proving that no solution exists in the sub-tree
may take exponential time. One approach to avoiding such behaviour is to restart
the search from the root node after a pre-defined limit on the number of failures
has been reached [37].

To maintain the completeness of the search process, solvers adopt a restarting
strategy whereby the failure limit eventually tends towards infinity. A restart
strategy is defined by a sequence (t1, ta, t3, . ..) whereby each ¢; specifies the limit
on the number of failures for a particular run of the algorithm. Once the failure
limit ¢; is reached, the search is restarted from the root node with the new limit
of ti+1 .

Two standard restart strategies are based on the Luby and geometric
sequences. The Luby [37] sequence has the form (1,1,2,1,1,2,4,1,1,2,1,1,2,
4,...). In the context of Las Vegas algorithms [5] it is proven to be universally
optimal, achieving a runtime that is only a logarithmic factor from an optimal
restart strategy where the runtime distribution of the underlying algorithm is
fully known, and no other universal strategy can do better by more than a con-
stant factor [37]. Alternatively, the geometric [55] sequence increases the cutoff
by a constant factor between each run.

Restarting is typically combined with randomisation in the variable and value
heuristics to avoid repeatedly exploring the same search space. Such stochastic
behaviour gives rise to solvers exhibiting a distribution of runtimes. In some
cases, modelled by heavy- and fat-tailed distributions [26], possibly with infinite
mean and variance. These distributions capture a non-negligible fraction of runs
far to the right or left of the median, runs taking extremely long. Rapid ran-
domised restarting [25,27] has been shown to eliminate heavy-tails to the right of
the median and can even take advantage of heavy-tails to the left of the median.

5 Final Remarks

This chapter has presented an introduction to three areas of combinatorial opti-
misation, specifically constraint programming, satisfiability, and mixed integer
programming. The contrasting approaches that each of these paradigms take to
solving such problems is presented along with examples using Numberjack.
One of the underlying difficulties for new users of these technologies is in
producing an effective solution. Some progress has been made to alleviate this
burden, such as the Constraint Seeker [7] which identifies and ranks global
constraints satisfying a given solution vector. The ModelSeeker [8] extends

Introduction to Combinatorial Optimisation in Numberjack 21

this to identify complete global constraint models satisfying a set of solutions.
Conacq [13] interactively learns a constraint network by proposing partial solu-
tions to the user. Automated Configuration tools help find good parameter-
isations of a solver, helping boost performance on problem classes [4,18,34].
Portfolio approaches unite the complimentary strengths of a collection of
solvers [3,33,43,57], making decisions on an instance specific basis of which solver
to be used.

References

10.

11.

12.

13.

Tourbier, Y., Oplobedu, A., Marcovitch, J., CHARME: un langage industriel de
programmation par contraintes, illustr par une application chez Renault. In: Pro-
ceedings of the Ninth International Workshop on Expert Systems and their Appli-
cations, pp. 55—-70 (1989)

Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. In: JFPL 1992, 1éres Journées Francophones de Pro-
grammation Logique, p. 51 (1992)

Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAT 2015, pp. 232-238 (2015)

Ansétegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142-157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7_14
Babai, L.: Monte-carlo algorithms in graph isomorphism testing. Technical report
DMS 79-10, Université de Montréal (1979)

Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical
report SICS-T 2005/08-SE (2005)

Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-
straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12-26.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_4

Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141-
157. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_13

Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming,
pp- 29-83 (2006)

Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI 2004, pp. 146-150 (2004)

Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
Michel, L. (ed.) CPAIOR 2015. LNCS; vol. 9075, pp. 108-123. Springer, Heidelberg
(2015). doi:10.1007,/978-3-319-18008-3_8

Coletta, R., Bessiére, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinque-
ton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 812-816. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45193-8_58

http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-642-23786-7_4
http://dx.doi.org/10.1007/978-3-642-33558-7_13
http://dx.doi.org/10.1007/978-3-319-18008-3_8
http://dx.doi.org/10.1007/978-3-540-45193-8_58
http://dx.doi.org/10.1007/978-3-540-45193-8_58

22

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

B. Hurley and B. O’Sullivan

Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151-158 (1971)
Costas, J.P.: A study of a class of detection waveforms having nearly ideal range -
doppler ambiguity properties. Proc. IEEE 72(8), 996-1009 (1984)

Dooms, G.: The CP(Graph) computation domain in constraint programming.
Ph.D. thesis, Université catholique de Louvain, Faculté des sciences appliquées
(2006)

Fages, J.-G.: Exploitation de structures de graphe en programmation par con-
traintes. (On the use of graphs within constraint-programming). Ph.D. thesis, Ecole
des mines de Nantes, France (2014)

Fitzgerald, T., Malitsky, Y., O’Sullivan, B., Tierney, K.: ReACT: real-time algo-
rithm configuration through tournaments. In: Proceedings of the Seventh Annual
Symposium on Combinatorial Search, SOCS 2014 (2014)

Freuder, E.C.: In pursuit of the holy grail. Constraints 2(1), 57-61 (1997)
Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. Con-
straints 19(2), 150-162 (2014)

Frisch, A.M., Harvey, W., Jefferson, C., Martinez-Herndndez, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268-306 (2008)

Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: Proceedings of the 10th European Conference on Artificial Intelligence, ECAI
1992, pp. 31-35. Wiley (1992)

Gent, L.P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N.C.A., Nightingale, P.,
Petrie, K.E.: Learning when to use lazy learning in constraint solving. In: Proceed-
ings of the 19th European Conference on Artificial Intelligence, ECAI 2010, pp.
873-878 (2010)

Gervet, C.: Set intervals in constraint-logic programming: definition and imple-
mentation of a language. Ph.D. thesis, Université de France-Compté (1995)
Gomes, C.P., Sabharwal, A.: Exploiting runtime variation in complete solvers. In:
Handbook of Satisfiability, pp. 271-288 (2009)

Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. J. Autom. Reason. 24(1-2), 67-100
(2000)

Gomes, C.P.; Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: Proceedings of the 15th National Conference on Artificial Intel-
ligence, AAAT 1998, pp. 431-437 (1998)

Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artif. Intell. 14(3), 263-313 (1980)

Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and com-
binatorial optimisation in numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 181-185. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13520-0-22

Van Hentenryck, P., Carillon, J.-P., Generality versus specificity: an experience
with Al and OR techniques. In: Proceedings of the 7th National Conference on
Artificial Intelligence, AAAT 1988, pp. 660664 (1988)

Hnich, B.: CSPLib problem 034: Warehouse location problem. http://www.csplib.
org/Problems/prob034

Hulubei, T., O’Sullivan, B.: The impact of search heuristics on heavy-tailed behav-
iour. Constraints 11(2-3), 159-178 (2006)

http://dx.doi.org/10.1007/978-3-642-13520-0_22
http://dx.doi.org/10.1007/978-3-642-13520-0_22
http://www.csplib.org/Problems/prob034
http://www.csplib.org/Problems/prob034

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Introduction to Combinatorial Optimisation in Numberjack 23

Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical portfo-
lio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol.
8451, pp. 301-317. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07046-9_22
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507-523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3-40
Kotthoff, L., Gent, I.P., Miguel. I.: A preliminary evaluation of machine learn-
ing in algorithm selection for search problems. In: Proceedings of the 4th Annual
Symposium on Combinatorial Search, SOCS 2011 (2011)

Lauriere, J.-L.: A language and a program for stating and solving combinatorial
problems. Artif. Intell. 10(1), 29-127 (1978)

Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
Inf. Process. Lett. 47(4), 173-180 (1993)

Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99-118
(1977)

Mehta, D., O’Sullivan, B., Kotthoff, L., Malitsky, Y.: Lazy branching for constraint
satisfaction. In: Proceedings of the 25th International Conference on Tools with
Artificial Intelligence, ICTAI 2013, pp. 1012-1019 (2013)

Mehta, D., O’Sullivan, B., Quesada, L., Ruffini, M., Payne, D.B., Doyle, L.: Design-
ing resilient long-reach passive optical networks. In: Proceedings of the 23rd Con-
ference on Innovative Applications of Artificial Intelligence, TAAT 2011 (2011)
Murty, K.G.: Linear Programming. Wiley, Hoboken (1983)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessiere, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529-543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7_38

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557-571. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30201-8_41

Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence, AAAI 1994,
pp. 362-367 (1994)

Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the 8th Innovative Applications of Artificial Intelligence Conference,
TAAT 1996, pp. 209-215 (1996)

Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foun-
dations of Artificial Intelligence. Elsevier, New York (2006)

Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satis-
faction. In: Proceedings of the 11th European Conference on Artificial Intelligence,
ECAI 1994, pp. 125-129. Springer, Heidelberg (1994)

Simonin, G., Artigues, C., Hebrard, E., Lopez, P.: Scheduling scientific experiments
on the rosetta/philae mission. In: Milano, M. (ed.) Principles and Practice of Con-
straint Programming. LNCS, vol. 7514, pp. 23-37. Springer, Heidelberg (2012)
Simonis, H.: Constraint applications in networks. In: Handbook of Constraint Pro-
gramming, pp. 875-903 (2006)

Simonis, H.: Models for global constraint applications. Constraints 12(1), 63-92
(2007)

http://dx.doi.org/10.1007/978-3-319-07046-9_22
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-30201-8_41

24

52.

53.

54.

55.

56.
57.

58.

B. Hurley and B. O’Sullivan

van Beek, P.: CSPLib problem 006: Golomb rulers. http://www.csplib.org/
Problems/prob006

van Hoeve, W.-J., Katriel, I.: Global constraints. In: Handbook of Constraint
Programming. Foundations of Artificial Intelligence, vol. 2, pp. 169-208. Elsevier
(2006)

Wallace, M.: Practical applications of constraint programming. Constraints 1(1/2),
139-168 (1996)

Walsh, T.: Search in a small world. In: Proceedings of the 16th International Joint
Conference on Artificial Intelligence, IJCAI 1999, pp. 1172-1177 (1999)

Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York (1998)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565-606 (2008)

Yip, Y.K.J.: The length-lex representation for constraint programming over sets.
Ph.D. thesis, Brown University (2011)

http://www.csplib.org/Problems/prob006
http://www.csplib.org/Problems/prob006

Data Mining and Constraints: An Overview

Valerio Grossi®?, Dino Pedreschi, and Franco Turini

Department of Computer Science, University of Pisa,
Largo B. Pontecorvo, 3, 56127 Pisa, Italy
{vgrossi,pedre}@di.unipi.it, turini@unipi.it

Abstract. This paper provides an overview of the current state-of-the-
art on using constraints in knowledge discovery and data mining. The
use of constraints requires mechanisms for defining and evaluating them
during the knowledge extraction process. We give a structured account of
three main groups of constraints based on the specific context in which
they are defined and used. The aim is to provide a complete view on
constraints as a building block of data mining methods.

1 Introduction

Data mining extracts synthetic models from datasets. Data are represented by
collections of records characterizing data with respect to several dimensions.
The use of constraints may be useful in the data mining process in at least
three ways: (4) filtering and organizing the dataset before applying data mining
methods; (i) improving the performance of data mining algorithms by reducing
the search space and focusing the search itself; and (%ii) reasoning on the results
of the mining step for sharpening them and presenting a more refined view of
the extracted models.

The integration of constraints in data mining tasks has rapidly emerged as a
challenging topic for the research community. A large number of ad-hoc exten-
sions of mining algorithms use constraints for improving the quality of their
results. The use of constraints requires a way for defining and satisfying them
during the knowledge extraction process. This point is crucial both for the qual-
ity of the extracted data mining models, and for the scalability of the entire
process. On the one hand, an analyst can define the knowledge extraction phase
where a constraint must be satisfied. On the other hand, an optimizer is required
to understand where a constraint must be satisfied inside the process flow, in
an automatic way. Moreover, mining algorithms must be rewritten for satisfying
constraints directly into model extraction.

The amount of data in our world has been exploding. This chapter ends
offering the user a glimpse at the future by considering the emerging phenomenon
of big data. With big data traditional analysis tools cannot be used because of
the massive volume of data gathered by automated collection tools, there are
already promising line researches addressing this issue.

Furthermore, this chapter represents a solid scientific basis for several
advanced techniques developed inside the ICON project and outlined in this book.

© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 25-48, 2016.
DOI: 10.1007/978-3-319-50137-6_2

26 V. Grossi et al.

For example the reader can examine in depth the use of a constraint language
for defining data mining tasks considering the Chapter “Modeling Data Min-
ing Problems in MiningZinc”, or study clustering problems via constraints opti-
mization reading the Chapter “Partition-Based Clustering using Constraints
Optimization” .

For these aims, Sect. 2 provides an introduction to data mining and proposes
several references useful to understand how the basic data mining concepts can
be extended by using constraints. Section3 reviews the use of constraints in
data mining, introducing three different dimensions on which constraints can be
classified. Finally, Sect.4 draws some conclusions.

2 Data Mining

Today, data mining is both a technology that blends data analysis methods with
sophisticated algorithms for processing large data sets, and an active research
field that aims at developing new data analysis methods for novel forms of data.
On the one hand, data mining tools are now part of mature data analysis systems
and have been successfully applied to problems in various commercial and scien-
tific domains. On the other hand, the increasing heterogeneity and complexity
of new forms of data, such as those arriving from medicine, biology, the Web,
Earth observation systems, call for new forms of patterns and models, together
with new algorithms to discover such patterns and models efficiently.

Data mining is originally defined as the process of automatically discovering
useful information in large data repositories. Traditionally, data mining is only
a step of knowledge discovery in databases, the so-called KDD process for con-
verting raw data into useful knowledge. The KDD process consists of a series
of transformation steps: data preprocessing, which transforms the raw source
data into an appropriate form for the subsequent analysis. Actual data mining,
which transforms the prepared data into patterns or models, and postprocessing
of mined results, which assesses validity and usefulness of the extracted patterns
and models, and presents interesting knowledge to the final users - business
analysts, scientists, planners, etc. — by using appropriate visual metaphors or
integrating knowledge into decision support systems.

The three most popular data mining techniques are predictive modelling,
cluster analysis and association analysis. In predictive modelling (Sect. 2.1), the
goal is to develop classification models capable of predicting the value of a class
label (or target variable) as a function of other variables (explanatory variables);
the model is learnt from historical observations, where the class label of each
sample is known: once constructed, a classification model is used to predict the
class label of new samples whose class is unknown, as in forecasting whether a
patient has a given disease based on the results of medical tests.

In association analysis, also called pattern discovery, the goal is precisely to
discover patterns that describe strong correlations among features in the data
or associations among features that occur frequently in the data (see Sect.2.3).
Often, the discovered patterns are presented in the form of association rules:

Data Mining and Constraints: An Overview 27

useful applications of association analysis include market basket analysis, i.e.
the task of finding items that are frequently purchased together, based on point-
of-sale data collected at cash registers.

Finally, in cluster analysis (Sect. 2.2), the goal is to partition a data set into
groups of closely related data in such a way that the observations belonging
to the same group, or cluster, are similar to each other, while the observations
belonging to different clusters are not. Clustering can be used, for instance, to
find segments of customers with a similar purchasing behaviour or categories of
documents pertaining to related topics.

2.1 Predictive Modelling or Classification

Classification is one of the most popular approaches for mining useful informa-
tion. The aim is to predict the behavior of new elements (classification phase),
given a set of past and already classified instances. The process of classifying
new data begins from a set of classified elements, and tries to extract some regu-
larities from them (training phase) [WFH11, TSK06,HK12]. The model employs
a set of input data called training set where the class label for each instance is
provided. The process of classifying new data starts from a training set, and tries
to extract some regularities from them. Classification is an example of supervised
learning.

Based on the way learners actually subdivide the above-mentioned phases,
they are categorized into two classes, namely eager learners or lazy learners. For
example, decision trees or rule-based learners are examples of eager approaches.
In this category, most of the computing resources are spent to extract a model,
but once a model has been built, classifying a new object is a rather fast process.

By contrast, lazy learners, such as nearest-neighbour classifiers do not require
an explicit model building phase, but classifying a test example can be very
expensive, since the element to classify must be compared with all the samples
in the training set. In the following, we provide a short description of the most
popular classifiers available in the literature.

Decision Trees. The model has the form of a tree, where each node contains
a test on an attribute, each branch from a node corresponds to a possible out-
come of the test, and each leaf contains a predicted class label [Mor82]. Decision
tree induction often uses a greedy top-down approach which recursively replaces
leaves by test nodes, starting from the root. The attribute associated to each
node is chosen through the comparison of all the available attributes, and the
selection of the best one is based on some heuristic measures. Several impurity
measures are available in the literature [Qui86,Qui93, BFOS84]. Typically, the
measures developed are based on the degree of impurity of the child nodes. The
lower is the value, the more skewed is the class distribution. The extraction
procedure continues until a termination condition is satisfied.

The Hunt’s algorithm represented in Algorithm 1 is the basis of several
popular decision tree learners including ID3 [Qui86], CART [BFOS84], C4.5
[Qui93, Quig6] and EC4.5 [Rug02]. The cited approaches assume that all training

28 V. Grossi et al.

Algorithm 1. The Hunt’s algorithm - DecisionTree(TS, A)

Require: Training set TS, an attribute set A
Ensure: Decision tree

1: if stoppingCondition(TS, A) = true then

2: leaf «— createLeaf(TS) //given T'S determines the class label to assign a leaf
node

3: return leaf

4: else

5: root «— createNode()

6: root.testCondition «— findBestSplit(TS, A)

7. TS; < splitData(root.testCondition) //given the test condition splits 7S in sub-
sets

8: for each TS; do

9: root.child; «— DecisionTree(TS;, A)

10: end for

11: end if

12: return root

examples can be simultaneously stored in main memory, and thus have a limited
number of examples from which they can learn. [LLS00] shows a comparison of
complexity, training time and prediction accuracy of main memory classification
algorithms, including decision trees. In several cases, training data can exceed
the main memory capability. In order to avoid this limitation, disk-based deci-
sion tree learners, such as SLIQ [MAR96] and SPRINT [SAM96], assume the
examples to be stored on disk, and are learned by repeatedly reading them in a
sequence. More recently, new data structures and algorithms have been defined

to tackle the classification problem in stream environments, also using decision
trees [GT12,GS11].

Bayesian Approaches. In many situations, the relationship between the
attributes and the class variable cannot be deterministic. This situation typically
occurs in the presence of noisy data, or when external factors affecting classifi-
cation, not included in our analysis, arises. Based on Bayes theorem, Bayesian
classifiers are robust to isolate noisy points and irrelevant attributes.

A popular approach of Bayesian classification is naive Bayes. This kind
of classifier estimates the class-conditional probability, by assuming that the
attributes are conditionally independent. To classify a record, the algorithm
computes the posterior probability of a class value using Bayes theorem, and
returns the class that maximizes this probability value. The way of computing
class-conditional distribution varies in the presence of categorical or continuous
attributes. In the first case, the conditional probability is estimated using the
fraction of training samples with a specific class label considering an attribute
value. By contrast, continuous attributes must be discretized, or a Gaussian
distribution is typically chosen to compute the class-conditional probability.

Detailed discussions on Bayesian classifiers can be found in [DH73,Mic97,
WKO91]. An analysis of the accuracy of naive Bayes classifiers without class

Data Mining and Constraints: An Overview 29

Algorithm 2. The k-nearest neighbour algorithm
Require: Training set TS, the number of nearest neighbour k
Ensure: Set of k nearest neighbours

1: for each test example z = (z’,3’) do do

2: Distance(x', x) < compute the distance between z and every training element

(z,y) € TS

3 TSs < Select the k closest training example to z
4: class «— FindClass(TSs)
5
6

return class
: end for

conditional independence hypothesis is available in [DP96], while [Jen96] pro-
vides a first overview of Bayesian networks.

Nearest Neighbour. This kind of classifier belongs to the family of lazy learners.
In this case, every training example is viewed as a point in a multidimensional
space, defined on the number of the available attributes.

As shown in Algorithm 2, given an element to classify, the call label is chosen
based on the label of element neighbours selected by a proximity measure. In this
case, specific training instances are employed to provide a prediction, without
providing any model derived from data. Every training example is viewed as
a point in a multidimensional space, defined on the number of the available
attributes. In real applications only k points, that are closest to the element
to classify are selected to decide the class label to return. The crucial aspect
is to select the measures of proximity, that similarly to clustering are based on
attribute types and special issues to solve. Due to its nature these models are
rather sensible to noisy data and the prediction accuracy is highly influenced by
the data preprocessing step and proximity measure.

With respect to decision trees, nearest-neighbor classifier provides a more
flexible model representation. It produces arbitrarily-shaped boundaries, while
decision trees are typically constrained to rectilinear decision boundaries
[TSK06, HK12].

Support Vector Machine. This kind of approaches has its root in statistical
learning theory. They have been successfully employed in many real applications,
including handwritten digit recognition, and text categorization among others.

The main idea of this method is representing the decision boundary using a
subset of training examples, known as support vectors. A support vector machine
constructs a hyperplane (or set of hyperplanes) in a multi-dimensional space,
which can be used for classification, regression, or other tasks. Essentially, given
a set of possible hyperplanes (implicitly defined in the data), the classifier selects
one hyperplane for representing its decision boundary, based on how well they
are expected to perform on test examples. A support vector approach is typically
described as linear or non-linear. The former involves a linear decision boundary
to split the training objects into respective classes [ABR64]. Non-linear models

30 V. Grossi et al.

try to compute a boundary for separating objects that cannot be represented
by a linear model [BGV92|. The trick is to transform the data from its original
space into a new space that can be divided by a linear bound. In the literature
several approaches are available for learning a support vector model [CV95,
Bur98,SC08].

2.2 Clustering

Clustering is the process of partitioning a set of data objects into subsets without
any supervisory information such as data labels. Each subset is a cluster, such
that objects in a cluster are similar to one another, yet dissimilar to objects in
other clusters. The set of clusters resulting from a cluster analysis can be referred
to as a clustering [WFH11, TSK06,HK12]. Clustering can lead to the discovery
of previously unknown groups within the data. Examples of data objects include
database records, graph nodes, a set of features describing individuals or images.
Because there is no a priori knowledge about the class labels, clustering is also
called unsupervised learning. Cluster analysis is used in a wide range of applica-
tions such as: business intelligence, image pattern recognition, web analysis, or
biology.

The following general aspects are orthogonal characteristics in which cluster-
ing methods can be compared:

e the partitioning criteria: all the clusters are at the same level vs. parti-
tioning data objects hierarchically, where clusters can be formed at different
semantic levels.

e separation of clusters: methods partitioning data objects into mutually
exclusive clusters vs. a data object may belong to more than one cluster.

e similarity measure: similarity measures play a fundamental role in the
design of clustering methods. Some methods determine the similarity between
two objects by the distance between them wvs. the similarity may be defined
by connectivity based on density or contiguity.

e clustering space: the entire given data space vs. subspace clustering.

The literature proposes several ways to compute and represent a cluster. The
partition method is based on prototypes and is one of the most widely studied
and applied approaches. In this case, every cluster is selected and represented by
a prototype called centroid (e.g. K-means and K-medoid). Prototype-based tech-
niques tend to consider the region only based on a distance value from a center.
This approach typically provides clusters having globular shapes. Hierarchical-
clustering is a method of cluster analysis which seeks to build a hierarchy of
clusters. Also this kind of clustering is typically based on distance measures, but
in this case, we permit clusters to have subclusters thus forming a tree. Each
cluster i.e. a node in the tree, is the union of its subclusters, and the root of the
tree is the cluster containing all the objects. The class of approaches for hierar-
chical clustering can be found under the agglomerative hierarchical clustering.
BIRCH [ZRL96] is a famous example of hierarchical clustering algorithm.

Data Mining and Constraints: An Overview 31

Algorithm 3. The k-means algorithm
Require: Set of points P
Ensure: Set of k clusters

1: repeat

2 Form k clusters by assigning each point p; € P to the closest centroid
3: centroids < Recompute the centroid of each cluster

4: until centroids do not change

Density-based approaches work also with non-globular regions and they are
designed for discovering dense areas surrounded by areas with low density (typi-
cally formed by noise or outliers). In this context a cluster consists of all density-
connected objects, which can form a cluster of an arbitrary shape. DBSCAN
[EKSX96] and its generalization OPTICS [ABKS99] are the most popular den-
sity based clustering methods. In several situations spectral and/or graph-based
clustering are proposed for solving problems when the available information is
encoded as a graph. If the data is represented as a graph, where the nodes are
objects and the links represent connections among objects, then a cluster should
be redefined as a connected component, i.e. a group of objects that are connected
to one another, but that have no connection to objects outside the group. An
important example of graph-based clusters are contiguity-based clusters, where
two objects are connected only if they are within a specified distance of each
other. This implies that each object in a contiguity-based cluster is closer to
some other object in the cluster than to any point in a different cluster.

Finally, Fig.1, taken from [HKI12], summarizes the main characteristics
related to the different clustering approaches considering the three main cluster-
ing methods proposed above. For each method, the figure highlights the specific
features and the most well-known and basic algorithms widely studied in the
literature. Finally, Fig. 1, taken from [HK12], summarizes the main character-
istics related to the different clustering approaches considering the three main
clustering methods proposed above. For each method, the figure highlights the
specific features and the most well-known and basic algorithms widely studied
in the literature.

Method Specific Features Algorithms
Partitioning | Distance based K-means
methods Discover mutual clusters of spherical shape K-medoids
Prototyped-based (mean or medoid) to represent centroid
Hierarchical |Hierarchical decomposition BIRCH
methods May incorporate other techniques (e.g. microclustering)
Cannot correct erroneous splits (or merges)
Density-based |Find arbitrary shaped clusters DBSCAN
methods Based on concept of dense regions OPTICS
May filter out outliers

Fig. 1. Overview of clustering methods.

32 V. Grossi et al.

2.3 Pattern Discovery

Pattern analysis methods are fundamental in many application domains includ-
ing market basket analysis, medicine, bioinformatics, web mining, network
detection, DNA research. Unlike in predictive models, in pattern discovery
the objective is to discover all patterns of interest. Here, we briefly recall the
basic methods of pattern mining, including frequent itemsets mining (FIM),
association rule mining (ARM) and sequential patterns mining (SPM). See
[2702,HCXY07,Sha09] for past surveys on ARM, and [ME10,CTG12] for sur-
veys on SPM.

Let I = {i1,...,i,} be a set of distinct literals, called items. An itemset
X is a subset of I. An itemset X has a support, supp(X), in a transactional
database D if s% of the transactions contains the itemset X in D. Given a
user-defined minimum support 3, an itemset X such that supp(X) > 3 is called
frequent itemset. The FIM problem can be stated as follows: given a transaction
database D and a minimum support threshold s, find all the frequent itemsets
from the set of transactions w.r.t. s.

A natural derivation of frequent itemsets is called association rule (AR),
expressing an association between two itemsets. Given X and Y two itemsets,
with X NY = (), an AR is an expression of the form X = Y. X is called the
body or antecedent, and Y is called the head or consequent of the rule. The
support of an AR X = Y is supp(X = Y) = supp(X UY'). The confidence of an

ARisconf(X =Y) = %. Given a transaction database D, a minimum
support threshold, 5, and a minimum confidence threshold, ¢, the ARM problem
is to find all the ARs from the set of transactions w.r.t. 5 and ¢.

Finally, the concept of sequential pattern is introduced to capture typical
behaviors over time, i.e. behaviors sufficiently repeated by individuals to be
relevant for the decision maker. A sequence S =< X;...X,, > is an ordered
list of itemsets. We say that S is a subsequence of another sequence V =<
Y:...Y,, > with n < m, if there exist integers 1 < iy < --- < i, < m such that
X1 CY,..., X, €Y. We denote with X;.time the timestamp of the itemset
X; and with supp(S) the support of S, i.e. the number of tuples containing the
sequence S. Given a sequence database and a minimum support threshold s,
the SPM problem is to find all the sequences from the set of transactions w.r.t.
. Sequential patterns are not the only form of patterns that can be mined.
Consider for example the huge literature for gene mining [EZ13].

Different algorithms for FIM have been proposed in the literature [AS94,
HPY00,SON95, T0i96, ZPOLI7]. The most popular algorithm is Apriori [AS94].
The approach is outlined in Algorithm 4. It is based on a level-wise search process
that makes multiple passes over the data. Initially, it computes the frequent item-
sets of size 1. The core of the algorithm is then a cycle of passes each of them
composed of two main phases: the candidate generation and the support count-
ing. In the former phase, the set of all frequent k-itemsets, Ly, found in the pass
k, is used to generate the candidate itemsets C11. In the latter, data is scanned
to determine the support of candidates. After the support counting, unfrequent
itemsets are dropped, according to the downward closure property. Another algo-

Data Mining and Constraints: An Overview 33

Algorithm 4. The Apriori algorithm
Require: Set of transaction T’
Ensure: Frequent itemsets

1: k1

2: Fj < Find all frequent 1-itemsets

3: repeat

4 k—k+1

5: for each transaction t € T' do
6: Identify all candidates that belongs to ¢
7.
8
9

0

1

Compute support counting for each candidate Ct
end for
. Fy < Extract the frequent k-itemsets
10: until F, =¢
11: return (JFy

rithm is the FP-Growth. It allows to reduce the number of transactions to be
processed at each iteration via a divide et impera strategy [HPY00]. Basically,
it divides the search space on a prefix base. After the first scan, the original
problem can be divided into |I| sub-problems, where I is the set of frequent sin-
gletons. Other algorithms based on the splitting of the input data into smaller
datasets, are eclat [ZPOL97] and partition [SON95].

Sequential pattern mining methods can be classified into three classes:
Apriori-based with an horizontal formatting methods; Apriori-based with a ver-
tical formatting methods; projection-based pattern growth methods. The first
class includes the GSP algorithm [SA96] and its derivations. The second class
includes SPADE [ZakO01]. The third class is based on the SPAM [AFGY02] and
PrefixSpan algorithms [PHMA+04]. In particular, the latter works by means
of a divide-and-conquer strategy with a single scan on the entire dataset. Each
sequential pattern is treated as a prefix and mined recursively over the corre-
sponding projected database.

Recently, mining frequent structural patterns from graph databases, e.g. web
logs, citation networks, and social networks has become an important research
problem with broad applications. Several efficient algorithms were proposed in
the literature [WWZ+05,TWMO00, YHO02], ranging from mining graph patterns,
with and without constraints, to mining closed graph patterns.

3 Using Constraints in Data Mining

The integration of constraints in data mining has rapidly emerged as a chal-
lenging topic for the research community. Many ad-hoc extensions of mining
algorithms that use constraints for improving the quality of their results have
been proposed for the different methods introduced along the Sect.2. The def-
inition and the integration of constraints allows the user to specify additional
information on input data as well as requirements and expected properties of
data mining models in output in a declarative way. For example, the extrac-
tion of association rules typically leads to a large quantity of useless rules.

34 V. Grossi et al.

An approach that extracts the rules by specifying the analyst’s needs can speed
up both the domain experts evaluation of the extracted rules and the extraction
algorithm itself.

The literature proposes several works on using constraints in data mining
tasks. Currently, every mining task has its own way for classifying constraints.
A full view that binds mining tasks to the the objects on which constraints
are defined, is still missing. For this reason, one of the aims of this chapter
is to provide a general framework where a constraint can be classified. In this
perspective, this section provides a description about the dimensions on which
constraints can be classified. This view is based on the main characteristics that
every kind of constraint proposes in its specific mining context.

We introduce the use of constraints considering three dimensions based on
the characteristics that every kind of constraint presents in its specific context:

1. Object Constraints: considers which objects the constraints are applied
to, namely data, models and measures. This kind of constraints is presented
in Sect. 3.1.

2. Hard &Soft Constraints: considers the type of constraints: hard and soft
constraints. Section 3.2 introduces this kind of constraints.

3. Phase-defined Constraints: considers the phases of the knowledge extrac-
tion process, in which the constraints are used, namely pre, mining and post.
Section 3.3 overviews this class of constraints.

Before starting analysing the dimension dealing with the objects constraints,
it is worth noting that the dimensions proposed above are not complementary
or mutually exclusive, but they represent different perspectives on which we can
classify constraints for data mining.

3.1 Object Constraints

We start by analyzing the dimension dealing with the objects constraints are
applied to. Constraints can be defined on data, on the mining model and on
measures. In particular, Sect.3.1.1 overviews the constraints on data (or items),
while Sect. 3.1.2 overviews the ones on mining models. Finally, Sect. 3.1.3 intro-
duces the constraints defined on measures.

3.1.1 Constraints on Data
Referred to the literature also as constraints on items, this kind of object con-
straint involves specific data attributes. Data constraints require a complete
knowledge about the data attributes and properties in order to define con-
straints on specific data features. Furthermore, they can involve some forms
of background knowledge directly. Examples of constraints on data include the
must and cannot-link in a clustering problem, or consider only the items having
a price higher than a given threshold for pattern mining.

If we consider the classification task the literature in this field has explored
constraints among instances and classes, and among different classes themselves.

Data Mining and Constraints: An Overview 35

This is principally due to the fact that a classifier is extracted from a training set
specifically conceived on the requirements of the classification task. [HPRZ02]
introduces a constrained classification task, where each example is labeled with a
set of constraints relating multiple classes. Every constraint specifies the relative
order of two classes and the goal is to learn a classifier consistent with these con-
straints. As reported in [PF08], in many applications explicit constraints among
the labels can be easily discovered. For example, in the context of hierarchical
classification, the presence of one label in the hierarchy often implies also the
presence of all its ancestors. [TJHAO5] proposes a constrained support vector
machine approach. In this work, the authors consider cases where the prediction
is a structured object or consists of multiple dependent constrained variables.
An interesting approach is proposed in [DMMOS§] in case of a lack of labeled
instances. In this case, the knowledge base is a set of labeled features, and the
authors propose a method for training probabilistic models with labeled fea-
tures (constrained from domain knowledge) from unlabeled instances. Labeled
features are employed directly to constrain the model predictions on unlabeled
instances.

Data constraints for clustering involves the concept of instance-level con-
straints. Well-established approaches on using data constraints for clustering
problems focused on the introduction of instance-level constraints [WCRSO01,
WCO00]. In this case a domain expert defines constraints that bind a pair of
instances in the same cluster or that avoid that a pair of instances will be assigned
to the same cluster. () must-link constraints enforce two instances to be placed
in the same cluster, while (4i) cannot-link constraints enforce two instances
to be in different clusters. Several properties are related to instance-level
constraints [DRO6]. Must-link constraints are symmetric, reflexive and transitive.
The latter property enables a system to infer additional must-link constraints.
On the contrary, cannot-links do not have the transitive property. Since must
and cannot-link are relevant for a large amounts of works in the literature, where
several types of constraints based on groups of instances have been defined in
[DR05,DR09,DR07,DDV13], Chap.1 in [BDWOS] reports a detailed definition
of the properties on which they are based.

In pattern mining, data constraints are introduced to specify patterns that
include (or not) specific items. For example, when mining association rules out
of a weblog, one might be interested in only rules having sport pages in the
consequent, and not having shopping pages in the antecedent. In the case of
sequential patterns, one might be interested to patterns that first visit finance,
and then sport or books [PHWO7]. There are two principal ways to express data
constraints for pattern mining: (3) by means of a concept hierarchy (i.e. multi-
level constraints) and (43) weighted pattern mining emerges when considering a
different semantic significance of the items.

Multi-level constraints enables the generalization of items at bottom level
to higher levels of the hierarchy before applying the mining algorithm [SA95].
Methods to integrate multi-level constraints into mining algorithms are intro-
duced in [HF99], in which frequent itemsets are generated one level at a time

36 V. Grossi et al.

of the hierarchy. [SVA97] and [HLN99] can be seen as the first attempts to
integrate multilevel mining directly into the Apriori. More recent works on gen-
eralized rule mining include [ST02] about exploiting the lattice of generalized
itemsets, and [WH11], on using efficient data structures to retrieve item general-
izations. [BCCG12] exploits schema constraints and the opportunistic confidence
constraints to remove uninteresting rules.

Weighted pattern mining has been extensively proposed in frequent itemset
mining and association rule mining, in discussing a new tree structure that is
robust to database modifications [ATJ+12]; in pushing the weight constraint into
pattern growth algorithms [YL05, TSWYng, YSRY12], or into level-wise methods
[WYYO00, TM03,LYCO08]; in suggesting approximated weighted frequent pattern
mining, as a fault tolerant factor [YR11].

3.1.2 Constraints on the Mining Model

This class of constraints defines specific requirements that an extracted model
should satisfy. This kind of constraint does not involve background knowledge
directly, but it requires a complete knowledge on the characteristics needed by
the output model. For example, they include the extraction of association rules
having a specific set of items in the body and in the head, or discovering clusters
with a minimum number of elements.

Examples of model constraints for classification can be found in [NF07,NF10,
NPS00]. [NPS00] proposes different kinds of constraints, related to the form of a
decision tree, e.g. internal nodes should not have pure class distributions or rules
about the class distribution. [NF10] defines a framework for determining which
model constraints can be pushed into the pattern mining process, proposing an
optimal classifier model. More precisely, [NF10] shows how several categories of
constraints defined for frequent itemset mining, e.g. monotonic, anti-monotonic
and convertible, can be applied in decision tree induction. It highlights the con-
nection between constraints in pattern mining and constraints in decision tree
extraction, developing a general framework for categorizing and managing deci-
sion tree mining constraints.

The algorithms K-means and K-medoid represent a basic approach for forc-
ing clustering models to have specific properties [GMN+15]. In [BBD00, DBBO0S],
the authors avoid empty clusters by adding k constraints to the clustering
problem requiring that cluster h contains at least 7, points. The solution
proposed is equivalent to a minimum cost flow linear network optimization
problem [Ber91]. Another approach for discovering balanced clusters can be
found in [BG08,BG06]. In this case, the introduced constraint requires that the
obtained clusters have a comparable size. The proposed method has three steps:
(i) sampling; (iz) clustering of the sampled set; and (%ii) populating and refin-
ing the clusters while satisfying the balancing constraints. Other methods for
constraining the clustering approach to discover balanced clusters can be found
in [SGO03]. The authors propose the use of graph partition techniques or hierar-
chical approaches that encourage balanced results while progressively merging
or splitting clusters [BK03,ZG03]. Many papers focus on metric learning driven

Data Mining and Constraints: An Overview 37

by constraints. Distance measure learning and clustering with constraints in K-
means were both considered in [BBMO04b], and the result was extended to a
Hidden Markov random field formulation in [BBMO04a].

Pattern-model constraints are related to the form, or the structure of the
entire pattern, as well as to relations among items. For example, one might wish
to find patterns that include first visit of a sport page, then a shopping page,
and finally a finance page. In this context, we are searching for meta-rules that
are useful to specify the syntactic form of the patterns [FH95]. These constraints
can be specified using either high-level user interfaces or declarative data min-
ing query languages. Here, we briefly review the usage of regular expressions
(RE) in sequential pattern mining. They are based on the typical RE operators,
such as disjunction and Kleene closure, to constrain the set of items. Then, we
deal with relaxation of constraints. There are several algorithms supporting RE
constraints. SPIRIT [GRS99] is based on an evolution of the GSP algorithm.
RE-Hackle represents RE by means of a tree structure [CMBO03]. Prefix-growth
extends the prefix-span approach with several kinds of constraints, among which
RE are included [PHWO07].

3.1.3 Constraints on Measures
Measures, e.g. entropy for classification, support and confidence for frequent
itemsets and euclidean distance for clustering, play an important role in data
mining, since they are related to the quality of the model extracted. This class
of constraints specifies a requirement that the computation of a measure should
respect. It involves both the knowledge about data and the knowledge about
the characteristics of a model. For example, if we consider clustering people as
moving objects, the trajectory implementing the shortest distance cannot cross
a wall, or we can constraints a classifier to provide a minimum level of accuracy.
Starting from model constraints for classification, [YG04, VSKSvdH09] deal
with the design of a classifier under constrained performance requirements. In
particular, [VSKSvdHO09] enables the user to define a desired classifier perfor-
mance. The work provides a complete analysis when a classifier is constrained to
a desired level of precision (defined as F-measure and/or to tp-/fp-rate related
performance measures). The learned model is adjusted to achieve the desired
performance, abstaining to classifying ambiguous examples in order to guaran-
tee the required level of performance. Furthermore, [VSKSvdHO09] studies the
effect on an ROC curve when ambiguous instances are left unclassified. This is
an example when a set of constraints defined on measures clearly influences also
the learned model implicitly. Similarly in [YGO04], an ensemble of neural networks
is constrained by a given tp or fp-rate to ensure that the classification error for
the most important class is within a desired limit. The final classifier is tuned by
using a different structure (or architecture), employing different training sam-
ples, and training with a different subset of features for individual classifiers with
respect to phase of employment. In most of the cases model constraints are used
during the model construction phase.

38 V. Grossi et al.

Many papers focus on metric learning driven by constraints for clustering.
Distance measure learning and clustering with constraints in K-means were both
considered in [BBMO04b], and the result was extended to a Hidden Markov ran-
dom field formulation in [BBMO04a]. In [SJ04], an SVM-like approach is employed
to learn a weighted distance from relative constraints. The method learns a
weighted euclidean distance from constraints by solving a convex optimization
problem similar to SVMs to find the maximum margin weight vector. In this
case, the approach integrates the input points with a set of training constraints
that specify the distance requirements among points. Kumar and Kummamuru
[KKO08] proposed to learn an SVaD [KKA04] measure from relative comparisons.
Relative comparisons were first employed in [SJ03] to learn distance measures
using SVMs. The existing results on relative comparisons can be used to solve
clustering problems with relative constraints (since each relative constraint is
equivalent to two relative comparisons).

Besides those expressed on support and confidence, interestingness con-
straints specify thresholds on statistical measures of a pattern. We can find
three kinds of interestingness measures. With time constraints, the user has the
possibility of choosing not only the minimum support, but also time gaps and
window size [SA96, PHWO07, MPT09]. The former permits to constrain itemsets
in a pattern to occur neither too close, nor too far w.r.t the time. Considering
recency, frequency and monetary constraints, a model can be used to predict the
behavior of a customer on the basis of history data, with the aim of analyz-
ing how often and recently a customer purchases as well as how much he/she
spends [BW95, WLW10]. Finally aggregate constraints are based on aggregates
of items in a pattern, where the aggregate function can be sum, avg, max, min.
See [ZZNS09] for a recent review on the various interestingness measures.

3.2 Hard and Soft Constraints

The use of constraints enables a mining method to explore only those solu-
tions consistent with users expectations. Constraints may not always improve
the reliability of the extracted model, e.g. data overfitting. Generally, it is not
guaranteed that the use of constraints improves the reliability of the objective
measures. Moreover in some cases constraints can be redundant, e.g. a constraint
which does not affect the search solution space, and/or they can cause conflicts
and introduce inconsistencies on final result.

For example, if we constrain two elements, say a and b, to be in the same
cluster if their distance is lower than a given threshold ¢;, and, at the same
time, we require that a and b cannot be in the same cluster if their distance is
greater than an additional threshold ¢, the satisfaction of these two constraints
could not be solved by any cluster partitioning if ¢5 is lower than t,. Similarly,
forcing a classifier to provide a desired performance can lead to find empty
solutions since there is not a model extracted from the data that satisfies the
required constraints, e.g. [VSKSvdH09] avoids this situation. The learned model
is adjusted to achieve the desired performance by abstaining to classifying the
most ambiguous example in order to guarantee the required level of performance.

Data Mining and Constraints: An Overview 39

Typically, these events happen when some sets of constraints work well but
some others do not [Dav12]. This aspect requires the use of measures to evaluate
how much a set of constraints is useful. Davidson et al. [DWB06, WBDO06] intro-
duce the concepts of informativeness and coherence. In the case of clustering,
the authors define the informativeness as the amount of information in the con-
straint set that the algorithm cannot determine on its own. It is determined by
the clustering algorithm’s objective function (bias) and search preference. While
given a distance matrix, the coherence measures the amount of agreement within
the constraints themselves. The above definitions should be revised in the case
of classification or pattern mining, but their relevance is already clear.

The above observations require that a user can define the way for computing
the measure related to a constraint. Furthermore, the user expresses “how well”
a constraint should be satisfied. Generally, the use of constraints does not nec-
essarily guarantee the achievement of a solution. In order to control this effect
it can be necessary to relax constraints. This leads to the need of offering the
possibility of classifying constraints as either hard or soft, that is relaxable:

e Hard constraint: a constraint is called hard if a model that violates it is
unacceptable. The use of only this class of constraints can involve the discovery
of empty solutions. A hard-constrained algorithm halts when there does not
exist a state that satisfies all the constraints, and it returns no results [OY12].
This situation is common when a large set of constraints is provided as input.

e Soft constraint: a constraint is called soft if even though a model that satis-
fies the constraint is preferable, a solution is acceptable anyway and especially
when no any other (or better) solution is available [BMR97]. Typically, it is
known that some constraints work well for finding the required solution, while
others do not, and in some context where a result is needed in any case, it
is important to select a set of useful constraints that should be considered as
hard, while others can be treated as soft [DWBO06].

This dimension is strictly related to the actual definition of a constraint and it
should not be perceived as a rigid categorization. As explained above, there are
some constraints that can be both hard and relaxed as soft based on the problem
and the properties the solution requires.

3.3 Phase-Defined Constraints

Since a data mining task, or more generally a knowledge extraction process, is
based on different iterated phases, constraints can be classified also with respect
to where a knowledge extraction process can evaluate and satisfy the set of
constraints defined by the user.

The pre-processing phase includes data cleaning, normalization, transforma-
tion, feature extraction and selection and its aim is to produce a set of data
for the subsequent processing/mining step. [Pyl99] presents basic approaches for
data pre-processing.

The processing step is the core phase where the actual knowledge extraction
is performed. This is the mining phase where a model is extracted.

40 V. Grossi et al.

Finally, a post-processing step is required to verify if the model extracted
by a data mining algorithm is valid and useful. If a model does not reach the
desired standards, it is necessary to re-run the process and change parameters
of the pre-processing and mining steps.

Given the above observations, techniques for constraint-driven mining can be
roughly classified on the basis of the knowledge extraction phase in which they
are satisfied:

e Pre-processing constraints: are satisfied during the pre-processing phase.
They enable a restriction of the source data to the instances that can only
generate patterns satisfying them.

e Processing/Mining constraints: are directly integrated into the mining
algorithm used for extracting the model. The constraint evaluation in this
case is embedded directly in the mining algorithms, enabling a reduction of
the search space.

e Post-processing constraints: are satisfied either by filtering out patterns
generated by the mining algorithm, or by highlighting only the relevant results
given an interest measure provided by the user.

The phase of the knowledge extraction process where a constraint is satisfied is
the last dimension we introduce. Also in this case, the above definition is useful
to provide a complete picture about the use of constraints for data mining.
Table 1 summarizes the main characteristics related to the different dimensions
of constraints proposed in this chapter. The two main dimensions are the mining
task and the kind of object where a constraint is applied. Furthermore, for each
of the pairs the phase and the type of constraints are presented.

4 Conclusions: Towards New Frontiers of Data Mining

In this chapter, we presented an overview about the use of constraints in data
mining. In particular, we have depicted a general multidimensional view for
driving the reader into the world of constrained data mining. This chapter
shows why the use of constraints is becoming an important and challenging task
for the data mining community, since it requires a radical re-design of existing
approaches in order to define and satisfy constraints during the whole knowledge
extraction process.

Table 1. Main characteristics of the different classes of constraints

Classification Clustering Pattern
Data phase: pre, mining | phase: mining phase: pre, min-
type: hard type: hard, soft |ing
type: hard
Model | phase: mining, post | phase: mining phase: mining
type: soft type: soft, hard | type: hard, soft
Measure | phase: mining, post | phase: mining phase: mining,
type: hard, soft type: hard post
type: hard

Data Mining and Constraints: An Overview 41

Even though one of the aims of this chapter is to provide an introduction
on the basic mining models and algorithms, it is worth stating that the basic
concepts introduced along this overview are still valid also for advanced data
mining analysis. We conclude this chapter considering the emerging phenomenon
of big data. The final aim is to provide a set of features related to managing real
data, in order to highlight that basic concepts introduced in the section of this
chapter are actually the building blocks for real complex mining applications.

Often, traditional data analysis tools and techniques cannot be used because
of the massive volume of data gathered by automated collection tools. The
amount of data in our world has been exploding. Science gathers data at an
ever-increasing rate across all scales and complexities of natural phenomena.
New high-throughput scientific instruments, telescopes, satellites, accelerators,
supercomputers, sensor networks and running simulations are generating massive
amounts of scientific data. Companies capture trillions of bytes of information
about their customers, suppliers, and operations. Smart sensing, including envi-
ronment sensing, emergency sensing, people-centric sensing, smart health care,
and new paradigms for communications, including email, mobile phone, social
networks, blogs, Voip, are creating and communicating huge volumes of data.
Sometimes, the non-traditional nature of the data implies that ordinary data
analysis techniques are not applicable.

In this perspective, the challenge is particularly tough: which data mining
tools are needed to master the complex dynamics of people in motion and con-
struct concise and useful abstractions out of large volumes of mobility data is,
by large, an unanswered question. Good news, hence, for researchers willing to
engage in a highly interdisciplinary, highly risky and highly promising area, with
a large potential impact on socially and economically relevant problems.

Big data requests a complete re-design of existing architectures and proposes
new challenges on data management, privacy, and scalability among the other.
Provide the appropriate analytical technology for distributed data mining and
machine learning for big data, and a solid statistical framework adapting stan-
dard statistical data generation and analysis models to big data: once again,
the sheer size and the complexity of big data call for novel analytical methods.
At the same time, the kind of measures provided by the data and the popula-
tion sample they describe cannot be easily modeled through standard statistical
frameworks, which therefore need to be extended to capture the way the data
are generated and collected.

The use of constrained-based tools, from the constraints programming to the
solver, is finally under analysis from the researcher community. In this perspec-
tive, we are sure that the approaches developed along this book, generated from
the experience inside the ICON project, not only represents a base for applying
constrained methods to data mining but they are a first step for integrating a
more versatile definition and formulation of mining approach as optimization
problems by using constraint programming tools also considering the emerging
phenomenon of big data.

42 V. Grossi et al.

References

[ABKS99)

[ABR64]

[AFGY02]

[AS94]

[ATJ+12]

[BBDOO]

[BBMO04a]

[BBMO4b)]

[BCCG12]

[BDWOS]

[Ber91]
[BFOS84]
(BGOG]

[BGOS]

[BGV92]

[BK03]

Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering
points to identify the clustering structure. In: Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, SIG-
MOD 1999, pp. 49-60. ACM, New York, NY, USA (1999)

Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations
of the potential function method in pattern recognition learning. Autom.
Remote Control 25, 821-837 (1964)

Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern min-
ing using a bitmap representation. In: Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 429-435 (2002)

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In:
Proceedings of 20th International Conference on Very Large Data Bases
(VLDB 1994), Santiago de Chile, Chile, 12-15 September, pp. 487-499
(1994)

Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K., Choi, H.-J.: Single-
pass incremental and interactive mining for weighted frequent patterns.
Expert Syst. Appl. 39(9), 7976-7994 (2012)

Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering.
Technical report, MSR-TR-2000-65, Microsoft Research (2000)

Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-
supervised clustering. In: Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD),
pp. 59-68 (2004)

Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric
learning in semi-supervised clustering. In: Proceedings of the Twenty-First
International Conference on Machine Learning, ICML 2004, p. 11. ACM,
New York (2004)

Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P.: Generalized association
rule mining with constraints. Inf. Sci. 194, 68-84 (2012)

Basu, S., Davidson, 1., Wagstaff, K.L.: Constrained Clustering: Advances
in Algorithms, Theory, and Applications. Chapman and Hall/CRC, Boca
Raton (2008)

Bertsekas, D.P.: Linear Network Optimization - Algorithms and Codes.
MIT Press, Cambridge (1991)

Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and
Regression Trees. Wadsworth International Group, Belmont (1984)
Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing
constraints. Data Min. Knowl. Discov. 13(3), 365-395 (2006)

Banerjee, A., Ghosh, J.: Clustering with balancing constraints. Con-
strained Clustering: Advances in Algorithms. Theory, and Applications,
pp. 171-200. Chapman and Hall/CRC, Boca Raton (2008)

Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Com-
putational Learning Theory, COLT 1992, pp. 144-152. ACM, New York
(1992)

Barbard, D., Kamath, C. (eds.): Proceedings of the Third STAM Interna-
tional Conference on Data Mining, 1-3 May 2003. SIAM, San Francisco
(2003)

[BMR97]
[Bur9g]
[BW95]

[CMB03]

[CTG12]

[CV95]

[Dav12]

[DBBOS]

[DDV13]

[DHT73)]

[DMMOS]

[DPY6]

[DRO5]

[DROG]

[DRO7]

[DROY]

Data Mining and Constraints: An Overview 43

Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving
and optimization. J. ACM 44(2), 201-236 (1997)

Burges, C.J.C.: A tutorial on support vector machines for pattern recog-
nition. Data Min. Knowl. Discov. 2(2), 121-167 (1998)

Bult, J.R., Wansbeek, T.J.: Optimal selection for direct mail. Mark. Sci.
14(4), 378-394 (1995)

Capelle, M., Masson, C., Boulicaut, J.F.: Mining frequent sequential pat-
terns under regular expressions: a highly adaptive strategy for pushing
constraints. In: Proceedings of the Third STAM International Conference
on Data Mining, pp. 316-320 (2003)

Chand, C., Thakkar, A., Ganatra, A.: Sequential pattern mining: survey
and current research challenges. Int. J. Soft Comput. Eng. (IJSCE) 2(1),
2231-2307 (2012)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273—
297 (1995)

Davidson, I.: Two approaches to understanding when constraints help clus-
tering. In: The 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 1312-1320 (2012)

Demiriz, A., Bennett, K.P., Bradley, P.S.: Using assignment constraints
to avoid empty clusters in k-means clustering. Constrained Clustering:
Advances in Algorithms. Theory, and Applications, pp. 201-220. Chapman
and Hall/CRC, Boca Raton (2008)

Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for con-
strained clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Zelezny,
F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419-434.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40994-3_27

Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley,
New York (1973)

Druck, G., Mann, G.S., McCallum, A.: Learning from labeled features
using generalized expectation criteria. In: Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 595-602 (2008)

Domingos, P., Pazzani, M.J.: Beyond independence: conditions for the
optimality of the simple Bayesian classifier. In: Proceedings of the 13th
International Conference on Machine Learning (ICML 1996), Bari, Italy,
pp. 148-156 (1996)

Davidson, 1., Ravi, S.S.: Clustering with constraints: feasibility issues and
the k-means algorithm. In: Proceedings of the STAM International Con-
ference on Data Mining (SDM) (2005)

Davidson, I., Ravi, S.S.: Identifying and generating easy sets of constraints
for clustering. In: Proceedings of the Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference (AAAI), pp. 336-341 (2006)

Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with
instance and cluster level constraints. Data Min. Knowl. Discov. 14(1),
25-61 (2007)

Davidson, 1., Ravi, S.S.: Using instance-level constraints in agglomerative
hierarchical clustering: theoretical and empirical results. Data Min. Knowl.
Discov. 18(2), 257-282 (2009)

http://dx.doi.org/10.1007/978-3-642-40994-3_27

44 V. Grossi et al.

[DWB06]

[EKSX96]

[EZ13]

[FHY5)

[GMN+15]

[GRS99)]
[GS11]
[GT12]

[HCXY07)
[HF99]
[HK12]

[HLN99]

[HPRZ02]

[HPY00]

[TWMO0]

[Jen96]

Davidson, 1., Wagstaff, K.L., Basu, S.: Measuring constraint-set util-
ity for partitional clustering algorithms. In: Firnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 115—
126. Springer, Heidelberg (2006). doi:10.1007/11871637_15

Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In:
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD), pp. 226-231 (1996)

Elloumi, M., Zomaya, A.Y.: Biological Knowledge Discovery Handbook:
Preprocessing, Mining and Postprocessing of Biological Data, 1st edn.
Wiley, New York (2013)

Yongjian, F., Han, J.: Meta-rule-guided mining of association rules in
relational databases. In: Proceedings of the Post-Conference Workshops
on Integration of Knowledge Discovery in Databases with Deductive and
Object-Oriented Databases (KDOOD/TDOOD), pp. 39-46 (1995)
Grossi, V., Monreale, A., Nanni, M., Pedreschi, D., Turini, F.: Clustering
formulation using constraint optimization. In: Bianculli, D., Calinescu,
R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 93-107. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-49224-6_9

Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern min-
ing with regular expression constraints. In: Proceedings of 25th Interna-
tional Conference on Very Large Data Bases (VLDB), pp. 223-234 (1999)
Grossi, V., Sperduti, A.: Kernel-based selective ensemble learning for
streams of trees. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, Barcelona, Cat-
alonia, Spain, 16-22 July 2011, pp. 1281-1287. IJCAI/AAAT (2011)
Grossi, V., Turini, F.: Stream mining: a novel architecture for ensemble-
based classification. Knowl. Inf. Syst. 30(2), 247-281 (2012)

Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current sta-
tus and future directions. Data Min. Knowl. Discov. 15(1), 55-86 (2007)
Han, J., Fu, Y.: Mining multiple-level association rules in large databases.
IEEE Trans. Knowl. Data Eng. 11(5), 798-805 (1999)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn.
Morgan Kaufmann, San Francisco (2012)

Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based multidimen-
sional data mining. IEEE Comput. 32(8), 46-50 (1999)

Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new app-
roach to multiclass classification. In: Proceedings of the 13th International
Conference Algorithmic Learning Theory (ALT), pp. 365-379 (2002)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate gen-
eration. In: Proceedings of the 2000 ACM SIGMOD International Confer-
ence on Management of Data, Dallas, Texas, USA, 16-18 May, pp. 1-12
(2000)

Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for min-
ing frequent substructures from graph data. In: Zighed, D.A., Komorowski,
J., Zytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13-23.
Springer, Heidelberg (2000). doi:10.1007/3-540-45372-5_2

Jensen, F.V.: An introduction to Bayesian networks. Springer, New York
(1996)

http://dx.doi.org/10.1007/11871637_15
http://dx.doi.org/10.1007/978-3-662-49224-6_9
http://dx.doi.org/10.1007/3-540-45372-5_2

Data Mining and Constraints: An Overview 45

[KKO08] Kumar, N., Kummamuru, K.: Semisupervised clustering with metric learn-
ing using relative comparisons. IEEE Trans. Knowl. Data Eng. 20(4),
496-503 (2008)

[KKA04] Kummamuru, K., Krishnapuram, R., Agrawal, R.: Learning spatially vari-
ant dissimilarity (SVaD) measures. In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 611-616 (2004)

[LLS00] Lin, T.S., Loh, W.Y., Shib, Y.S.: A comparison of prediction accuracy,
complexity, and training time of thirty-tree old and new classification algo-
rithms. Mach. Learn. 40(3), 203-228 (2000)

[LYCO08] Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for
discovering high utility itemsets. Data Knowl. Eng. 64(1), 198217 (2008)

[MAR96] Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for
data mining. In: Proceedings of 5th International Conference on Extending