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ABSTRACT 

 

A machine learning technique was used to predict static, failure envelopes of 

unidirectional composite laminas under combined normal (longitudinal or transverse) 

and shear loading at different biaxial ratios. An artificial neural network was chosen for 

this purpose due to their superior computational efficiency and ability to handle 

nonlinear relationships between inputs and outputs. Training and test data for the neural 

network were taken from the experimental composite failure data for glass- and carbon-

fiber reinforced epoxies provided by the world-wide failure exercise (WWFE) program. 

A quadratic, stress interactive Tsai-Wu failure theory was calibrated based on the 

reported strength values, as well as optimized from the experimental failure data points. 

The prediction made by the neural network was compared against the Tsai-Wu failure 

criterion predictions and it was observed that the trained neural network provides a 

better representation of the experimental data.    
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INTRODUCTION   

 

Composite materials are in widespread use due to their superior mechanical 

properties in conjunction with their ability in providing properties tailored to a 

specific application. Despite all the advantages associated with composite materials, 

prediction of their failure has still remained a challenge due to the presence of several 

failure modes associated with mechanically dissimilar constituents. Numerous 

composite failure criteria have been proposed in the past several decades to address 

this problem [1-10]. However, in practice, the innermost failure surface in each 

quarter is selected. Such conservative approach hinders the utilization of composite 

materials to their full potentials. Despite extensive research efforts devoted in 

developing an accurate failure criterion, there is no consensus over a particular failure 

theory. The designers of worldwide failure exercise (WWFE) [11, 12] asked 

developers of recognized failure criteria to benchmark the failure of laminas and 

laminates under multiaxial loading. The comparison was carried out through 14 

carefully selected test cases which included biaxial failure envelopes for six different 

unidirectional and multidirectional laminates and stress-strain curves for a range of 

multi-directional laminates loaded under uniaxial or biaxial conditions. After careful 

evaluation of each failure criterion, the organizers of WWFE concluded that, “It is 

clear from the results already that the area of damage prediction remains very 

challenging. A lack of consensus exists in terms of how damage is developed in 

various laminates and how changes in geometry and lay-up sequence affect the 

development of cracks, delamination and ultimate failure.”[13]   

Failure criteria are based on fitting analytical function to experimental data. Such 

approaches impose some limitations such that failure surface must be continuous, 

convex, and simply connected. An alternative approach is to learn from failure examples 

and learn the pattern using data mining techniques such as machine learning. In this 

regard, multilayer neural networks (NNs) are an elegant and computationally efficient 

method of solving different complex scientific and engineering problems. Multilayer 

NNs are employed in arbitrary classification problems and unlike other machine 

learning techniques such as k-nearest neighbor, can handle any type of nonlinear models 

for which analytical approach is difficult to achieve. Such networks with at least one 

hidden layer can handle any arbitrary decision boundary, i.e., the decision boundary 

does not have to be convex and simply-connected. NNs have topological structure of 

different layers, which have multiple units working in parallel. These multilayer NNs 

can learn the relationships between the input properties and output results and predict 

the outcome for any given inputs. In structural applications, neural networks link the 

input variables to structural response using a series of activation functions. NNs can be 

trained using the backpropagation (BP) algorithm to learn the weights between different 

units of the NN. Once the NN has been trained, it can be used to solve similar problems 

without adding much computational costs.        

Artificial Neural Networks (ANNs) have been employed to determine mechanical 

properties and failure analysis of composite materials [14-21]. NNs offer several 

advantages over the traditional finite element approach in structural design, such as 

computational efficiency for large number of inputs, ease of performing parametric 

study on the effect of inputs on the outcome, obtaining nonlinear mechanical behavior 

with relative effortlessness etc. Neural networks have also been used effectively in 

reliability predictions [22-24] as a large number of analysis is required. Neural network 



based reliability analyses were compared with first-order reliability method (FORM) 

and Monte Carlo simulations (MCS) [25, 26]. Owing to computational efficiency of 

neural networks, parameter studies can be easily conducted. In the following, a 

summary of the use of machine learning techniques on composite analysis is provided.    

Al Assadi et al. [27] used ANN to predict the fatigue life of composite materials. 

They evaluated the performance of an ANN on a lamina under a loading condition 

different from the ones it was trained on. They investigated the effect of stress ratio, 

max

min

R



= . Their approach enables the design of a smart material database that can be 

used for different applications. They investigated the influence of the number of hidden 

units on the error and observed that seven hidden units yield the best results. They also 

observed that backpropagation technique yields the best fatigue life prediction 

independent of the material type or the network architecture.  

Fiber pull out in SiC-SiC composite were modeled using finite element analysis 

(FEA) and ANN by Bheemreddy et al. [14]. Finite element results were used to train 

the NN. Interphase toughness, friction coefficient, specimen thickness, residual axial 

stress, and residual normal stress were considered as inputs of the NN and the load vs. 

displacement curve was obtained as an output. Based on their developed NN, the authors 

conducted a parametric study on the effect of each input on output results.  

ANNs have also been used in the reliability analysis of steel structures. Monte 

Carlo simulations (MCS) are typically used for training such ANNs. For a thorough 

review on the application of ANN in reliability analysis of steel structures see [28]. 

Elhewy et al. [22] evaluated the computational efficiency and accuracy of ANNs in 

reliability analysis of structures compared to FORM and MCS using four structural 

examples. They demonstrated the efficiency of ANN work for the case with large 

number of input units.  

Fan et al. [16] employed the NN approach to predict the tensile strength of open-

hole composite plates. Their models take the layup information, geometric 

parameters and the applied tensile stress as inputs and returns the safety status as 

output. They verified their results with experimental data. NN has also been used in 

analysis of high velocity impact on carbon fiber reinforced polymers [15]. The 

occurrence of perforation of the laminate, the residual velocity, and the trajectory 

path and damage propagation were investigated as the output of the network.  

Lee et al. [18] investigated the strength of carbon/epoxy composite tubes under 

biaxial loading conditions using neural networks. They used the error back 

propagation algorithm for learning. The results from the ANN were compared with 

Tsai-Wu and a combined optimized tensor polynomial failure theory. The authors 

concluded that the ANN has the smallest RMSE compared to the other two 

approaches. They evaluated the performance of several different architecture and 

concluded that two hidden layers each with five units will return the least RMS. Their 

investigation also showed that increasing the number of epoch decreases the RMS 

error.  

Jiang [17] used NN for prediction of wear and mechanical properties of 

polyamide reinforced with short fibers. Two different sets of experimental data were 

used to train their ANN. Lopes et al. [23] performed reliability analysis of composite 

laminates with random loads and material properties. They used two different types 

of NN, the Multilayer Perceptron Network and the Radial Bias Network. The 

accuracy and the computational efficiently were compared with FE MC simulations. 



Their results show that large reduction in processing time can be achieved for low 

failure probability compared to FEA. Malik and Arif [20] used ANN to predict the 

behavior of composite plates against low velocity impact.  

In this paper, failure of unidirectional composite laminas under biaxial loading are 

determined by neural network analysis. World-Wide Failure Exercise (WWFE) data 

was used to train and test the neural network with. The predictions made by the ANN 

was compared to predictions made by the Tsai-Wu failure criterion and the experimental 

data.        
 

 

THEORETICAL MODELING 

 

Neural Networks 

  

Neural network consists of three or more layers. The input layer contains several 

units each corresponding to an input of the problem, an output layer results in the 

ultimate classification decision, and one or more hidden layers named as such due to 

the fact that the output of such layer is not observed. Each layer has different number 

of units. The number of input units is determined by the dimensionality of the input 

vector, the number of output unit is the number of categories; however, the number 

of hidden units can vary. Neural network is based on mapping the incoming input 

vectors to a new space with nonlinear functions. Such mapping is implemented by 

implementation of weights. In NN, weights are learned during training. For the 

supervised learning, a certain output is expected, therefore an error can be determined 

as the difference between the actual and desired output. A neural network has two 

modes of operation - (i) the backpropagation mode for training the network by 

adjusting the weights associated to each unit and, (ii) the feedforward mode for 

classification of the test data. In backpropagation process, for each input feature 

vector, the error is determined and fed to the network to adjust the weights using the 

gradient descent method.  

The performance of neural networks heavily depends on the network 

architecture (number of hidden layers and units), however, defining the best structure 

is a challenging task. A large number of hidden units may result in overtraining the 

network and too few units yield poor performance. The design of the NN should be 

such that a balance is struck between the optimum amount of learning and 

generalization towards the test data. A large number of hidden units may result in 

overtraining the network and too few hidden units yield poor performance. While the 

number of hidden units can vary from two to infinity, depending on the problem, 

there might exist an optimum number of hidden units. To that end, nature-based or 

mathematical optimizations are commonly used to determine the most efficient 

architecture. Nature based optimization includes, but not limited to genetic algorithm, 

particle swarm optimization, bee colony algorithm and differential evolution [29]. 

For simple architectures, trial and error can also be used to evaluate the best 

performance. As a rule of thumb, the number of hidden units should be assigned such 

that the number of weights would be around one-tenths of the number of training data 

points. However, weight decay technique (also referred to as pruning) can be used to 

optimize the network. This technique is based on removing the units (neurons) from 

the network during training by identifying the weights that have very small values.  



 

 

The units connected to such weights are removed from the network [30]. Figure 1 

summarizes the overall architecture of NN depicting the three layers with the 

corresponding units.  

A multilayer neural network similar to the one presented in Figure 1 was designed 

in this study to predict biaxial failure envelope of unidirectional composite laminas. The  

first World-Wide Failure Exercise (WWFE I) generated high-quality failure data for 

both glass- and carbon-fiber composites over complex loading scenarios [11]. Data from 

this exercise were utilized to both train and then test the NN. A portion of this data were 

used to train a multilayered neural network (MNN) to classify failure in a supervised 

learning environment. Once the network was trained, the rest of the WWFE data were 

used as test data to determine the accuracy of the NN. Performance of the neural network 

was benchmarked against both experimental data and analytical failure theories such as 

the Tsai-Wu failure criterion.         

 

Failure Criteria  

 

Failure surfaces are usually plotted for different stress states. Failure envelope is 

the region of safe operation for a structure - inside the boundaries of the envelope the 

structure is considered safe and stress-state lying on the boundary or beyond indicates 

failure. A fiber-reinforced composite consists of mechanically very dissimilar materials: 

stiff elastic brittle fibers and a compliant yielding matrix. As a result, failure occurs in 

different modes: fibers may fail by rupture in tension and buckle in compression, while 

the matrix may fail due to loads transverse to the fibers. Tsai and Wu [10] proposed a 

general quadratic interaction failure criterion. Interactive failure criteria include terms 
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Figure 1. Schematic of the 2-10-1 multilayer neural network  
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to account for the interaction between the stress components. Since a failure criterion 

should not depend on the choice of the coordinate directions, therefore, it should at most 

be a function of the stress invariants. The Tsai-Wu failure criterion is based on an 

invariant formulation and is given as 

 

 1i i ij jF F + =   (1) 

 

where iF  and  ijF  are experimentally determined strength tensors and contracted 

tensor notation is used 
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One important feature of the above strength criteria is the following. The magnitude 

of interaction terms is constrained by the following inequality [10]  

 

 2 0ii jj ijF F F−    (2) 

 

where repeated indices are not summations for this equation; and , 1,2,...,6i j = . iiF  is 

simply one of the diagonal terms. To be physically meaningful, all diagonal terms must 

be positive; the off-diagonal of interaction terms may be positive or negative depending 

on the nature of the interaction, however, their magnitudes are constrained by the 

inequality in Eq. (2).     

 

For a plane stress condition, 13 23 33 0  = = =  and the Tsai-Wu failure criterion 

for a transversely isotropic composites takes the following form  

 

 2 2 2

1 11 2 22 11 11 22 22 66 12 12 11 222 1F F F F F F      + + + + + =   (3) 

 

where the parameters iF  and ijF  are related to the uniaxial strengths by 
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TX  and CX  are uniaxial tensile and compressive strengths in fiber direction, TY  and 

CY  are transverse to the fiber tensile and compressive strengths, and S  is the shear 

strength in the plane of the lamina. These values are measured experimentally and are 

reported in Table 1. To ensure that the failure surface is closed, according to Eq. (2), the 

following constraint is place upon the parameter 12F   

 

 11 22 12 0F F F−    (5) 

      

Eqs. (3)-(4) and inequality (5) produce a failure envelope that has the shape of an 

ellipsoid. 

The functional form of Eq. (3) was used in our machine learning technique to 

predict failure of a unidirectional composite lamina. The rationale behind choosing this 

specific failure criterion are as follows: (i) it is a quadratic failure criterion, i.e., it 

considers the interaction between stresses, and (ii) it is widely used in the literature.   

  

 

RESULTS   

 

Source of Experimental Data: WWFE    

  

Since failure prediction of heterogeneous composites is more complex than 

predicting the failure of isotropic materials, it is computationally more intensive. To this 

end, a multilayer neural network (MNN) can play a vital role to reduce the 

computational burden. In this analysis, we designed an MNN to predict failure 

envelopes of unidirectional fiber-reinforced epoxy matrix composite laminas. The NN 

was trained and tested with experimental composite failure dataset provided in the 

World-Wide Failure Exercise (WWFE) program. Hinton, Kaddour, and Soden [11, 12] 

envisioned and completed the first part of the WWFE program in 2004, the main 

objective of which was to benchmark recognized failure criteria under 2D, in-plane 

loading conditions. In WWFE, six different types of laminate configurations were 

analyzed under a variety of loading conditions. Out of the six configurations tested in 

the WWFE, the first one was a 0º unidirectional lamina and the rest were different 

multidirectional laminates. Accurate prediction of 0º unidirectional lamina failure is 

crucial, since many failure theories are based on the behavior of a single lamina and 

laminate failure is treated as a progressive event of lamina failures. In this regard, Soden 

et al. states, “Before proceeding to analyze the behaviour of laminates, participants were 

first asked to predict failure envelopes for unidirectional laminae under biaxial loads. 

The objective was to demonstrate and compare the assumptions and predictions at this 

basic level which will presumably be reflected in the accuracy of more complex laminate 

predictions.” [31]. In this work, failure envelopes of 0º unidirectional laminas were 

developed using an MNN. This will serve as the baseline for laminate failure analysis, 

which will be analyzed in future.  

Two widely used classes of fibers, namely carbon and E-glass and a class of 

thermosetting polymer matrix epoxy were utilized in the WWFE program and various 

properties of these composite systems as required by failure criteria were reported. In 

Table I, the elastic and strength properties of two laminas consisting of the aforesaid 



constituents are given. The strength properties were used to calibrate the Tsai-Wu failure 

criterion.           

  

 

 

 
TABLE I. LAMINA ELASTIC AND STRENGTH PROPERTIES [31] 

 

  T300/BSL914C E-glass/LY556 

Fiber Type T300 E-glass 21xK43 Gevetex 

Matrix BSL914C epoxy LY556/HT907/DY063 epoxy 

Fiber Volume Fraction, Vf 0.620 0.600 

Longitudinal Modulus, E1 (GPa) 138.000 53.480 

Transverse Modulus, E2 (GPa) 11.000 17.700 

Transverse Modulus, E3 (GPa) 11.000 17.700 

In-plane Shear Modulus, G12 

(GPa) 
5.500 5.830 

In-plane Shear Modulus, G13 

(GPa) 
5.500 5.830 

Out-of-plane Shear Modulus, G23 

(GPa) 
3.929 6.321 

Major Poisson’s Ratio, nu12 0.280 0.278 

Major Poisson’s Ratio, nu13 0.280 0.278 

Thru-thickness Poisson’s Ratio, 

nu23 
0.400 0.400 

Longitudinal Tensile Strength, XT 

(MPa) 
1500.000 1140.000 

Longitudinal Compressive 

Strength, XC (MPa) 
900.000 570.000 

Transverse Tensile Strength, YT 

(MPa) 
27.000 35.000 

Transverse Tensile Strength, YC 

(MPa) 
200.000 114.000 

In-plane Shear Strength, S12 (MPa) 80.000 72.000 

 

  

   

To train, validate, and test the NN, biaxial failure data for two test cases of the two 

laminas reported in Table I were utilized. The first test case was the biaxial failure stress 

envelope for 0º unidirectional E-glass/LY556 lamina under transverse and shear loading 

( 2  and 12 ). Composite tubes were tested under a combination of torsion and axial 

tension/compression at different biaxial ratios (applied normal stress by shear stress) 

and the biaxial data is reported in Figure 2. Observing the experimental data points, it 



can be noticed that in the first quadrant, the transverse tensile failure stress decreased 

due to the application of shear stress and vice versa. It can be further noticed that in the 

second quadrant, at low biaxial ratios, the shear strength increased above the uniaxial 

value due to the application of moderate compressive transverse stress and at high 

biaxial ratios, the shear strength decreased. The second test case was the biaxial failure 

stress envelope for 0º unidirectional T300/914C carbon/epoxy lamina under 

longitudinal and shear loading ( 1  and 12 ). The composite tube specimens were tested 

under axial tension/compression and torsion at different biaxial ratios. The results are 

presented in Figure 3. The experimental results showed that in the first quadrant, at high 

biaxial ratios, the axial tensile failure stress decreased due to the application of shear 

stress; while at low biaxial ratios, the shear strength increased slightly with application 

of axial tensile stress. In the second quadrant of the stress failure envelope, application 

of longitudinal compressive stress appears to reduce the shear strength of the specimens 

than the uniaxial strength value. With these observations from experimental results in 

mind, let’s move forward to the prediction results of the Tsai-Wu failure criterion.    

 

 

  
 

Figure 2: Biaxial failure stress envelope for 0º unidirectional E-glass/LY556 lamina under transverse and 

shear loading ( 2  and 12 ): comparison between experimental data, Tsai-Wu failure criterion, and neural 

network predictions.  



Tsai-Wu and Optimized Tsai-Wu Failure Criterion Results     

 

In this study, two methods were used to obtain the strength parameters required by 

the Tsai-Wu failure criterion. In the first method, Eq. (4) was used to calculate the 

strength parameters. In the second method, an optimization algorithm was used to 

calculate the strength parameters based on the experimental data points of Figure 2 and 

Figure 3 to minimize the root mean squared (RMS) error between the experimental data 

points and the Tsai-Wu failure criterion predictions. The optimization of the fitting 

parameters is based on the Nelder-Mead simplex algorithm for function minimization 

[32] and implemented using R. Both set of parameters are reported in Table II. Based 

on these two sets of parameters, in Figure 2 and Figure 3, Tsai-Wu and optimized Tsai-

Wu failure envelopes are presented. It can be noticed that the optimized parameters 

provide a better fit to the experimental data points than the analytically derived failure 

criterion.       

   

 

 

 

 

 

 
 

Figure 3: Biaxial failure stress envelope for 0º unidirectional T300/914C carbon/epoxy lamina under 

transverse and shear loading ( 1  and 12 ): comparison between experimental data, Tsai-Wu failure 

criterion, and neural network predictions.     

  

 

 



 
TABLE II. STRENGTH PARAMETERS FOR TSAI-WU FAILURE CRITERION  

   Experimental 
Optimized 

 

 F2 0.01979949 0.01921109 

E-glass/LY556 lamina  F22 2.50626566e-04 0.000192046 

 F66 1.92901234e-04 0.000219708 

 F2  -4.44444444e-04 -0.0004745652 

T300/914C 

carbon/epoxy lamina 
F22 7.40744074e-07 7.601049e-07 

 F66 1.56250000e-04 6.902896e-05 

 

 

 

Artificial Neural Network Results     

 

 An ANN was designed to predict the continuous biaxial failure envelopes of the 0º 

unidirectional composite laminas based on the experimental failure data points. A short 

description of the design process is given here. The dimension of the input feature vector 

is 1 – longitudinal stress, 1  or 2  and the dimension of the target output vector is also 

1 – in-plane shear stress, 12 . The designed NN was a function fitting shallow neural 

network, implemented using the neural network toolbox of Matlab. The number of 

hidden/intermediate units was chosen to be 5 neurons in 2 units, as it minimizes the 

RMS error. The topology of this particular NN is then 1-5-5-1 and the schematic of the 

NN is presented in Figure 1.    

 Training data points on the failure surface of the composite plies were gathered from 

the experimental data points reported in Figure 2 and Figure 3. The NN was trained to 

predict the failure boundary by adjusting the weights between units during the training 

phase using the backpropagation algorithm. Out of the experimental data points 

provided in the WWFE program, 70% of that data was used for training, 15% of the 

data was used as validation data set to determine when to stop training, and 15% of the 

data was used to test the NN in feedforward operation. The results from this analysis are 

presented in Figure 2 and Figure 3. It can be observed that the NN prediction for the 

failure envelopes fit the experimental data points better than the Tsai-Wu failure criteria 

predictions. This is due to the fact that the NN produces higher-order relationship 

between the neurons to fit the experimental data points. It can also be noticed that the 

failure envelope predicted by the ANN is not a symmetric, convex region unlike the 

tensor polynomial based failure criteria predictions.   

 

 

CONCLUSIONS 

  

Neural Network for classification of data was summarized and its application in 

failure and reliability analysis of composite materials were reviewed. Recent research 

shows that NN can be used as an alternative for traditional approaches for the design 



and reliability analyses of composite materials especially when large number of 

inputs are involved. A neural network was designed in this work to predict the failure 

surface of biaxially loaded unidirectional composite laminas. Experimental results 

required to train and test the neural network was taken from the WWFE database. 

From the experimental data, it was observed that interaction between normal and 

shear stresses exist. Quadratic, stress-interactive Tsai-Wu failure theory was used to 

predict the failure strength of the coupons and it was observed that parameters 

calculated via an optimization algorithm produce better results than parameters 

calibrated from experimental strengths. An 1-5-5-1 neural network was designed to 

predict the failure envelopes from a machine learning standpoint and it was observed 

that the RMS error for the NN predicted failure surface is lower than the tensor 

polynomial Tsai-Wu failure theory. Failure of composite laminates based on a neural 

network trained on unidirectional lamina failure data is planned as a future 

development. Development of analytical methods (i.e., failure theories) of predicting 

composite failure is still an active area of research, and machine learning techniques 

such as neural networks can be employed as an efficient and handy tool to provide 

insight into that process.        
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