
Journal of Machine Learning Research 22 (2021) 1-7 Submitted 3/21; Revised 6/21; Published 6/21

mlr3pipelines – Flexible Machine Learning Pipelines in R

Martin Binder1 martin.binder@stat.uni-muenchen.de
Florian Pfisterer1 florian.pfisterer@stat.uni-muenchen.de
Michel Lang1 michel.lang@stat.uni-muenchen.de
Lennart Schneider1 lennart.schneider@stat.uni-muenchen.de
Lars Kotthoff2 larsko@uwyo.edu
Bernd Bischl1 bernd.bischl@stat.uni-muenchen.de

1 Department of Statistics, LMU Munich, Germany
2 Department of Computer Science, University of Wyoming, USA

Editor: Alexandre Gramfort

Abstract

Recent years have seen a proliferation of ML frameworks. Such systems make ML accessible
to non-experts, especially when combined with powerful parameter tuning and AutoML
techniques. Modern, applied ML extends beyond direct learning on clean data, however,
and needs an expressive language for the construction of complex ML workflows beyond
simple pre- and post-processing. We present mlr3pipelines, an R framework which can be
used to define linear and complex non-linear ML workflows as directed acyclic graphs. The
framework is part of the mlr3 ecosystem, leveraging convenient resampling, benchmarking,
and tuning components.

Keywords: machine learning pipelines, preprocessing, automated machine learning

1. Introduction

As one of the most popular and widely-used software systems for statistics and ML, R (R
Core Team, 2020) has several packages that provide a standardized interface for predictive
modeling, such as caret (Kuhn, 2008), tidymodels (Kuhn and Wickham, 2020b), mlr

(Bischl et al., 2016), and its successor mlr3 (Lang et al., 2019). But real-world applications
often require complex combinations of ML (pre-) processing steps, which can be expressed
as a directed acyclic graph (DAG); we will call such graphs ML pipelines or ML workflows.
Specifying such a workflow in an ML system without direct support requires error-prone
glue code to combine the individual pieces. One particular difficulty is that (in ML) each
pipeline operation is not a stateless function application, but consists of a train and predict
stage, where the former not only transforms its inputs into an output, but also learns an
internal parameter state, which the latter relies on.1 mlr3pipelines provides a domain-
specific language which allows building ML pipelines from individual processing operations
(PipeOps, also see Figure 1). It ships with a large collection of such operations and allows
their custom extension through user-defined operations.

1. This implies that the pipeline idiom in mlr3pipelines is quite different compared to magrittr, dplyr,
and tidymodels.

©2021 Martin Binder, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0281.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/21-0281.html

Binder, Pfisterer, Lang, Schneider, Kotthoff, and Bischl

Figure 1: Train and predict steps for a short linear pipeline. Trained PipeOps carry state /
parameters (factors and the fitted model) that can be applied to test data.

2. Related Work

By far, the most widely-used implementation of ML pipelines is Python scikit-learn’s
(Pedregosa et al., 2011) pipeline module (Buitinck et al., 2013). Unlike our software,
scikit-learn supports only linear pipelines directly, although complex pipelines can be
expressed through a wrapper mechanism. Several extensions such as baikal (Tineo, 2019)
and neuraxle (Chevalier et al., 2019) extend scikit-learn’s pipelining via a graph-based API
similar to ours. tidymodels provides the recipes R package (Kuhn and Wickham, 2020a)
for building linear preprocessing pipelines with limited flexibility and the workflows package
(Vaughan, 2020) for combining these with models into pipelines. The mlr extension mlrCPO

(Binder, 2021) also focuses on linear pipelines and has limited support for more complex
structures. Industry is increasingly providing systems that support ML pipelines, e.g.,
Microsoft’s ml.net (Ahmed et al., 2019) for C# and H2O (H2O.ai, 2021) with bindings
for Python and R. The d3m software (Milutinovic et al., 2017) was developed as part of
DARPA’s Data Driven Discovery of Models program (Shen, 2018) and includes a pipeline
system to combine ML primitives, again without the full flexibility of mlr3pipelines. The
DAGs in mlr3pipelines go beyond simple combinations of preprocessing and ML models.
They support ensemble models and conditional branching that can be represented explicitly
as part of the graph structure. Existing pipelining frameworks are often limited to passing
training or prediction data objects through the pipeline, while mlr3pipelines allows for
passing arbitrary objects. Some operators, for example, pass on functions, which are then
used to influence the behavior of operators later in the graph.

3. Design, Functionality, and Examples

mlr3pipelines represents ML workflows as Graph objects: DAGs, whose vertices are
PipeOps, which represent arbitrary ML processing operations. The pipeline can either
be called to train or predict. Inputs and intermediate objects, most commonly data, move
along the DAG’s edges. When they pass through a vertex, they are processed by the cor-

2

mlr3pipelines – Flexible Machine Learning Pipelines in R

factor_xgboost = po("encode") %>>%

lrn("classif.xgboost")

pipe = ppl("branch", list(

xgboost = factor_xgboost,

ranger = lrn("classif.ranger")

))

Listing 1 (left) and Figure 2 (right): Example of a branching pipeline. LHS: The %>>%

operator builds a linear partial graph. The “ppl branch” template constructs
two alternative paths xgboost and ranger, where the latter does not require factor
encoding. A new hyperparameter controls the path through which the data will
flow. RHS: The pipeline can be plotted with pipe$plot(html = TRUE).

responding PipeOp, and, depending on the call, are either transformed by its train() or
predict() method, where the former also creates the operator’s internal state.

This ensures that no information leakage from test data occurs, which is required for the
evaluation of predictive systems (Bischl et al., 2012). mlr3pipelines and the mlr3 ecosys-
tem are integrated with each other, so that mlr3’s Learners can be used as PipeOps and
Graphs adhere to the same interface as mlr3 learners and can be, for example, resampled and
tuned just like any other Learner. This also enables effortless parallelization of these opera-
tions for pipelines. mlr3pipelines provides the %>>% operator, which concatenates Graphs
(or PipeOps) into larger Graphs. Templates for more complex but frequently used graph pat-
terns are provided through the ppl() lookup function. Outputs from different nodes can be
combined in non-trivial ways, for example, joining features created by different preprocessing
steps, to create non-linear structures. Other examples include alternative path branching
(one of several flows is executed, depending on a hyperparameter), ensembling (predictions
from different PipeOps are averaged), and stacking (predictions from different PipeOps are
combined in another PipeOp, usually a Learner, to produce a final prediction). Listing 1
shows an example of branching for model and preprocessing selection. Many more examples
can be found at https://mlr3gallery.mlr-org.com/#category:mlr3pipelines.

Figure 3 shows examples of complex pipeline components. Some of these are already
used in other packages in the mlr3 ecosystem, e.g., mlr3proba (Sonabend et al., 2021) uses
the pipeline in Figure 3(i). Users can easily implement their own PipeOps and define their
exposed hyperparameters, by inheriting from the PipeOp class to, for example, implement
custom feature extraction and processing.

4. Hyperparameter Tuning and AutoML

Each Graph exposes the hyperparameters of its constituent PipeOps for joint tuning via
any of the automated tuning methods in mlr3. Simple tuners such as grid and random
search, as well as advanced black-box optimizers like Bayesian Optimization (Snoek et al.,
2012) and Hyperband (Li et al., 2018) are available through mlr3tuning. Building upon the
branching principle of Listing 1, this allows to build entire AutoML systems by combining

3

https://mlr3gallery.mlr-org.com/#category:mlr3pipelines

Binder, Pfisterer, Lang, Schneider, Kotthoff, and Bischl

Imputation

Factor
Encoding

Imbalancy
Correction

Copy

New target:
y > 0

CV Learner

Union

Copy

Convert
Regression Task

CV Learner

Thresholds

Copy

Target 1

CV Learner

Target 2

CV Learner

Union

Union

CV
Learner

CV
Learner

Copy

CV
Learner

Union

a) Preprocessing b) Zero-Inflated Models d) Ordinal f) Chained
Multi-Output

g) Stacking

Copy

Linear
Predictor

Baseline
Distr.

DistrCompose

i) Distribution Comp.

New target:
y==k

MulticlassToBinary

New target:
y==0

h) One-vs-All

Learner Learner

BinaryToMultiClass

Learner

Copy

...

Branch

PCA ICA

Unbranch

e) Branching

Scale-trafo y

Learner

Trafo-Invert

c) Target Trafo

Figure 3: Example pipelines constructed from simple building blocks: (a) typical pre-
processing pipeline, (b) zero-inflated data (Zuur et al., 2009), (c) target trans-
formations (scaling to [0, 1]) before a model and back afterward, (d) ordinal re-
gression through thresholding, (e) alternative path branching between different
options, (f) chaining (Read et al., 2011), (g) stacking (Wolpert, 1992), (h) multi-
class classification through ensembling of multiple class-vs-rest binary classifiers,
(i) estimation of survival distributions and continuous risk rankings from linear
predictors through composition (Sonabend et al., 2021).

multiple learners and preprocessing options. Jointly tuning the selection of these steps with
their (subordinate) hyperparameters yields a single pipeline, tailored for a specific task.

5. Availability, Documentation, Code Quality Control

All packages of the mlr3 ecosystem are released under LGPL-3 on GitHub (https://
github.com/mlr-org) and on CRAN. Package documentation is available at https://

mlr3pipelines.mlr-org.com and in the (work-in-progress) mlr3 book (https://mlr3book.
mlr-org.com), with examples in the mlr3 gallery (https://mlr3gallery.mlr-org.com).
An extensive suite of unit tests is run on each change via a continuous integration system.

6. Outlook

mlr3pipelines is complete and ready for production use. Our focus for future improve-
ments is better integration of automated ML and deep learning (through mlr3keras and
mlr3torch), and leveraging parallel processing specifically for pipelines.

Acknowledgments

This work has been funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. LK is supported by NSF grant #1813537.

4

http://www.gnu.org/licenses/lgpl-3.0.html
https://github.com/mlr-org
https://github.com/mlr-org
https://cran.r-project.org/
https://mlr3pipelines.mlr-org.com
https://mlr3pipelines.mlr-org.com
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com
https://mlr3gallery.mlr-org.com

mlr3pipelines – Flexible Machine Learning Pipelines in R

References

Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng Chin, Yael
Dekel, Xavier Dupre, Vadim Eksarevskiy, Senja Filipi, Tom Finley, Abhishek Goswami,
Monte Hoover, Scott Inglis, Matteo Interlandi, Najeeb Kazmi, Gleb Krivosheev, Pete
Luferenko, Ivan Matantsev, Sergiy Matusevych, Shahab Moradi, Gani Nazirov, Justin
Ormont, Gal Oshri, Artidoro Pagnoni, Jignesh Parmar, Prabhat Roy, Mohammad Zee-
shan Siddiqui, Markus Weimer, Shauheen Zahirazami, and Yiwen Zhu. Machine learning
at Microsoft with ML.NET. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2448–2458, 2019.

Martin Binder. mlrCPO: Composable Preprocessing Operators and Pipelines for Machine
Learning, 2021. URL https://CRAN.R-project.org/package=mlrCPO. R package ver-
sion 0.3.7-2.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Claus Weihs. Resampling methods for
meta-model validation with recommendations for evolutionary computation. Evolutionary
Computation, 20(2):249–275, 2012.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,
Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning in R. Journal of
Machine Learning Research, 17(170):1–5, 2016. URL http://jmlr.org/papers/v17/

15-066.html.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design
for machine learning software: Experiences from the scikit-learn project. In European
Conference on Machine Learning and Principles and Practices of Knowledge Discovery
in Databases, 2013.

Guillaume Chevalier, Alexandre Brillant, and Éric Hamel. Neuraxle - a Python framework
for neat machine learning pipelines, 09 2019. URL https://github.com/Neuraxio/

Neuraxle.

H2O.ai. h2o software, 10 2021. URL https://github.com/h2oai/h2o-3. H2O version
3.32.1.3.

Max Kuhn. Building predictive models in R using the caret package. Journal of Statistical
Software, 28(5):1–26, 2008.

Max Kuhn and Hadley Wickham. recipes: Preprocessing tools to create design matri-
ces, 2020a. URL https://CRAN.R-project.org/package=recipes. R package version
0.1.16.

Max Kuhn and Hadley Wickham. Tidymodels: A collection of packages for modeling and
machine learning using tidyverse principles., 2020b. URL https://www.tidymodels.

org.

5

https://CRAN.R-project.org/package=mlrCPO
http://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v17/15-066.html
https://github.com/Neuraxio/Neuraxle
https://github.com/Neuraxio/Neuraxle
https://github.com/h2oai/h2o-3
https://CRAN.R-project.org/package=recipes
https://www.tidymodels.org
https://www.tidymodels.org

Binder, Pfisterer, Lang, Schneider, Kotthoff, and Bischl

Michel Lang, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors,
Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. mlr3: A modern object-
oriented machine learning framework in R. Journal of Open Source Software, 4(44):1903,
2019.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of
Machine Learning Research, 18(185):1–52, 2018. URL http://jmlr.org/papers/v18/

16-558.html.

Mitar Milutinovic, Atılım Güneş Baydin, Robert Zinkov, William Harvey, Dawn Song,
Frank Wood, and Wade Shen. End-to-end training of differentiable pipelines across ma-
chine learning frameworks. In 31st Conference on Neural Information Processing Systems
(NIPS 2017), 2017.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12(85):2825–2830, 2011. URL http://jmlr.

org/papers/v12/pedregosa11a.html.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for
multi-label classification. Machine Learning, 85(3):333, 2011.

Wade Shen. Darpa’s data driven discovery of models (D3M) and software defined hardware
(SDH) programs. In D. Chen, H. Homayoun, and B. Taskin, editors, Proceedings of
the 2018 on Great Lakes Symposium on VLSI, GLSVLSI 2018, Chicago, IL, USA, May
23-25, 2018, page 1. ACM, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of
machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2951–
2959. Curran Associates, Inc., 2012.

Raphael Sonabend, Franz J. Király, Andreas Bender, Bernd Bischl, and Michel Lang.
mlr3proba: An R package for machine learning in survival analysis. Bioinformatics,
02 2021.

Alejandro Gonzalez Tineo. baikal, 2019. URL https://github.com/alegonz/baikal.

Davis Vaughan. workflows: Modeling Workflows, 2020. URL https://CRAN.R-project.

org/package=recipes. R package version 0.2.1.

David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

6

http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.R-project.org/
https://github.com/alegonz/baikal
https://CRAN.R-project.org/package=recipes
https://CRAN.R-project.org/package=recipes

mlr3pipelines – Flexible Machine Learning Pipelines in R

Alain F Zuur, Elena N Ieno, Neil J Walker, Anatoly A Saveliev, and Graham M Smith.
Zero-truncated and zero-inflated models for count data. In Mixed Effects Models and
Extensions in Ecology with R, pages 261–293. Springer, New York, NY, USA, 2009.

7

	Introduction
	Related Work
	Design, Functionality, and Examples
	Hyperparameter Tuning and AutoML
	Availability, Documentation, Code Quality Control
	Outlook

