
ASlib: A Benchmark Library for Algorithm Selection

Bernd Bischla, Pascal Kerschkeb, Lars Kotthoffd, Marius Lindauerc,
Yuri Malitskyg, Alexandre Fréchetted, Holger Hoosd, Frank Hutterc,

Kevin Leyton-Brownd, Kevin Tierneye, Joaquin Vanschorenf

aLMU Munich, Germany
bUniversity of Münster, Germany
cUniversity of Freiburg, Germany

dUniversity of British Columbia, Vancouver, Canada
eUniversity of Paderborn, Germany

fEindhoven Institute of Technology, Netherlands
gIBM Research, United States

Abstract

The task of algorithm selection involves choosing an algorithm from a set of
algorithms on a per-instance basis in order to exploit the varying performance
of algorithms over a set of instances. The algorithm selection problem is at-
tracting increasing attention from researchers and practitioners in AI. Years of
fruitful applications in a number of domains have resulted in a large amount of
data, but the community lacks a standard format or repository for this data.
This situation makes it difficult to share and compare different approaches effec-
tively, as is done in other, more established fields. It also unnecessarily hinders
new researchers who want to work in this area. To address this problem, we
introduce a standardized format for representing algorithm selection scenarios
and a repository that contains a growing number of data sets from the liter-
ature. Our format has been designed to be able to express a wide variety of
different scenarios. To demonstrate the breadth and power of our platform, we
describe a study that builds and evaluates algorithm selection models through
a common interface. The results display the potential of algorithm selection to
achieve significant performance improvements across a broad range of problems
and algorithms.

Keywords: algorithm selection, machine learning, empirical performance
estimation

Email addresses: bernd.bischl@stat.uni-muenchen.de (Bernd Bischl),
kerschke@uni-muenster.de (Pascal Kerschke), larsko@cs.ubc.ca (Lars Kotthoff),
lindauer@cs.uni-freiburg.de (Marius Lindauer), yuri.malitsky@gmail.com
(Yuri Malitsky), afrechet@cs.ubc.ca (Alexandre Fréchette), hoos@cs.ubc.ca (Holger Hoos),
fh@cs.uni-freiburg.de (Frank Hutter), kevinlb@cs.ubc.ca (Kevin Leyton-Brown),
tierney@dsor.de (Kevin Tierney), j.vanschoren@tue.nl (Joaquin Vanschoren)

Preprint submitted to Elsevier April 5, 2016



1. Introduction

Although NP-complete problems are widely believed to be intractable in the
worst case, it is often possible to solve even very large instances of such problems
that arise in practice. This is fortunate, because such problems are ubiquitous
in Artificial Intelligence applications. There has thus emerged a large subfield
of AI devoted to the advancement and analysis of heuristic algorithms for at-
tacking hard computational problems. Indeed, quite surprisingly, this subfield
has made consistent and substantial progress over the past few decades, with
the newest algorithms quickly solving benchmark problems that were beyond
reach until recently. The results of the international SAT competitions provide a
paradigmatic example of this phenomenon. Indeed, the importance of this com-
petition series has gone far beyond documenting the progress achieved by the
SAT community in solving difficult and application-relevant SAT instances—it
has been instrumental in driving research itself, helping the community to co-
alesce around a shared set of benchmark instances and providing an impartial
basis for determining which new ideas yield the biggest performance gains.

The central premise of events like the SAT competitions is that the research
community ought to build, identify and reward single solvers that achieve strong
across-the-board performance. However, this quest appears quixotic: most hard
computational problems admit multiple solution approaches, none of which dom-
inates all alternatives across multiple problem instances. In particular, this fact
has been observed to hold across a wide variety of AI applications, including
propositional satisfiability (SAT) [120], constraint satisfaction (CSP) [79], plan-
ning [42, 45], and supervised machine learning [26, 104, 112]. An alternative
is to accept that no single algorithm will offer the best performance on all in-
stances, and instead aim to identify a portfolio of complementary algorithms and
a strategy for choosing between them [85]. To see the appeal of this idea, con-
sider the results of the sequential application (SAT+UNSAT) track of the 2014
SAT Competition.1 The best of the 35 submitted solvers, Lingeling ayv [9],
solved 77% of the 300 instances. However, if we could somehow choose the best
among these 35 solvers on a per-instance basis, we would be able to solve 92%
of the instances.

Research on this algorithm selection problem [85] has demonstrated the prac-
tical feasibility of using machine learning for this task. In fact, although practi-
cal algorithm selectors occasionally choose suboptimal algorithms, their perfor-
mance can get close to that of an oracle that always makes the best choice. The
area began to attract considerable attention when methods based on algorithm
selection began to outperform standalone solvers in SAT competitions [118]. Al-
gorithm selectors have since come to dominate the state of the art on many
other problems, including CSP [79], planning [42], Max-SAT [71], QBF [83],
and ASP [31].

To date, much of the progress in research on algorithm selection has been

1http://www.satcompetition.org/2014/results.shtml

2

http://www.satcompetition.org/2014/results.shtml


demonstrated in algorithm competitions originally intended for non-portfolio-
based (“standalone”) solvers. This has given rise to a variety of challenges for
the field. First, benchmarks selected for such competitions tend to emphasize
problem instances that are currently hard for existing standalone algorithms
(to drive new research on solving strategies) rather than the wide range of both
easy and hard instances that would be encountered in practice (which would
be appropriately targeted by researchers developing algorithm selectors). Re-
latedly, benchmark sets change from year to year, making it difficult to assess
the progress of algorithm selectors over time. Second, although competitions
often require entrants to publish their source code, none require entries based on
algorithm selectors to publish the code used to construct the algorithm selector
(e.g., via training a machine learning model) or to adhere to a consistent input
format. Third, overwhelming competition victories by algorithm selectors can
make it more difficult for new standalone solver designs to get the attention
they deserve and can thus create resentment among solver authors. Such con-
cerns have led to a backlash against the participation of portfolio-based solvers
in competitions; for example, starting in 2013 solvers that explicitly combine
more than two component algorithms have been excluded from the SAT com-
petitions. For similar reasons, there is a specific prize for non-portfolio solvers
in the learning track of the International Planning Competition [107].

The natural solution to these challenges is to evaluate algorithm selectors on
their own terms rather than trying to shoehorn them into competitions intended
for standalone solvers. This article, written by a large set of authors active in
research on algorithm selectors, aims to advance this goal by introducing a set
of specifications and tools designed to standardize and facilitate such evalua-
tions. Specifically, we propose a benchmark library, called ASlib, tailored to
the cross-domain evaluation of algorithm selection techniques. In Section 3, we
provide a summary of the data format specification used in ASlib that covers
a wide variety of foreseeable evaluations. To date, we have instantiated this
specification with benchmarks from six different problem domains, which we de-
scribe in Section 4. However, we intend for ASlib to grow and evolve over time.
Thus, our article is accompanied by an online repository (http://aslib.net),
which accepts submissions from any researcher. Indeed, we already included
scenarios that have been submitted by contributors outside the core group of
ASlib maintainers.

Our system automatically checks newly submitted datasets to verify that
they adhere to the specifications and then provides an overview of the data,
including the results of some straightforward algorithm selection approaches
based on regression, clustering and classification. We provide some examples
of these automatically-generated overviews and benchmark results in Sections
5 and 6. All code used to parse the format files, explore the algorithm selec-
tion scenarios and run benchmark machine learning models on them is publicly
available in a new R package dubbed aslib.2 In Section 7, we discuss two recent

2This package is currently hosted at https://github.com/coseal/aslib-r. We will submit

3

http://aslib.net
https://github.com/coseal/aslib-r


examples of competition settings using ASlib, along with their advantages and
disadvantages.

Overall, our main objective in creating ASlib is the same as that of an
algorithm competition: to allow researchers to compare their algorithms sys-
tematically and fairly, without having to replicate someone else’s system or to
personally collect raw data. We hope that it will help the community to obtain
an unbiased understanding of the strengths and weaknesses of different method-
ologies and thus to improve the current state of the art in per-instance algorithm
selection.

2. Background

Rice [85] was the first to formalize the idea of selecting among different al-
gorithms on a per-instance basis. While he referred to the problem simply as
algorithm selection, we prefer the more precise term per-instance algorithm selec-
tion, to avoid confusion with the (simpler) task of selecting one of several given
algorithms to optimize performance on a given set or distribution of instances.

Definition 1 (Per-instance algorithm selection problem). Given

• a set I of problem instances drawn from a distribution D,

• a space of algorithms A, and

• a performance measure m : I × A → R,

the per-instance algorithm selection problem is to find a mapping s : I → A that
optimizes Ei∼Dm(i, s(i)), i.e., the expected performance measure for instances
i distributed according to D, achieved by running the selected algorithm s(i) for
instance i.

In practice, the mapping s is often implemented by using so-called instance
features, i.e., characterizations of the instances i ∈ I. These instance features
are then mapped to an algorithm using machine learning techniques. However,
the computation of instance features incurs additional costs, which have to be
considered in the performance measure m.

There are many ways of tackling per-instance algorithm selection and re-
lated problems. Almost all contemporary approaches use machine learning to
build predictors of the behaviour of given algorithms as a function of instance
features. This general strategy may involve a single learned model or a complex
combination of several, which, given a new problem instance to solve, is used to
decide which algorithm or which combination of algorithms to choose.

it to the official R package server CRAN alongside the final version of this article.

4



2.1. What to select and when

It is perhaps most natural to select a single algorithm for solving a given
problem instance. This approach is, e.g., used in the SATzilla [77, 118], ArgoS-
mArT [75], SALSA [22] and Eureka [19] systems. Its main disadvantage is
that there is no way of mitigating a poor selection—the system cannot recover
if the algorithm it chose for a problem instance exhibits poor performance.

Alternatively, we can seek a schedule that determines an ordering and time
budget according to which we run all or a subset of the algorithms in the port-
folio; usually, this schedule is chosen in a way that reflects the expected perfor-
mance of the given algorithms (see, e.g., [44, 45, 56, 79, 83]). Under some of
these approaches, the computation of the schedule is treated as an optimization
problem that aims to maximize, e.g., the number of problem instances solved
within a timeout. For stochastic algorithms, the further question of whether and
when to restart an algorithm arises, opening the possibility of schedules that con-
tain only a single algorithm, restarted several times (see, e.g., [18, 28, 37, 99]).
Instead of performing algorithm selection only once before starting to solve a
problem, selection can also be carried out repeatedly while the instance is be-
ing solved, taking into account information revealed during the algorithm run.
Such methods monitor the execution of the chosen algorithm(s) and take reme-
dial action if performance deviates from what is expected [29, 67, 72], or perform
selection repeatedly for subproblems of the given instance [5, 64, 65, 90].

2.2. How to select

The kinds of decisions the selection process is asked to produce drive the
choice of machine learning models that perform the selection. If only a single
algorithm should be run, we can train a classification model that makes exactly
that prediction. This renders algorithm selection conceptually quite simple—
only a single machine learning model needs to be trained and run to determine
which algorithm to choose (see, e.g., [33, 39, 73]).

There are alternatives to using a classification model to select a single algo-
rithm to be run on a given instance, such as using regression models to predict
the performance of each algorithm in the portfolio. This regression approach was
adopted by several systems [74, 77, 87, 92, 118]. Other approaches include the
use of clustering techniques to partition problem instances in feature space and
make decisions for each partition separately [57, 97], hierarchical models that
make a series of decisions [46, 116], cost-sensitive support vector machines [15]
and cost-sensitive decision forests [119].

2.3. Selection enablers

In order to make their decisions, algorithm selection systems need informa-
tion about the problem instance to solve and the performance of the algorithms
in the given portfolio. The extraction of this information—the features used by
the machine learning techniques used for selection—incurs overhead not required
when only a single algorithm is used for all instances regardless of instance char-
acteristics. It is therefore desirable to extract information as cheaply as possible,

5



thus ensuring that the performance benefits of using algorithm selection are not
outweighed by this overhead.

Some approaches use only past performance of the algorithms in the portfolio
as a basis for selecting the one(s) to be run on a given problem instance [29,
92, 98]. This approach has the benefit that the required data can be collected
with minimal overhead as algorithms are executed. It can work well if the
performance of the algorithms is similar on broad ranges of problem instances.
However, when this assumption is not satisfied (as is often the case), more
informative features are needed.

Turning to richer instance-specific features, commonly used features include
the number of variables of a problem instance and properties of the variable do-
mains (e.g., the list of possible assignments in constraint problems, the number
of clauses in SAT, the number of goals in planning). Deeper analysis can involve
properties of graph representations derived from the input instance (such as the
constraint graph [33, 68]) or properties of encodings into different problems
(such as SAT features for SAT-encoded planning problems [25]).

In addition, features can be extracted from short runs of one or more solvers
on the given problem instance. Examples of such probing features include the
number of search nodes explored within a certain time, the fraction of par-
tial solutions that are disallowed by a certain constraint or clause, the average
depth reached before backtracking is required, or characteristics of local minima
found quickly using local search. Probing features are usually more expensive
to compute than the features that can be obtained from shallow analysis of the
instance specification, but they can also be more powerful and have thus been
used by many authors (see, e.g., [54, 78, 79, 82, 118]). For continuous blackbox
optimization, algorithm selection can be performed based on Exploratory Land-
scape Analysis [15, 60, 74]. The approach defines a set of numerical features
(of different complexities and computational costs) to describe the landscapes of
such optimization problems. Examples range from simple features that describe
the distribution of sampled objective values to more expensive probing features
based on local search.

Finally, in the area of meta-learning (learning about the performance of ma-
chine learning algorithms; for an overview, see, e.g, [17]), these features are
known as meta-features. They include statistical and information-theoretical
measures (e.g., variable entropy), landmarkers (measurements of the perfor-
mance of fast algorithms [80]), sampling landmarkers (similar to probing fea-
tures) and model-based meta-features [111]. These meta-features, and the past
performance measurements of many machine learning algorithms, are available
from the online machine learning platform OpenML [113]. In contrast to ASlib,
however, OpenML is not designed to allow cross-domain evaluation of algorithm
selection techniques.

2.4. Algorithm Selection and Algorithm Configuration

A problem closely related to algorithm selection is the algorithm configura-
tion problem: given a parameterized algorithm A, a set of problem instances I
and a performance measurem, find a parameter setting of A that optimizesm on

6



I (see [52] for a formal definition). While algorithm selection operates on finite
(usually small) sets of algorithms, algorithm configuration operates on the combi-
natorial space of an algorithm’s parameter settings. General algorithm configu-
ration methods, such as ParamILS [52], GGA [4], I/F-Race [11], and SMAC [50],
have yielded substantial performance improvements (sometimes orders of mag-
nitude speedups) of state-of-the-art algorithms for several benchmarks, includ-
ing SAT-based formal verification [47], mixed integer programming [49], AI
planning [88, 109], the combined selection and hyperparameter optimization of
machine learning algorithms [104], and joint architecture and hyperparameter
search in deep learning [23]. Algorithm configuration and selection are com-
plementary since configuration can identify algorithms with peak performance
for homogeneous benchmarks and selection can then choose from among these
specialized algorithms. Consequently, several possibilities exist for combining
algorithm configuration and selection [3, 27, 48, 57, 71, 89, 117, 119]. The algo-
rithm configuration counterpart of ASlib is AClib [53] (http://aclib.net). In
contrast to ASlib, it is infeasible in AClib to store performance data for all pos-
sible parameter configurations, which often number more than 1050. Therefore,
an experiment on AClib includes new (expensive) runs of the target algorithms
with different configurations and hence, experiments on AClib are a lot more
costly than experiments on ASlib, where no new algorithm runs are necessary.3

Furthermore, in contrast to AClib, ASlib does not include the actual instances
and binaries of the algorithms. Therefore, ASlib does not provide a way to
generate new performance data, as is required in AClib as a consequence of the
need to assess the performance of new target algorithm configurations arising
within the configuration process. However, ASlib and AClib can be combined
by generating actual performance data based on the resources in AClib and then
creating an ASlib scenario which selects between different solver configurations
on a per-instance basis.

A full coverage of the wide literature on algorithm selection is beyond the
scope of this article, but we refer the interested reader to recent survey articles
on the topic [63, 91, 93, 108].

3. Summary of Format Specification

We propose a data format specification for algorithm selection scenarios, i.e.,
instances of the per-instance algorithm selection problem. This format and the
resulting data repository allow a fair and convenient scientific evaluation and
comparison of algorithm selectors.

The format specification assumes a generic approach to algorithm selection,
depicted in Figure 1. The general approach is as follows.

3In algorithm configuration, this need for expensive runs indeed causes a problem for
research. One way of mitigating it is offered by fast-to-evaluate surrogate algorithm configu-
ration benchmarks [24].

7

http://aclib.net


..Performance Data:
I × A → R

.

Feature Data:
f : I → F

.

Feature Costs:
c : F → R

.

Train
s : F → A × R

.

Select a, r = s(f(i))
and apply a to i
with resources r

.

Compute Features
f(i) ∈ F of i
for cost c(f(i))

.

(New) Instance i

.

Evaluate m(i, a)

.

Feedback

...

Offline

.

Online

Figure 1: Algorithm Selection workflow.

1. A vector of instance features f(i) ∈ F of i is computed. Feature computa-
tion may occur in several stages, each of which produces a group of (one
or more) features. Furthermore, later stages may depend on the results
of earlier ones. Each feature group incurs a cost, e.g., runtime. If no fea-
tures are required, the cost is 0 (this occurs, e.g., for variants of algorithm
selection that compute static schedules).

2. A machine learning technique s selects an algorithm a ∈ A based on the
feature vector from Step 1.

3. The selected algorithm a is applied to i.

4. Performance measure m is evaluated, taking into account feature compu-
tation costs and the performance of the selected algorithm.

5. Some algorithm selectors do not select a single algorithm, but compute a
schedule of several algorithms: they apply a to i for a resource budget r ∈
R (e.g., CPU time), evaluate the performance metric, evaluate a stopping
criterion, and repeat as necessary, taking observations made during the
run of a into account.4

The purpose of our library is to provide all information necessary for per-
forming algorithm selection experiments using the given scenario data. The user
does not need to actually run algorithms on instances, as all performance data
is already precomputed. This drastically reduces the time required for execut-
ing studies, i.e., the runtime of studies is now dominated by the time required
for learning s and not by applying algorithms to instances (e.g., solving SAT
problems). It also means that results are perfectly reproducible; for example,

4In principle, the workflow can be arbitrarily more complex, e.g., alternating between
computing further features and running selected algorithms.

8



the runtimes of algorithms do not depend on the hardware used; rather, they
can be simply looked up in the performance data for a scenario.

Table 1 shows the basic structure of a scenario definition in ASlib; the com-
plete specification with all details can be found in an accompanying technical
report [12] and on our online platform.

Table 1: Overview of a scenario in the ASlib format.

Mandatory Data.

• The meta information file is a global description file containing gen-
eral information about the scenario, including the name of the scenario,
performance measures, algorithms, features and limitations of compu-
tational resources.

• The algorithm performance file contains performance measurements
with possible repetitions and completion status of the algorithm runs.
The performance metric can be arbitrary, e.g., runtime, solution quality,
accuracy or loss.

• The instance feature file contains the feature vectors for all instances.
Another file contains technical information about errors encountered
or instances solved during feature computation.

• The cross-validation file describes how to split the instance set into
training and test sets to apply a standard machine learning approach
to obtain an unbiased estimate of the performance of an algorithm
selector.

• A human-readable README file explains the origin and meaning of
the scenario, as well as the process of data generation.

Optional Data.

• The feature costs file contains the costs of the feature groups, i.e., sets
of features computed together.

• The ground truth file specifies information on the instances and their
respective solutions (e.g., SAT or UNSAT).

• The literature references file in BibTeX format includes information on
the context in which the data set was generated and previous studies
in which it was used.

4. Algorithm Selection Scenarios Provided in ASlib Release 2.0

The set of algorithm selection scenarios in release version 2.0 of our library,
shown in Table 2, has been assembled to represent a diverse set of selection

9



scenario #I #A #F #Fg Costs Literature

SAT11-HAND 296 15 115 10 ✓ [118]
SAT11-INDU 300 18 115 10 ✓ [118]
SAT11-RAND 600 9 115 10 ✓ [118]
SAT12-ALL 1614 31 115 10 ✓ [121]
SAT12-HAND 767 31 115 10 ✓ [121]
SAT12-INDU 1167 31 115 10 ✓ [121]
SAT12-RAND 1362 31 115 10 ✓ [121]
SAT15-INDU 300 28 54 1 × –
QBF-2011 1368 5 46 1 × [83]
QBF-2014 1254 14 46 1 × –
MAXSAT12-PMS 876 6 37 1 ✓ [71]
MAXSAT15-PMS-INDU 601 29 37 1 × –
CSP-2010 2024 2 17 1 × [33]
CSP-MZN-2013 4642 11 155 2 ✓ [2]
PROTEUS-2014 4021 22 198 4 ✓ [46]
ASP-POTASSCO 1294 11 138 5 ✓ [43]
PREMAR-ASTAR-2015 527 4 22 3 × [105]

Table 2: Overview of algorithm selection scenarios in the ASLib with the number of instances
#I, number of algorithms #A, number of features #F , number of feature processing groups
#Fg and availability of feature costs.

problem settings that covers a wide range of problem domains, types of algo-
rithms, features and problem instances. Our scenarios include both problems
that have been broadly studied in the context of algorithm selection techniques
(such as SAT and CSP), as well as more recent ones (such as the container
pre-marshalling problem). Most of our scenarios were taken from publications
that report performance improvements through algorithm selection and consist
of algorithms where the virtual best solver (VBS)5 is significantly better than
the single best solver.6 Therefore, these are problems on which it makes sense
to seek performance improvements via algorithm selection. All scenarios are
available on our online platform (http://www.aslib.net/).

We now briefly describe the scenarios we included and what makes them
interesting.

4.1. SAT: Propositional Satisfiability

The propositional satisfiability problem (SAT) is a classic NP-complete prob-
lem that consists of determining the existence of an assignment of values to vari-
ables of a Boolean formula such that the formula is true. It is widely studied,

5The VBS is defined as a solver that perfectly selects the best solver from A on a per-
instance basis.

6The single best solver has the best performance averaged across all instances.

10

http://www.aslib.net/


with many applications including formal verification [81], scheduling [20], plan-
ning [59] and graph coloring [110]. Our SAT data mainly stems from different
iterations of the SAT competition,7 which is split into three tracks: industrial
(INDU), crafted (HAND), and random (RAND).

The SAT scenarios are characterized by a high level of maturity and diversity
in terms of their solvers, features and instances. Each SAT scenario involves
a highly diverse set of solvers, many of which have been developed for several
years. In addition, the set of SAT features is probably the best-studied feature
set among our scenarios; it includes both static and probing features that are
organized into as many as ten different feature groups. The instance sets used
in our various SAT scenarios range from randomly-generated ones to real-world
instances submitted by industry.

4.2. QBF: Quantified Boolean Formula

A quantified Boolean formula (QBF) is a formula in propositional logic with
universal or existential quantifiers on each variable in the formula. A QBF solver
finds a set of variable assignments that makes the formula true or proves that
no such set can exist. This is a PSPACE-complete problem for which solvers
exhibit a wide range of performance characteristics. Our QBF-2011 data set
comes from the QBF Solver Evaluation 20108 and consists of instances from
the main, small hard, 2QBF and random tracks. Our QBF-2014 data set comes
from the application track of the QBF Gallery 20149. The instance features
were computed using the AQME system and are described in more detail by
Pulina et al. [83]. The solvers for QBF-2011 come from the AQME system as
well, whereas the solvers for QBF-2014 are the ones submitted to the application
track of the QBF Gallery.

4.3. MAXSAT: Maximum Satisfiability

MaxSAT is the optimization version of the previously introduced SAT prob-
lem, and aims to find a variable assignment that maximizes the number of sat-
isfied clauses. The MaxSAT problem representation can be used to effectively
encode a number of real-world problems, such as FPGA routing [115], and soft-
ware package installation [6], among others, as it permits reasoning about both
optimality and feasibility. The particular scenarios focus on the partial MaxSAT
(PMS) problem [10].

The MAXSAT12-PMS scenario is composed of a collection of random, crafted
and industrial instances from the 2012 MaxSAT Evaluation [7]. The techniques
used to solve the various instances in this scenario are very complementary to
each other, leading to a substantial performance gap between the single best
and the virtual best solver. Furthermore, because there are only six solvers

7http://www.satcompetition.org/
8http://www.qbflib.org/index_eval.php
9http://qbf.satisfiability.org/gallery/

11

http://www.satcompetition.org/
http://www.qbflib.org/index_eval.php
http://qbf.satisfiability.org/gallery/


with very different performance characteristics, algorithm selection approaches
must be very accurate in their choices, as any mistake is heavily penalized.

The more recent MAXSAT15-PMS-INDU was built on the performance data
of the industrial track on partial MAXSAT problems from the 2015 MAXSAT
Evaluation.10 With 29 algorithms, it provides a larger set of solvers than
MAXSAT12-PMS. However, there are different parameterizations of the same
solvers, e.g., four different variants of ahms, such that there are some subsets
of strongly correlated solvers. The performance gap between the single best
and virtual best solver is larger in MAXSAT12-PMS than in MAXSAT15-PMS-
INDU.

4.4. CSP: Constraint solving

Constraint Satisfaction Problem (CSP; [100]) is concerned with finding solu-
tions to constraint satisfaction problems—a task that is NP-complete. Learning
in the context of constraint solving is a technique by which previously unknown
constraints that are implied by the problem specification are uncovered during
search and subsequently used to speed up the solving process.

The scenario CSP-2010 contains only two solvers: one that employs lazy
learning [33, 35] and one that does not [34]. The data set is heavily biased
towards the non-learning solver, such that the baseline (the single best solver)
is very good already. Improving on this is a challenging task and harder than
in many of the other scenarios. Furthermore, both solvers share a common
core, which results in a scenario that directly evaluates the efficacy of a specific
technique in different contexts.

The more recent scenario CSP-MZN-2013 provides a larger set of instances,
algorithms and instance features. Instances and algorithms come from the
MiniZinc challenge 2012 and the International Constraint Solver Competitions
(ICSC) in 2009. Specifically, the instances come from the MiniZinc 1.6 bench-
mark suite and the algorithms in the scenario participated in the MiniZinc
Challenge 2012. Algorithms, instances and instance features are described in
more detail in [1, 2].

Our final CSP scenario PROTEUS comes from [46] and includes an ex-
tremely diverse mix of well-known CSP solvers alongside competition-winning
SAT solvers that have to solve (converted) XCSP instances11. The SAT solvers
can accept different conversions of the CSP problem into SAT (see, e.g., [66, 101,
102]), which in our format are provided as separate algorithms. This scenario is
the only one in which solvers are tested with varying “views” of the same prob-
lem. The features of this scenario are also unique in that they include both the
SAT and CSP features for a given instance. This potentially provides additional
information to the selection approach that would normally not be available for
solving CSPs. An algorithm selection system has a very high degree of flexibility

10http://www.maxsat.udl.cat/15/results/index.html
11The XCSP instances are taken from http://www.cril.univ-artois.fr/~lecoutre/

benchmarks.html as described in [46].

12

http://www.maxsat.udl.cat/15/results/index.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html


here and may choose to perform only part of the possible conversions, thereby
reducing the set of solvers and features, but also reducing the overhead of per-
forming the conversions and feature computations. There are also synergies
between feature computation and algorithm runs that can be exploited, e.g., if
the same conversion is used for feature computation and to run the chosen algo-
rithm then the cost of performing the conversion is only incurred once. In other
cases, where features are computed on one representation and another one is
solved, conversion costs are incurred both during feature computation and the
running of the algorithm.

4.5. ASP: Answer Set Programming

Answer Set Programming (ASP, [8, 30]) is a form of declarative programming
with roots in knowledge representation, non-monotonic reasoning and constraint
solving. In contrast to many other constraint solving domains (e.g., the satisfia-
bility problem), ASP provides a rich yet simple declarative modeling language in
which problems up to ∆p

3 (disjunctive optimization problems) can be expressed.
ASP has proven to be efficiently applicable to many real-world applications, e.g.,
product configuration [95], decision support for NASA shuttle controllers [76],
synthesis of multiprocessor systems [55] and industrial team building [38].

In contrast to the other scenarios, the algorithms in the scenario ASP-
POTASSCO were automatically constructed by an adapted version ofHydra [117],
i.e., the set of algorithms consists of complementary configurations of the solver
clasp [32]. The instance features were generated by a light-weight version of
clasp, including static and probing features organized into feature groups; they
were previously used in the algorithm selector claspfolio [31, 43].

4.6. PREMAR-ASTAR-2015: Container pre-marshalling

The container pre-marshalling problem (CPMP) is an NP-hard container
stacking problem from the container terminals literature [96]. We constructed
an algorithm selection scenario from two recent A* and IDA* approaches for
solving the CPMP presented in [106], using instances from the literature. The
scenario is described in detail in [105].

The pre-marshalling scenario differs from other scenarios in that the set of
algorithms is highly homogeneous. All of the algorithms are parameterizations
of a single symmetry breaking heuristic, either using the A* or IDA* search
techniques, which stands in sharp contrast to the diversity of solvers present
in most other scenarios. The scenario represents a real-world, time-sensitive
problem from the operations research literature, where algorithm selection tech-
niques can have a large impact.

5. Automated Exploratory Data Analysis

The online platform for our benchmark repository offers not only the scenario
data files themselves. It also provides many tables and figures that summarize
them. These pages are automatically generated and currently consist (among
others) of the following parts:

13



• an overview table that lists, for example, the number of instances, algo-
rithms and features for all available scenarios, similar to Table 2;

• a summary of the algorithms’ performance and run status data;

• a summary of the feature values, as well as the run status and costs of the
feature groups;

• benchmark results for standard machine learning models for each scenario;
see Section 6.

Presenting this additional data offers the following advantages:

• Researchers can quickly understand which scenarios are available and se-
lect those best suited to their needs.

• Data can quickly be sanity-checked. It is common that data collection
errors occur when scenario data is gathered and submitted for the first
time.

• Interesting or challenging properties of the data sets become visible, pro-
viding the researcher with a quick and informative first impression.

The platform’s summary page for the algorithms starts with a table
listing summary statistics regarding their performance (e.g., mean values and
standard variations) and run status (e.g., how many runs were successful). We
also indicate whether one algorithm is dominated by another, i.e., an algorithm
a1 dominates another algorithm a2 if and only if a1 has performance at least
equal to that of a2 on all instances, and a1 outperforms a2 on at least one
instance. This is useful, because there is no reason to include a dominated al-
gorithm in a portfolio. Various visualizations, such as box plots, scatter plot
matrices, correlation plots and density plots enable further inspection of the per-
formance distribution and correlation between algorithms, allowing the reader
to better understand the strengths and weaknesses of each algorithm. All
of our plots can be configured to use log scales, which often improves visual
understanding of heavy-tailed distributions (e.g., runtime distributions of hard
combinatorial solvers [36]).

Figure 2 shows boxplots and cumulative distribution functions for the algo-
rithms in the QBF-2011 scenario as an example. The boxplots summarize the
runtimes of an algorithm by drawing a box between the 25%- and 75%-quantile
of the sample, i.e., the smallest values that are greater or equal to 25% and 75%
of the runtimes. In addition, each box contains a line showing the median run-
time, as well as so-called whiskers, i.e., lines that connect the box with runtimes
that are within 150% of the interquartile range (the length of the box) below
the 25%- or above the 75%-quantile, respectively. Observations with even more
extreme runtimes are considered to be outliers and are depicted by a single point
per outlier. The cumulative distribution function plots on the other hand show
runtimes on all instances for the algorithm. Each point within the plot consists

14



●●

●
●
●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●●

●

●●●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●
●
●

●

●

●●
●
●
●
●

●●

●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●

●
●
●●

●
●

●●
●
●
●

●

●●●●●●●●●●●●

●

●

●

●●●●

●

●
●

●

●

●●●

●

●●●●●●

●

●

●●

●

●●●●●

●●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●

●●

●●●

●

●●●●

●●●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●

1e−04

1e−01

1e+02

ru
nt

im
e

0.00

0.25

0.50

0.75

1.00

1e−06 1e−03 1e+00 1e+03
runtime

cu
m

ul
at

iv
e 

de
ns

ity algorithm

quantor

QuBE

sKizzo

sSolve

X2clsQ

Figure 2: Algorithm performance distributions of the QBF-2011 scenario: Boxplots (left) and
cumulative distribution functions (right); both on a log scale.

of the observed runtime on the x-axis and the corresponding cumulative density,
i.e., the percentage of instances that were solved at this or a smaller runtime,
on the y-axis.

Such plots show the location of the mean, distribution spread, density multi-
modality and other properties of the distribution. In addition, they reveal how
long it took an algorithm to solve the given instances. For example, for the
QBF-2011 scenario in Figure 2, one can see that the algorithm quantor finds a
solution very quickly on a few instances, i.e., it solves approximately 5% of the
instances in less than a second. However, if it does not succeed quickly, it often
does not succeed at all—it solved less than 30% of all the instances. In contrast,
sSolve usually needs longer to find a solution, but by the time it does, it is one
of the best algorithms. Such behavior can indicate that the algorithm requires
a ‘warm-up’ stage, which should be considered when deploying it.

The left panel of Figure 3 shows pairwise scatterplots of the QBF-2011 sce-
nario, allowing an easy comparison of algorithm pairs on all instances from a
given scenario. Each point represents a problem instance within the scenario,
and from the location of the point cloud one can see whether an algorithm
is dominant over the majority of instances, or whether relative performance
strongly varies across instances. The first case can be identified by a cloud that
is located either in the upper-left or lower-right corner of a single scatterplot.
In such a case, the dominated algorithm could be discarded from the portfolio.
However, if this type of dominance relationship is not present, there is the po-
tential to realize performance improvements by means of per-instance algorithm
selection.

Because detecting correlation in algorithm performance is also of interest
when analyzing the strengths and weaknesses of a given portfolio-based solver [120],
we also present a correlation matrix, cf. Figure 3 (right panel). Algorithms that
have a (high) positive correlation are more likely to be redundant in a portfolio,
whereas pairs with a (high) negative correlation are more likely to complement
each other. We calculate Spearman’s correlation coefficient between ranks. Blue

15



X2clsQ

1e−06 1e+02

●●●●●●●●● ●●● ● ●●

●●●●
●

●
●●●●

●●

●

●●●

●●

●● ●● ●
●
●

●●

●●● ●

●

●●●●●●

●

●● ●●

●

●●●●●●●●●●●● ●●●

●
●

●●

●

●●● ●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●● ●●●●● ●●●●

●

●●●

●

●

●●●

●

●

●
●

●

● ●●●●●●●

●

●

●

● ●●●●●

●●

●● ●●●●●●

●

● ●●●●● ●●

●●

●

●
●

●●

●
●●

●

●●

●●●●●●●●●

●●
●●

●●●●●

●

●●●●●●●●●●
●●●●●●

●●

●●●●●●●●●●
●

●●
●●

●

●

●●●●●●●●
●

●●● ●● ●● ●●

●

●●● ●●

●

●●●●●●●●●●●●● ● ●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●

●●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

● ●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●● ●● ● ●● ● ●

●

●●
●●●●
●

●●

●●
●
●

●

●

●●●●●●●●●●

●
●●●

●●

●●

●

●
●●●●●● ●●●● ●●●
●

●

●

●●

●

●●

●

●

●

●

●

●●●●● ●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●●

●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●●
●●●●●

●
●
●
●
●

●
●
●●●

●●
●
●
●

●
●
●●●

●●●

●

●●●●●
●

●●●●●●●●●●●●●●● ●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●

●

●●●
●

●●
●●

●●
●●

●
● ●

●●●
●●

●●●●●
●

●●

●
●
●●●

●
●●●
●●●●

●●
●

●

●
●
●

●●
●●●

●
●●●

●

●
● ●●●

●

●
●●●

●

●
●
●●

●●

●
●
●●

●

●

●●●●

●

●

●●
●●
●
●

●

●●●●●●

●
● ●

●

●

●●

●

●●

●

●

●● ●●●

●
●●
●

●

●●●● ●● ● ●●●●●● ●●●●●●●●●●●

●
●

●

●

●

●

●●●●●●●●●●

●●●●●

●

●●●

●

●

●

●

●
●●●● ●●●● ●●●●●

● ●
●
●

●

●

●

●

●

●●

●

●●●
●●

●●●●●

●

●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●
●
●●●●

●●

●●● ●●●●●●● ●●

●

●●●● ●●●●●

●

●●●●●

●
●

●

●

●

●

●●●
●●●●●●●

●

●●

●●●●●●●●●●●●●

●

●● ●
●

●

●

●●●

● ●
●

●

●
●

●●●●●

●●

●

●●●● ●

●

●

●
●

●

●●●●
●

●●●●

●●●

●

●

●

●

●

●●

●●

●
●●●
●
●●●●●●
●
●●
●
●●●●●●
●
●

● ●●●
●●●

●

●●●●●●●●●
●
●

●

●●●●●●●●

●●●
●
●
●

●●

●
●●●●●●●●
●●
●●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●

●
●
●
●●
●
●●●●

●

●

●
●
●●
●

●

●

●

●

●●●●●●●●●●●●●●●

●●●●
●

●
●●●●

●●

●

●●●

●●

●●●●●
●
●
●●

●●● ●

●

● ●●● ●●

●

●● ● ●

●

●●● ●● ● ●●●●● ●●●●

●
●

●●

●

●● ●●●● ● ●●●●● ●● ●● ● ●

●

● ●● ● ●●

●●

●●●●●●●●●●●●

●

●●●

●

●

●●●

●

●

●
●

●

●●●●●●●●

●

●

●

●●●●●●

●●

●●●●●●●●

●

●●●●●●●●

●●

●

●
●

● ●

●
●●

●

●●

●●●● ●●●●●

●●
●●

●●●●●

●

●●●●●●●●●● ●●● ●●●

●●

●●●●● ●●●●●
●

●●
●●

●

●

●●●●●●●●
●

●●● ●●●●●●

●

●●● ●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●

● ●

●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

●

●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●
●●
●
●●

●●
●

●

●

●

●●● ●●●●●●●

●
●●

●

●●

●●

●

●
●●●●●●●●●●●●●
●
●

●

●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●●● ●●●●●●●●●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●● ●●●●●●●●●●

●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●
●
●●

●● ●●●

●
●

●
●

●

●
●

● ●
●

●●
●

●
●

●
●

●● ●

●●●

●

●●●●●
●

●●●●●●●●●●●● ●●● ●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

● ●
●●
● ●
●●

●
●●

● ●●
●●

●● ●● ●
●

●●

●
●

●●●
●

●●
●

●●●●
●●

●

●

●
●
●

●●
●●●

●
●●●

●

●
● ●●
●

●

●
●●●

●

●
●

●●

●●

●
●

●●

●

●

●●●●

●

●

●●
● ●
●

●

●

●●●●●●

●
●●

●

●

●●

●

●●

●

●

●●●●●

●
●●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●●●●●●●

●●●●●

●

●●●

●

●

●

●

●
●●● ●●● ●●● ●●●●

● ●
●
●

●

●

●

●

●

●●

●

●●●
●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●
●
●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●
●

●

●

●

●

●●●
●●●●●●●

●

● ●

●●●●●●●●●●●●●

●

●●●
●

●

●

●●●

●●
●

●

●
●

●●●●●

●●

●

●●●●●

●

●

●
●

●

●●●●
●

●●●●

●●●

●

●

●

●

●

●●

●●

●
● ●●

●
● ●●●●●

●
●●

●
●●●●●●

●
●

●●●●
●●●

●

●●●●● ●●● ●
●

●

●

●●●●●●●●

●●●
●

●
●

●●

●
●● ●● ●●●●

●●
●●

●

●
●●● ●

●

● ●● ●●●● ●●●●●●●●●●

●
●

●
●●

●
●●●●

●

●

●
●

● ●
●

●

●

●

●

1e−06 1e+02

● ●● ●●●●●● ●●●●● ●

●●●●
●

●
●●●●

●●

●

●●●

●●

●●●●●
●
●
●●

●●● ●

●

●● ●●●●

●

●● ●●

●

●●● ●● ●● ●●●●● ●●●

●
●

●●

●

●●●● ●● ● ●●● ●● ●● ●●●●

●

● ●● ●●●

●●

●●● ●●●●● ●●●●

●

●●●

●

●

●●●

●

●

●
●

●

● ●●● ●●●●

●

●

●

● ●●●●●

●●

●● ●●●●●●

●

● ●●●●● ● ●

●●

●

●
●

●●

●
●●

●

●●

●●●● ●● ●●●

●●
●●

●●●●●

●

●●●●●●●●●●
●●●●●●

●●

●●●●●●●●●●
●

●●
● ●

●

●

● ●●●●●● ●
●

● ●● ●● ●● ●●

●

● ●●●●

●

●●●●●●●●●●●●●● ●●●●●●

●

● ●

●

●●●●

●

●●● ●●

●

●

● ●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

● ●● ●
●

●●●●● ●●●
●
●● ●●●●●●●●●●●●●●●●●●●●●

●

● ●
● ●● ●
●
●●

●●
●
●

●

●

●●● ●●●●●●●

●
●●●

●●

●●

●

●
●●●●●●●●●●●●●

●
●

●

●●

●

●●

●

●

●

●

●

●●●● ●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●● ●●●●● ●●●● ●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●
● ●● ●●

●● ●●●●●●●● ●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●

●
●
●
●
●

●
●
●●●

●●
●
●
●

●
●
●●●

● ●●

●

●●● ●●
●

●●●●●●●●●●●● ● ●● ●●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●● ●●●●●●● ●●●● ●● ●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●● ●● ●● ● ●●●●●● ●● ●●●●

●

●●●
●

● ●
●●
●●

●●
●

●●
● ●●

●●
●●●●●

●
● ●

●
●

● ●●
●

● ●
●

●●●●
●●

●

●

●
●

●
●●

● ●●
●

●● ●

●

●
● ●●●

●

●
●●●

●

●
●

●●

●●

●
●

●●

●

●

●●●●

●

●

●●
●●

●
●

●

● ●●● ●●

●
●●

●

●

●●

●

● ●

●

●

●●●●●

●
●●

●

●

●●●● ●● ●●●●●●● ●●●●●●●●●●●

●
●

●

●

●

●

●●●● ●● ●●●●

●●●● ●

●

●●●

●

●

●

●

●
●●●● ●●●● ●●●●●

● ●
●
●

●

●

●

●

●

●●

●

●●●
●●

●●●●●

●

●●●●●● ●●● ●● ●●●●●●●● ●●●●● ●●●● ●●●●● ●●● ●●●● ●

●

●●

●

●●●●●●●●● ●● ●

●

●● ● ●●●
●
● ●●●

●●

● ●●●●●●● ●●●●

●

●●●●●●●●●

●

●●●●●

●
●

●

●

●

●

●●●
●●●●●●●

●

●●

●●●●●●●●●●●●●

●

●●●
●

●

●

● ●●

●●
●

●

●
●

●● ●● ●

●●

●

●●●●●

●

●

●
●

●

●●●●
●

●●●●

●●●

●

●

●

●

●

●●

●●

●
● ●●
●
●●●●●●

●
●●

●
●●●●●●
●

●

●●●●
●●●

●

●●●●●●●● ●
●

●

●

●●●●●●●●

●●●
●
●

●

●●

●
●●●●●●●●
●●
●●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●

●
●
●
●●
●
●●●●

●

●

●
●
●●
●

●

●

●

●

1e
−

06
1e

+
02●●●●●●●●●●●●●●●

●●● ●●

●
●●●●

●●

●

●●●

●●

●● ●●●
●
●

● ●

●●● ●

●

●● ●●●●

●

●● ●●

●

●●●●●●● ●●●●● ●●●

●
●

● ●

●

● ●● ●●●●●●●●●●●●● ●●

●

●●●●●●

●●

●●●●●● ●● ●●●●

●

●●●

●

●

●●●

●

●

●
●

●

● ●●●●●●●

●

●

●

●●●●● ●

●●

●● ●●●●●●

●

● ●●●●●●●

● ●

●

●
●

● ●

●
●●

●

●●

●●●●●●●●●

●●
●●

●●●●●

●

●●●●●●●●●●
●●●●●●

●●

●●●●●●●●●●
●

●●
●●

●

●

●●●●●●●●
●
●●●●●●●●●

●

●●● ●●

●

● ● ●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●

● ●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●●●●
●

● ● ●●●●●●
●

●●●●●●●●●●●●●● ●●●● ●●●●●

●

●●
●●
●●

●
●●

● ●●
●

●

●

●●● ● ●●● ●●●

●
●●
●

●●

●●

●

●
●●●●●● ●●●● ● ●●

●
●

●

●●

●

●●

●

●

●

●

●

●● ●●● ●●●●●●● ●●● ●●● ●●●● ●●● ●●● ●●●● ●●● ●●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●●●●●●● ●●●●●

●

●

●● ●

●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●● ●●●● ●●●●● ● ●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●
●●
●●●●●

●
●
●
●
●

●
●
●●●

●●
●
●
●

●
●
●●●

●●●

●

●●●●●
●

●● ●●●●●●● ●●●●●●●●
●
●●●●●●●●●●●● ●●●● ● ●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●

●

●

●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

● ●
●●

● ●
●●

●
●●

● ●●
●●

●●●●●
●

● ●

●
●

●●●
●

● ●
●

●●●●
●●

●

●

●
●

●
●●

● ●●
●

●● ●

●

●
● ● ●
●

●

●
● ●●

●

●
●

●●

●●

●
●

●●

●

●

●●●●

●

●

●●
● ●

●
●

●

● ●●● ●●

●
●●

●

●

●●

●

● ●

●

●

●●● ●●

●
●● ●

●

●●●● ●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●●●●●●●

●●●●●

●

●●●

●

●

●

●

●
●●●● ●●●●●●●●●

● ●
●
●

●

●

●

●

●

●●

●

●●●
●●

●●●●●

●

● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●●●●●● ●●●●●●

●

●●● ●●●
●

●●●●

●●

● ●●●●●●●●●●●

●

● ●●●● ●●● ●

●

●●●●●

●
●

●

●

●

●

●●●
●●●●●●●

●

● ●

●●●●●●●●●●●● ●

●

●●●
●

●

●

●●●

●●
●

●

●
●

●●●●●

●●

●

●●●●●

●

●

●
●

●

●●●●
●

●●●●

●●●

●

●

●

●

●

●●

●●

●
●●●
●
●●●●●●
●
●●
●
●●●●●●
●
●

●●●●
●●●

●

●●●●● ●●●●
●
●

●

●●●●●●●●

●●●
●
●

●

●●

●
●●●●●●●●
●●
●●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●

●
●

●
●●

●
●● ●●

●

●

●
●

● ●
●

●

●

●

●

1e
−

06
1e

+
02 ●●●●●●●●

●

●

●

●

●

●●●●●●● ●●●●● ●●●●●●●● ●

●

●●
●

●●
●
●

●●

●

●

●

●●●●●●

●

●

●

●●

●

●●●●●●●●●●●

●

●●●

●

●

●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●

●●●

●●

●

●
●●
●
●

●
●
●●●

●
●●

●●

●●●

●
●

● ●
●

●

●●●
●●●●

● ●

●

●

●●●●

●

●
●

●

●

●●●●●●

●

●

●●●●

●

●●

●

●

●

●
●

●●

●●●

●

●●

●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●●●●●●●●●●

●
●

●
●●●●●●

●
●●● ●●●●● ●●●●●● ● ●●● ●●●●

●

●● ●

●

●●● ●
●

●

●

●

●
●
●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●
●

●

●

●●

●
●
●●

●
●●

●●●●

●

●
●●

●
●●●●●●●

●

●
●●

●●

●●

●

●

●●●●●●

●●●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

● ●●

●●

● ●

●

●

●

● ●●

●●

● ●

●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●●

●

● ●● ●●●●●●●●●●●●●●●

●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●
●●
●● ●●●● ●●●●●●●●●● ●● ●●●

●●●● ●●●●●●

●●●●●●●●●●

●
●
●●
●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●●

●

●●●

●

●●

●●

●●

●●

●

●

●●●●

●●

●●●●●

●

●●

●

● ●●●

●

●●●●●●●

●●

●

●

●●●

●●

●●●

●

●●●

●

●

●

●●

●●

●●●●

●

●●●●

●●

●●●●

●

●

●●●●

●

●

●●●●●●

●

●●●●●●

●●

●
●

●

●●

●

●●

●

●

●●

●●

●

●●●●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●

●

● ●●●

●

● ●

●

●●●●

●

●●●

●

●●●●

●

●

● ●●

●

●

●

●

●

●●

●

●●●

●●

●●●●●
●

●●●●●●●●●●●

●

●●●●

●●
●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●

●●

●

●●●●●●

●

●●

●

●●●

●

●●●●●● ●●●●●●● ●●● ●●●●●●●●●●● ●

●

●

●●●●●●●●●●●●●

●

●

●
●

●
●

●●●● ●

● ●

●●●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●●●●●

●●●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●●●●●

●●

●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●

● ●●●●●●●●●

●● ●●●●● ●● ●

●

quantor

●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●
●
●

●●

●

●

●

● ●●● ●●

●

●

●

● ●

●

●●● ●● ● ●●●●●

●

●●●

●

●

●●

●

●●

●

●●● ● ●●●●● ●● ●● ● ●

●

● ●● ● ●

●●●

●●

●

●
●●
●
●

●
●

●●
●

●
●●

●●

●●●

●
●
●●●
●

●●●
●●●●

●●

●

●

●●●●

●

●
●

●

●

●●●●●●

●

●

●●●●

●

●●

●

●

●

●
●

● ●

●●●

●

●●

●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●●●●●●●●●●

●
●

●
●●●●●●

●
●●● ●●●●● ●●●●●● ● ● ●●●●● ●

●

●● ●

●

●●●●
●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●
●

●

●

●●

●
●
●●

●
●●

●●● ●

●

●
●●

●
●●●●●●●

●

●
●●

●●

●●

●

●

●●●●●●

●●●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●● ●●●●●●●●●● ●●●●●●

●●●

●●

● ●

●

●

●

● ●●

●●

● ●

●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●●

●

● ●● ● ●●●●● ●●●●●●●●●

●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●

●●●●●●●●
●●

●●●●●●●●●●
●●●● ●●●●●●● ●●●●●●●●●●

●●
●● ●●
●●

●●●● ●●●● ● ●●●●● ●● ●● ●● ●

●●●●●●●●●●

●●●●●●●●●●

●
●

●●
●

●
●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●●

●

●●●

●

● ●

●●

● ●

●●

●

●

● ● ●●

●●

●● ●● ●

●

●●

●

● ●●●

●

●●● ●●●●

●●

●

●

● ●●

●●

●●●

●

●●●

●

●

●

●●

●●

●●●●

●

●●●●

●●

● ●●●

●

●

●●●●

●

●

●●● ●●●

●

●●●●●●

●●

●
●

●

●●

●

●●

●

●

●●

●●

●

●●●●

●

● ●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

●●●●

●

● ●

●

● ●●●

●

●● ●

●

● ●●●

●

●

●●●

●

●

●

●

●

●●

●

●●●

●●

●●●●●
●

●●●●●●●●●●●

●

●●●●

●●
●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●

●●

●

●●●●●●

●

●●

●

●●●

●

●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●●●●●●●●●●●●●

●

●

●
●

●
●

●●●●●

●●

●● ●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●●●●●

●●●● ●● ●● ●●●● ●● ●●● ● ●●●●● ●●●● ●●●●●●● ●

●

●●● ●●●● ●●●●● ●●● ●●●● ●●●●●●●●●●● ● ●●●● ●●● ●● ●●

●●

●● ●●● ●●●● ●●● ●● ●●●● ●●●●●●●●●●

●●● ●●●●●●●

●● ●●● ●●●●●

●

● ●● ●●●●●

●

●

●

●

●

● ●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●
●

●

●●

●

●

●

●● ●●●●

●

●

●

●●

●

●●● ●● ●● ●●●●

●

●●●

●

●

●●

●

●●

●

● ●● ● ●●● ●● ●● ●●●●

●

● ●● ●●

●●●

●●

●

●
●●

●
●

●
●

●●●

●
●●

●●

●●●

●
●

●●●
●

●●●
●●●●

●●

●

●

●●●●

●

●
●

●

●

●●●●●●

●

●

●●●●

●

● ●

●

●

●

●
●

●●

●●●

●

●●

●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●● ●● ●●●●●● ●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●●●●●●●●●●

●
●

●
●●●●●●

●
● ●●●●●●● ●●● ●●●● ● ●●●●●●

●

●●●

●

●● ●●
●
●

●

●

●
●

●● ●●●●● ●●●●●● ●●●●●●●●●●●●●

●

●

●

●
●●
●

●

●

● ●

●
●
● ●

●
●●

●●●●

●

●
●●

●
●●●●●●●

●

●
●●

●●

●●

●

●

●●●●●●

●●●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●● ●

●●

●●

●

●

●

●● ●

●●

●●

●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●●

●

● ●● ●●●●● ●●●●● ●●●● ●

●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●● ●● ●●●
●

●●●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●

● ●●●●●● ●●●

●●●●●●●●●●

●
●

● ●
●

●
●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●

●●●●●●● ●●●● ●● ●●●●●●● ●●● ●●●●●

●

●●● ●●●●●●●● ●●

●

●● ●
●

● ●●●●●● ●● ●●●●

●

●●●

●

● ●

●●

●●

●●

●

●

●● ●●

●●

●●●●●

●

● ●

●

● ● ●●

●

● ●● ●●●●

●●

●

●

●● ●

●●

● ●●

●

●● ●

●

●

●

●●

●●

● ●●●

●

● ●●●

●●

● ●●●

●

●

●●●●

●

●

●● ●●● ●

●

● ●●● ●●

●●

●
●

●

●●

●

● ●

●

●

●●

●●

●

●●● ●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●● ●●●●●●●● ●● ●●●● ●●●●

●

● ●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●●

●

●

●

●

●

●●

●

●●●

●●

●●●●●
●

●●●●●● ●●● ●●

●

●●●●

●●
● ●●●●● ●●●● ●●●

●

● ●●● ●●

●

● ●

●

●●

●

●●●●●●●●● ●●

●

●

●● ● ●●●●● ●●

●

●●

● ●

●

●●●●● ●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●●●●●●●●●●●●●

●

●

●
●

●
●

●● ●● ●

●●

●●●

●● ●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●●●●●

●●●●●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●

●

●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●●●●● ●●●●●●●●●●●●●●●●

●

●●
●

●●
●

●

●●

●

●

●

●● ●●●●

●

●

●

●●

●

●●●●●●● ●●●●

●

●●●

●

●

● ●

●

● ●

●

●●●●●●●●●●●●● ●●

●

●●●●●

●●●

●●

●

●
●●

●
●

●
●

●●
●

●
●●

●●

●●●

●
●

●●
●

●

●●●
●●●●

●●

●

●

●●●●

●

●
●

●

●

●●●●●●

●

●

●●●●

●

●●

●

●

●

●
●

● ●

●●●

●

●●

●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●
●
●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ● ●●●●●●●●●

●
●

●
●●●●●●

●
●●● ●●●●● ●●●●●● ● ● ●●●● ●●

●

●●●

●

● ● ●●
●

●

●

●

●
●
●● ● ● ●●●●●●● ●●●●●●●●●●●●●● ●

●

●

●

●
●●

●

●

●

●●

●
●
●●

●
●●

● ●● ●

●

●
●●

●
● ●●● ●●●

●

●
●●

●●

●●

●

●

●●●●●●

●●●

●

● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●●

●

●●●

●

●●● ●●

●

●●●

●

●●● ●●● ●●● ●●●● ●●● ●●● ●●

●●●

●●

●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●●

●

●●● ● ●●●●●●●●● ●●●●●

●
●

●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●● ●●●● ●●●●● ● ●●●●●●●●●●

●●●●●
●●●●
●
●●●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●● ●●●●●●● ●

●
●
●●
●

●
●
●

●

●●●●●●●●●●● ●●●● ● ●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●

●●

●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●●

●

●●●

●

● ●

●●

● ●

●●

●

●

● ● ●●

●●

●●●●●

●

● ●

●

● ●●●

●

● ●● ●●●●

●●

●

●

●● ●

●●

● ●●

●

●● ●

●

●

●

● ●

●●

● ● ●●

●

● ●●●

●●

● ●●●

●

●

●●●●

●

●

●● ● ●● ●

●

● ●●● ●●

●●

●
●

●

●●

●

● ●

●

●

●●

● ●

●

●●● ●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

● ●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●●

●

●

●

●

●

●●

●

●●●

●●

●●●●●
●

● ●●●●●● ●●●●

●

●●●●

●●
●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

● ●

●

●●●●●● ●●●●●

●

●

●●● ●●●● ●●●

●

●●

● ●

●

●●●●●●

●

●●

●

● ●●

●

● ●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●●●●●●●●●●●● ●

●

●

●
●

●
●

●●●●●

●●

●●●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●●●●●

●●●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●

●●●●● ●●●●●

●

●●●●●●●●●●●●●●●

●●●●●
●●●●● ●●

●
●●●●

●
●
●●●●●●●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●●●

●

●●

●

●
●

●●

●●

●

●

●
●
●
●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●●●

●
●

●

●●●●

●

●●●

●

●● ●
●

●●●●●●●●● ●

●

●●●●●●●● ●●●●●●●●● ●●●●●●●●

●●

●

●●

●

●

●
●●

●

●●

●

●●●

●

●●
●●

●●●●

●●●

●●

●

●●●●●●●

●●●

●

●●

●●●

●●

●

●●●●

●●●●●

●

●●●●

●

●

●●●●●●●●

●

●●

●

●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●
●

●●

●●●

●

●

●

●

●

●

●●

●
●

●
●●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●●
●

●

●

●
●
●

●

●●●●●●●

●

●●
●

●
●

●●
●

●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●●

●

●●●●●●●●

●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●
●●●
●
●●●●●●

●●●
●
●●●●●●
●
●●
●
●
●●●●●
●
●●
●
●●●
●
●●●
●

●
●

●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

●

●●●● ●●●●●●

●●●●●●●●●●

●

●

●●
●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●● ●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●●●

●●

●

● ●
●●

●●

●●●

●

●
●●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●
●●

●

●

●●

●
●

●●●●

●

●

●●●

●

●
●

●

●●●●
●
●

●
●
●

●

●
●●

●

●
●

●

●

●●●
●
●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●●●●●● ●●● ●●●●●●●●●●●

●●●●●

●
●●
●

●

●

●●
●

●

●
●

●●

●

●●

●

●●●●

●

● ●●

●

●

●

●

●

●●

●

●●●●● ●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●● ●●● ●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●
●

●

● ●●●● ●●
●

●

●

●

●●●●●

●

●●
●●●●●●

●

●

●●
●●●●●

●
●●●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●
●
●
●

●
●●

●

●●●●●●

●

●

●
●●●

●●●

●

●●

●●●

●●

●

●●

●

●

●●●
●●●●●

●●●

●

●●

●●

●

●●

●

●

●●

●●
●
●

●

●●

●●●

●

●

●
●

●

●

●
●
●●

●●●●●●●●●●

● ●
●
●●

●
●
●
●●

●●
●

●
●

●
● ●●

●

●

●●●●●●●●● ●●● ● ●●

●●●●●
●●●●●●
●
●
●●●●
●
●

● ●● ●●●●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

● ●●

●

●●

●

●
●

●●

● ●

●

●

●
●
●
●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●● ●●●●● ●●

●
●

●

●●●●

●

●●●

●

●●●
●

● ●●●●●●●●●

●

● ●●●●●●● ●● ●●●●●●●● ●●●●● ●●

●●

●

●●

●

●

●
●●

●

●●

●

●●●

●

●●
●●

●●●●

●●●

●●

●

●●●●●●●

●●●

●

●●

●●●

●●

●

●●●●

●●●●●

●

●●●●

●

●

●●●●●●●●

●

●●

●

●● ●● ●●

●

●●

●

●●

●

●●●●●●●●●●●●● ● ●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●
●

●●

●●●

●

●

●

●

●

●

●●

●
●

●
●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●● ● ●

●

●●●●●●● ●●

●●
●

●

●

●
●
●

●

●●●●●●●

●

●●
●

●
●

●●
●

●●●●●●● ●●●● ●●●● ●

●

●●

●

●●

●

●

●

●

●

●●●●● ●●●● ●●●●●● ●●●● ●●●●

●

●●●●●●●●●

●

●●●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●●

●

●●●●●●●●

●

●

●

●●●

●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●
●
●●●●●●

●●●
●
●●●●●●

●
●●
●
●
●●●●●
●
●●
●
●●●
●
●●●
●
●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

●

●●●●●●●●●●

●●●●●●●●●●

●

●

●●
●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●

●

●●●

●

●

●

●● ●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●
●

●

●●●

●●

●

● ●
●●

●●

●●●

●

●
●●

●

●

●
●
●

●●

●●
●
●

●

●
●
●●

●●

●

●

●●

●
●

●●●●

●

●

●●●

●

●
●

●

●●●●
●
●

●
●

●

●

●
●●

●

●
●

●

●

●● ●
●

●

●●●
●

●

●

●●● ●● ● ●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●
●●
●

●

●

●●
●

●

●
●

● ●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●●● ●●●●●

●

●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●
●

●●● ●●●●●●● ●●

●

●●●● ●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●
●

●

●●●●●● ●
●

●

●

●

●●●●●

●

●●
●●●● ●●
●

●

●●
●●●●●

●
●●●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●
●
●
●

●
●●

●

●●●●●●

●

●

●
●●●

●●●

●

●●

●●●

●●

●

●●

●

●

●●●
●●●●●

●●●

●

●●

●●

●

●●

●

●

●●

●●
●
●

●

●●

●●●

●

●

●
●

●

●

●
●
●●

●●●●●●●●●●

●●
●
●●
●
●
●
●●

●●
●
●
●

●
●●
●
●

●

QuBE

● ●● ●●●●●● ●●●●● ●

●●●●●
●●●●●●●●

●●●●
●
●
●●●●●●●●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●●

●

● ●●

●

●●

●

●
●

●●

●●

●

●

●
●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●● ●●●●● ●●

●
●

●

●●●●

●

●●●

●

● ●●
●

● ●●● ●●●●●●

●

● ●●●●●●● ●● ●●●●●●●● ●●●●● ● ●

●●

●

●●

●

●

●
●●

●

●●

●

●●●

●

● ●
●●

●●●●

●●●

●●

●

●●●●●●●

●●●

●

●●

●●●

●●

●

●●●●

●●●●●

●

●●● ●

●

●

● ●●●●●● ●

●

● ●

●

●● ●● ●●

●

● ●

●

●●

●

●●●●●●●●●●●●●● ●●●●●●

●

● ●

●

●●●●

●

●●● ●●

●

●
●

●●

●●●

●

●

●

●

●

●

●●

●
●
●
●●

● ●● ●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

● ●● ●● ●●●●

●●
●

●

●

●
●
●

●

●●●●●●●

●

●●
●

●
●

●●
●

●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●

●●●● ●●●●● ●●●●● ●●●●● ●●●●

●

●●●●●●●●●

●

●●●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●●

●

●●●● ●●●●

●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●● ●● ●●●●
●●●

●
●●●● ●●

●●●
●
●●●●●●
●
●●

●
●
●●●●●
●
●●

●
●●●
●
●●●
●
●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

●

● ●●●●●● ●●●

●●●●●●●●●●

●

●

● ●
●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●● ●●●●●●● ●●●● ●● ●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●● ●● ●● ● ●●●●●● ●● ●●●●

●

●●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●●

●

●
●

●

●

●●●

●●

●

● ●
● ●

●●

● ●●

●

●
● ●

●

●

●
●
●

●●

● ●
●
●

●

●
●

●●
●●

●

●

●●

●
●

●●●●

●

●

●● ●

●

●
●

●

● ●●●
●

●

●
●
●

●

●
●●

●

●
●

●

●

●●●
●

●

●●●
●

●

●

●●● ●● ●●●●●●● ●●●●●●●

●●●●●● ●●●●●●●● ●● ●●●●

●●●● ●

●
●●
●

●

●

●●
●

●

●
●

● ●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●●● ●●●●●

●

●●●●●● ●●● ●● ●●●●●●●● ●●●●● ●●●● ●●●●● ●●● ●●●● ●

●

●●

●

●●●●●●●●● ●● ●

●

●● ● ●●●●● ●●●

●
●

● ●●●●●●● ●●●●

●

●●●●●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●
●

●

●●● ●● ●●
●

●

●

●

●● ●● ●

●

●●
●●●●●●
●

●

●●
●●●●●

●
●●●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●
●
●
●

●
●●

●

●●●●●●

●

●

●
●●●

●●●

●

●●

●●●

●●

●

●●

●

●

●●●
●●●●●

●●●

●

●●

●●

●

●●

●

●

●●

●●
●
●

●

●●

●●●

●

●

●
●

●

●

●
●
●●

●●●●●●●●●●

●●
●
●●
●
●
●
●●

●●
●
●
●

●
●●
●
●

●

1e
−

01
1e

+
03●●●●●●●●●●●●●●●

●●● ●●
●●●●●●
●
●

●●●
●
●
●
● ●●● ●●● ●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●●

●

● ●●

●

●●

●

●
●
● ●

● ●

●

●

●
●
●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●●●● ●● ●●

●
●

●

●●●●

●

●●●

●

●●●
●

● ●●●●●●●●●

●

●●●●● ●●● ●● ●●●●●●●● ●●●●●●●

● ●

●

●●

●

●

●
●●

●

●●

●

●●●

●

●●
●●

●●●●

●●●

●●

●

●●●●●●●

●●●

●

●●

●●●

●●

●

●●●●

●●●●●

●

●●●●

●

●

●●●●●●●●

●

●●

●

●●●●●●

●

●●

●

●●

●

● ● ●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●
●

●●

●● ●

●

●

●

●

●

●

● ●

●
●

●
●●

●●●●● ● ● ●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●

●

●●●●●●●●●

● ●●

●

●

●
●
●

●

● ●●● ●●●

●

●●
●

●
●

●●
●

●●●●●●● ●●●● ● ●●● ●

●

●●

●

●●

●

●

●

●

●

●● ●●● ●●●●●●● ●●● ●●● ●●●● ●

●

● ●●● ●●●● ●

●

● ●●● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●●●●

●

●●●● ●●●●

●

●

●

●● ●

●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●● ●●●● ●●●●● ● ●●●●●●●●●●

●●●●●●●●
●●
●●●
●
●●●●●●

●●●
●
●●●●●●
●
●●
●
●
●●●●●
●
●●
●
●●●
●
●●●
●

●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

●

●●●●●●●●●●

●● ●●●●●●● ●

●

●

●●
●

●

●
●
●
●

●●●●●●●●●● ●●●● ● ●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●

●

●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●●

●

●
●

●

●

●●●

●●

●

● ●
● ●

●●

● ●●

●

●
● ●

●

●

●
●

●

●●

● ●
●
●

●

●
●

●●
●●

●

●

●●

●
●

●●●●

●

●

●● ●

●

●
●

●

● ●●●
●
●

●
●
●

●

●
●●

●

●
●

●

●

●●●
●

●

●●● ●

●

●

●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●
●●
●

●

●

●●
●

●

●
●

● ●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●●● ●●●●●

●

● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●●●●●● ●●●●●●

●

●●● ●●●● ●●●●

●
●

● ●●●●●●●●●●●

●

● ●●●● ●●● ●

●

●

●●●●●●●
●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●● ●

●

●

●
●

●

●●●●●●●
●

●

●

●

●●●●●

●

●●
●●●●●●
●

●

●●
●●●●●

●
●●●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●
●
●

●

●
●●

●

●●●●●●

●

●

●
●●●

●●●

●

●●

●●●

●●

●

●●

●

●

●●●
●●●●●

●●●

●

●●

●●

●

●●

●

●

●●

●●
●
●

●

●●

●●●

●

●

●
●

●

●

●
●
●●

●●●●●●●●●●

●●
●

●●
●
●

●
●●

●●
●
●

●

●
●●
●
●

●

1e
−

06
1e

+
02

●

●

●

●
●
●●

●

●

●

●●
●●

●

●
●●
●
●

●●●
●● ●●●

●●●●● ●●●●●●●●
●

●●

●

●

●

●●

●●●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●●●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●●

●●

●

●●
●
●●

●
●

●●●

●●●

●●

●●●

● ●

● ●
●

●

●●●

●●●●

● ●
●

●

●●●●
●

●

●
●

●

●●●●●●●

●

●●●●

●
●

●

●
●

●

●●

●●

●
●●

●

●●

●

●●●

●

●

●

●●●●●● ●●●●●

● ●●●●●
●●●●●
●●●

●●●●●

●●
●
●
●●●
●●●●●●

●

●

●
● ●

●
●
●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●●●●●●●●●●●
●

●
●

●●●●●●

●
●

●
● ●●●●

●

●●

●

●●

● ●

●
●● ●●●●

●

●● ●

●

●●
● ●● ●

●
●

●

●

●

●

●
●●
●

●
●●
●

●
●●

●●●●●●●●●

●
●●
●

●●●
●
●●●
●●

●

●

●
●●

●

●●
●

●●●●●

● ●●●

●●●●●●
●

●
●●●●

●

●
●

●
●

●●
●●●●●●
●
●●●●

●
●

● ●

●
●

●
●

●

●

●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●●●

●

●●●

●

●

●

●

●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●

●

●●●

●●
●●
●●●●

●
●

●●●●
●●●●●●●
●●
●
●●●●●●
●●●●
●●●●●●
●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●

●

●●● ●

●●

●

●●

●●●●●●●●●●●

●

●

●

●

●
●

●
●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●
●
●
●

●

●●
●●●
●

●

●●●

●

●

●●

●●●●●

●

●
●
●
●●●●

●●

●
●

●

●●
●
●●●●

●●

●

●●

●

●

●

●●●●

●●

●

●

●

●●●
●

●●●

●
●

●

●●
●●●●

●

●
●

●

●

●
●●

●●●

●●
●

●

●

●
●

●

●

●
●
●

●

●

●

●●●
●●

●

●
●●

●

●●
●

●

●
●

●

●

●

●
●

●

●●

●●
●

●●●

●
●

●

●●
●●

●

●

●●
●

●

●●●●

●

●
●●

●●

●

●

●
●

●●

●

●
●

●●
● ●
●

●

●
●

●

●

●

●

●●
●
●
●

●●●

●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●

●●

●
●●

●●

●
●●
●

●

●
●●●

●●●
●
●

●

●●●

●

● ●

●

●●●●

●

●●●

●

●●●●

●

●

● ●●

●

●

●

●

●

●
●

●

●●●

●●

●●●●●

●

●

●●●●●

●

●●

●

●

●●●●●●●

●

●●●

●
●

●

●
●
●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●●

●

●●●

●
●

●●●

●●

●
●●●

●●●●

●●●●

●

●●●●●●●●●● ●

●●●●●● ●●● ●●●●●●●●●●●

●●

●

●●●●●●●●●
●
●●●

●

●

●
●

●●

●●

●

●

●● ●
●●●

●●

●

●

●
●
●●

●●●●●● ●

●

●

●

●●●●●

●●●●

●●

●●
●● ●

●
●●●● ●

●

●

●●●●●●●●

●
●●

●
●●●
●
●●●●

●
●●●

●●●
● ●●●●●●●●

●●
●

●

●●●
●●●●●

●●●

●●

●●

●

● ●●●●●●

●●

●●●
●●

●●●●●● ●●●●●●●●●●●●●●●●●

● ●●●●●●●●●

●● ●●●●● ●● ●

●

●

●

●

●
●
●●

●

●

●

●●
● ●

●

●
●●
●
●

●●●
●●●●●
●●●●●●● ●● ●●●

●
●

●●

●

●

●

●●

●●●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●●●

●

●●●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●●

●●

●

●●
●

●●

●
●

●●●

●●●

●●

●●●

●●

●●
●

●

●●●

●●●●

●●
●

●

●●●●
●

●

●
●

●

●●●●●●●

●

●●●●

●
●

●

●
●

●

●●

●●

●
●●

●

●●

●

●●●

●

●

●

●●●●●●●●●
●●

●●●●●●
●●●●●
●●●

●●●●●

●●
●
●
●●●
●●●●●●

●

●

●
●●

●
●
●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●● ●●

●

●●●●●●●●●●●
●

●
●

●●●●●●

●
●

●
●●●●●

●

●●

●

●●

●●

●
●●●●●●

●

●●●

●

●●
●●● ●

●
●

●

●

●

●

●
●●
●

●
●●
●

●
●●

●●●●●●●●●

●
●●
●

● ●● ●
●● ● ●●

●

●

●
●●

●

● ●
●

●●●●●

●●●●

●●●●●●
●

●
●●●●

●

●
●

●
●

●●
●●●● ●●

●
● ●●●
●

●

●●

●
●

●
●

●

●

●

●

●

●●●

●

● ●●●

●

●●●●

●

● ●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●●●

●

●●●

●

●

●

●

●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●

●

●●
●

●●
●●
●●●●

●
●

●●●●
●●●●●●●●●●

●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●

●●

●

●●

●●●●●●●●●●●

●

●

●

●

●
●

●
●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●
●

●

●●
●●●
●

●

●●●

●

●

●●

●●●●●

●

●
●
●
●●●●

● ●

●
●

●

●●
●
●●●●

●●

●

●●

●

●

●

●●●●

●●

●

●

●

●●●
●

●●●

●
●

●

●●
●●●●

●

●
●
●

●

●
●●

●●●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●●

●

●●
●

●

●
●

●

●

●

●
●

●

●●

●●
●

●●●

●
●

●

●●
●●

●

●

●●
●

●

●●●●

●

●
●●

●●

●

●

●
●

●●

●

●
●

●●
● ●

●

●

●
●

●

●

●

●

●●
●
●

●
●●●

●

●

●●●

●

●

●

● ●●●●●

●

●●●●●●●●●●●

●●

●
●●
●●

●
●●
●

●

●
●●●
●●●
●

●

●

●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●●

●

●

●

●

●

●
●

●

●●●

●●

●●●●●

●

●

●●●●●

●

●●

●

●

● ●●●●●●

●

●●●

●
●

●

●
●
●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●●

●

●●●

●
●

●●●

●●

●
●● ●

●●●●

●● ●●

●

●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●
●
●●●

●

●

●
●

●●

●●

●

●

● ●●
●●●

●●

●

●

●
●

●●
●●●● ●

● ●

●

●

●

●●●●●

●●●●

●●

●●
●●●
●
●●●●●●

●

●●●●●●●●

●
●●
●
●●●
●
●●●●

●
●●●

●●●
●●●
●●●●●●
●●
●
●

●●●
●●●●●

●●●

●●

●●

●

●●●●●●●

●●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●

●

●

●

●
●
●●

●

●

●

●●
●●

●

●
●●
●
●
●●●
●●●●●

●●●●●●●●●●●●
●
●

●●

●

●

●

● ●

●● ●●

●

●

●

● ●

●

●

●
●

●

●

●
●
●●●●

●

●●●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●

●

●● ● ●

●

●

●

●

● ●

●●●

●●

●

●●
●
●●

●
●

●●
●

●●●

●●

●●●

● ●

●●
●

●

●●●

●●●●

●●
●

●

●●●●
●

●

●
●

●

●●●●●●●

●

●●●●

●
●

●

●
●

●

●●

● ●

●
●●

●

●●

●

●●●

●

●

●

●●●●●● ●●●●●

● ●●●●●
●●●●●
●●●

●●●●●

●●
●
●
● ●●

●●●●●●

●

●

●
● ●

●
●
●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●● ●●

●

●●●●●●●●●●●
●

●
●

●●●●●●

●
●

●
● ●●●●

●

●●

●

●●

● ●

●
●●●●● ●

●

●● ●

●

●●
●●●●

●
●

●

●

●

●

●
●●
●

●
●●
●

●
●●

●●●●●●●●●

●
●●
●
●●●
●
●●●
●●

●

●

●
●●

●

●●
●

●●● ●●

●●●
●

●●●●●●
●

●
●●●●

●

●
●

●
●

●●
●●●●●●
●
●●●●
●
●

● ●

●
●

●
●

●

●

●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●● ●●●●●●●●●● ●●●●●●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●●

● ●●●

●

●●●

●

●

●

●

●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●

●

●●
●

●●
●●
●●●●

●
●

●●●●●●●●●● ●●●
●

●●●●●●
● ●●●

●●●●●●●●●●● ●● ●●●●●● ●●●● ● ●●●●● ●● ●● ●● ●

●

●●●●

●●

●

●●

●●●●●●●●●●●

●

●

●

●

●
●

●
●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●
●
●
●

●

●●
●●●
●

●

●●●

●

●

●●

●●●●●

●

●
●
●
●●●●

●●

●
●

●

●●
●
●●●●

●●

●

●●

●

●

●

●●●●

●●

●

●

●

●●●
●

●●●

●
●

●

●●
● ●
●●

●

●
●

●

●

●
●●

●● ●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
● ●

●

●●
●

●

●
●

●

●

●

●
●

●

●●

●●
●

●●●

●
●

●

●●
●●

●

●

●●
●

●

●●●●

●

●
●●

● ●

●

●

●
●

●●

●

●
●

●●
● ●
●

●

●
●

●

●

●

●

●●
●

●
●

●●●

●

●

● ●●

●

●

●

●●●●●●

●

●●●●●●●●●●●

●●

●
●●
●●

●
●●
●

●

●
●●●

●●●
●
●

●

●●●

●

● ●

●

● ●●●

●

●● ●

●

● ●●●

●

●

●●●

●

●

●

●

●

●
●

●

●●●

●●

●●●●●

●

●

●●●●●

●

●●

●

●

●●●●●●●

●

●●●

●
●

●

●
●
●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●●

●

●●●

●
●

●●●

●●

●
●●●

●●●●

●●●●

●

●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●
●
●●●

●

●

●
●

●●

●●

●

●

●●●
●● ●

●●

●

●

●
●

●●
●●●●●●●

●

●

●

●●●●●

●●●●

●●

●●
●● ●

●
●●●● ●

●

●

●● ● ●●●●●

●
●●

●
●●●
●
●●● ●

●
●●●

●●●
● ●●●●● ●●●

●●
●

●

●●●
●●●●●

●●●

● ●

●●

●

●●● ●● ●●

●●

●● ●
●●

●●●● ●●● ●● ●●●● ●●●●●●●●●●

●●● ●●●●●●●

●● ●●● ●●●●●

● sKizzo
●

●

●

●
●
●●

●

●

●

●●
●●

●

●
●● ●

●
●●●
●●●●●

●●●●●●●
●●● ●●

●
●

●●

●

●

●

●●

●●●●

●

●

●

●●

●

●

●
●

●

●

●
●

●●●●

●

●●●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●●●

●●

●

●●
●

●●

●
●

●●
●

●●●

●●

●●●

●●

●●
●

●

●●●

●●●●

●●
●

●

●●●●
●

●

●
●

●

●●●●●●●

●

●●●●

●
●

●

●
●

●

●●

● ●

●
●●

●

●●

●

●●●

●

●

●

●●●●●● ●●●●●

● ●●●●●
●●●●●
●●●

●●●●●

●●
●
●
●●●
●●●●●●

●

●

●
● ●

●
●
●

●●●

●
●
●

●

●

●

●

●

●

●●

●

●
●● ●●

●

● ● ●●●●●●●●●
●

●
●

●●●●●●

●
●

●
● ●●●●

●

●●

●

●●

● ●

●
●●●● ●●

●

●●●

●

● ●
●●● ●

●
●

●

●

●

●

●
● ●●

●
●●
●

●
●●

●●●●●●●●●

●
●●

●
●●●

●
●●●●●

●

●

●
●●

●

●●
●

● ●● ●●

● ●●●

● ●●● ●●
●

●
●●●●

●

●
●

●
●

●●
●●●● ●●●

● ● ●●
●

●

● ●

●
●
●
●

●

●

●

●

●

●● ●

●

● ●●●

●

●●● ●

●

● ●●●

●

●●● ●●● ●●● ●●●● ●●● ●●● ●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●●

●●●●

●

●●●

●

●

●

●

●● ●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●

●

● ●●●● ●●●●● ● ●●●●●●●●●●

●●

●●

●
●

●

●●
●

●●
●●
●●●●

●
●
●●●●
●●●●●●●
●●
●
●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●

●●

●

●●

●● ●●●●●●● ●●

●

●

●

●

●
●

●
●

●

●●●●●●●
●
●● ●●●● ● ●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●

●●

●
●
●

●

●

●●
●●●
●

●

●●●

●

●

●●

●●●●●

●

●
●
●
●●●●

●●

●
●

●

●●
●
●●●●

●●

●

●●

●

●

●

●●●●

●●

●

●

●

●●●
●

●●●

●
●

●

●●
● ●

●●

●

●
●

●

●

●
●●

●●●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●●

●

●●
●

●

●
●

●

●

●

●
●

●

● ●

●●
●

● ●●

●
●

●

●●
●●

●

●

●●
●

●

●●●●

●

●
●●

● ●

●

●

●
●

●●

●

●
●

●●
● ●

●

●

●
●

●

●

●

●

●●
●

●
●

●●●

●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●

●●

●
●●
●●

●
●●
●

●

●
●●●

●●●
●
●

●

●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●●

●

●

●

●

●

●
●

●

●●●

●●

●●●●●

●

●

●●●●●

●

●●

●

●

●●●●●●●

●

●●●

●
●

●

●
●
●

●●●●

●

●●

●

●●●

●

●

●

● ●

●

●●●●●● ●●

●

●

●

●

●

●●

●

●●●

●
●

●●●

●●

●
●●●

●●●●

●●●●

●

● ●●●● ●●● ●● ●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●
●
●● ●

●

●

●
●

●●

●●

●

●

●●●
●●●

●●

●

●

●
●

●●
●●●●●●●

●

●

●

●●●●●

●●●●

●●

●●
●● ●

●
●●●● ●
●

●

●●●●●●●●

●
●●
●
●●●
●
●●●●
●
●●●

●●●
● ●●●●● ●●●

●●
●
●

●●●
●●●●●

●●●

●●

● ●

●

● ●●●●●●

●●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●

●●●●● ●●●●●

●

1e−06 1e+02

●●●●●●●●●●●●●●●●

●

●

●● ●●●●● ●●●

●●●●● ●●

●
●
●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●●●

●●
●

●

● ●

●

●

●●

●●
●●●
●●●●
●●
●
●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●
●

●

●●●

●

●

●●●● ●

●
●

●
●

●●●●●●●● ●

●

●
●●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●

●●●

●

●●

●●●●●●●●●
●
●

●●

●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●

●

●

●●●●●●●●● ●●●●●●●●●

●

●●

●
●
●

●

●

●

●●●●●●●●●●●●●●●●
●
●

●

●●

●

●●●●

●

●●●●●

●

●

●
●

●
●

●

●

●●

●● ●

●

●

●

● ●

●

●● ●●●●

●

●

●

●●●●●●

●

●●

●
●●●●
●●●●

●

●●

●

●●●
●
●
●●
●

●

●●●●●●●
●●

●
●●

●

●

●

●●

●
●
●●

●
●●

●

●

●●●

●
●

●●

●

●

●●
●●●●

●
●●

●

●
●●

●

●
●

●

●

● ●●
● ●● ●●

●

●

●

●

●

●
●●
●●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●

●●

●

●●

●

●● ●
●

●

●

●

●●

●

●
● ●

●
●

●

●

●●

●

●
● ● ●●

●

●

●●

●

●
● ●

●
●

●

●●●●●●●●

●

●●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●

●

●

●

●●●●●●●●●●

●
●
●●

●●

●
●

●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●● ●●●●●●
●
●
●
●

●●
●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●
●●
●●

●●●●
●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●
●

●

●

● ● ●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●●●●●● ●●● ●

●●●●●●●●●●

●●●●●

●

●●●

●

●
●

●

●●●●

●

●●●●●●●●●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●
●

●

●●●●●●●●●●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●●● ●●● ●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●● ●

●
●

●

● ●●●● ●● ●

●

●
●

●●●●
●

●

●● ●●●●●●
●

●

●●
●●

●●●●●●●

●●●

●

●

●

●

●

●●

●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●● ●●●

●
●
●●

●

●●●
●●

●

●●

●

●●●●●●

●●

●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●

● ●

●

●
●●●

●

●●

●● ●●

●

●● ●● ●

●

●●●●●●●●● ●●● ● ●●●

●

●

●●●●●●●●●●

●●●●●●●

●
●

●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●●●

●●
●

●

● ●

●

●

●●

●●
●●●
●●●●
●●
●
●

●

●●●●●●

●

●

●●● ●●

●

●

●

●●

●
●

●

●●●

●

●

●●●●●

●
●

●
●

●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●● ●●

●

●

●

●●

●

●

●●●

●

●●

●●●●●●●●●
●
●

●●

●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●

●

●

●●●●●●●●● ●●● ●● ●● ●●

●

●●

●
●
●

●

●

●

●●●●●●●●●●● ● ●●●●
●
●

●

●●

●

●●●●

●

●●●●●

●

●

●
●

●
●

●

●

●●

●●●

●

●

●

●●

●

●● ● ●●●

●

●

●

●●●●●●

●

●●

●
●●●●
●●●●

●

●●

●

● ●●
●

●
● ●

●

●

●●●●●●
●

●●

●
●●

●

●

●

●●

●
●
●●

●
●●

●

●

●●●

●
●

●●

●

●

●●
●●●●

●
●●

●

●
●●

●

●
●

●

●

● ●●
● ●● ●●

●

●

●

●

●

●
●●

● ●●

●

●

●●

●

●●

● ●●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●

●●

●

●●

●

●●●
●

●

●

●

●●

●

●
●●

●
●

●

●

●●

●

●
● ●●●

●

●

●●

●

●
● ●

●
●

●

●●●●●●●●

●

●●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●

●

●

●

●●●●●●●●●●

●
●
●●

●●

●
●

●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●

●●
●●●

●

●●●●● ●● ●● ●●●●●●●●●●●

●●●
●
●
●
●●
●●

●●●●
●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●
●

●

●

●● ●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●

●

●●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●
●

●

●

●●●

●

●● ● ●●●●●● ●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●

●●●

●

●
●

●

●●●●

●

●●●● ●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●●●●

●

●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●
●

●

●● ●●●●●●● ●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●● ●

●
●

●

●●●●●● ●●

●

●
●

●●●●
●

●

●● ●●●● ●●
●

●

●●
●●
●●●●●●●

●●●

●

●

●

●

●

●●

●●
●●●●●●●●●●
●
●●●●●●●●●●●●● ●●●●●●

●

●●●●

●

●●●●●●●●●●

●
●
●●

●

●●●
●●

●

●●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●●
●

●

●●

●●●●

●

●●●●●

●

1e−01 1e+03

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●●●●●●●

●
●
●

●●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●●● ●● ●

●

●●●●

●

●●●

●●
●

●

● ●

●

●

●●

● ● ●●●
●● ●●

●●
●

●
●

● ●● ● ●●

●

●

●●●●●

●

●

●

●●

●
●

●

●●●

●

●

●●●● ●

●
●

●
●

●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●

●●●

●

●●

●●●● ●●●●●
●
●

●●

●●●●●

●

●●●●●●●●●● ●●● ●●●

●●

●●●●● ●●●●●●

●●

●●

●

●

●●●●●●●●● ●●● ●●●●●●

●

●●

●
●
●

●

●

●

●●●●●●●●●●●●●●●●
●
●

●

●●

●

●●●●

●

●●●●●

●

●

●
●

●
●

●

●

●●

●● ●

●

●

●

●●

●

●● ●●●●

●

●

●

●●●●●●

●

●●

●
●●●●
●●●●

●

●●

●

●●●
●
●
●●
●

●

●●●●●●●
●●

●
●●

●

●

●

●●

●
●
●●

●
●●

●

●

●●●

●
●

●●

●

●

●●
●●●●

●
●●

●

●
●●

●

●
●

●

●

● ●●
● ●● ●●

●

●

●

●

●

●
●●
●●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●
●

●●●

●

●

● ●

●

●●

●●

●

●●

●

●● ●
●

●

●

●

●●

●

●
● ●

●
●

●

●

●●

●

●
●● ●●

●

●

●●

●

●
●●

●
●

●

●●●●● ●●●

●

●●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●

●

●

●

●●●●●●●●●●

●
●
●●

●●

●
●

●

●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●● ●● ●●
●●●● ●●●● ● ●●●●● ●● ●● ●● ●●●●●●●●●●●

●
●
●
●

●●
●●●

●

●● ●●● ●●●●● ●●●●●●●●●●

●●●
●
●
●
●●
●●

●●●●
●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●
●

●

●

● ●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●●

●● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

● ●●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●

●●●

●

●
●

●

● ●●●

●

●● ●●● ●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●
●

●

●●●●●●●●●●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●● ●

●
●

●

●●●●●●●
●

●

●
●

●●●●
●

●

●●●●●●●●
●

●

●●
●●

●●●●●●●

●●●

●

●

●

●

●

●●

●●
●● ●●● ● ●●●●

●
●●●● ●●●●●●● ●●●●● ●●●

●

●●●●

●

●●● ●●●● ●●●

●
●
●●

●

●●●
● ●

●

●●

●

●● ●● ●●

●●

●● ●●● ●●●● ●●● ●● ●●●● ●●●●●●●●●●

●●

●

●
●●●

●

●●

●● ●●

●

●●●●●

●

● ●● ●●●●●● ●●●●● ●●

●

●

●●●●●●●●●●

●●●●●●●

●
●
●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●● ●● ●

●

●●●●

●

●●●

●●
●

●

● ●

●

●

● ●

● ● ●●●
●● ●●
●●
●
●

●

● ●● ●●●

●

●

●●● ●●

●

●

●

●●

●
●

●

●●●

●

●

●●●●●

●
●

●
●

●●● ●●●●●●

●

●
●●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●● ● ●

●

●

●

●●

●

●

●●●

●

●●

●●●● ●● ●●●
●
●

●●

●●●●●

●

●●●●●●●●●● ●●●●●●

●●

●●●●●●●●●●●

●●

● ●

●

●

● ●●●●●● ●●● ●● ●● ●● ●●

●

● ●

●
●
●

●

●

●

●●●●●●●●●●●● ●●●●
●
●

●

● ●

●

●●●●

●

●●● ●●

●

●

●
●

●
●

●

●

●●

●●●

●

●

●

●●

●

●● ● ●● ●

●

●

●

●●● ●●●

●

●●

●
●●●●
●●●●

●

●●

●

●●●
●

●
●●
●

●

● ●● ●● ●
●
●●

●
●●

●

●

●

●●

●
●
●●

●
●●

●

●

●●●

●
●

●●

●

●

●●
●●●●

●
●●

●

●
●●

●

●
●
●

●

● ●●
● ●● ●●

●

●

●

●

●

●
●●

● ●●

●

●

● ●

●

●●

● ●●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●

●●

●

● ●

●

● ●●
●

●

●

●

● ●

●

●
●●

●
●

●

●

●●

●

●
● ● ●●

●

●

●●

●

●
● ●

●
●

●

●●●● ●●●●

●

●●●● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●

●

●

●

●●●●●●●●● ●

●
●
●●

●●

●
●

●

●

●●●●●●●●●●

●●●● ●● ●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●

●
●
●
●

●●
●●●

●

●● ● ●● ●●●● ● ●●●●●●●●●●

●●●
●
●
●
●●
●●

●●●●
●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●
●

●

●

●● ●●
●

●

●●●●●●● ●●●● ●● ●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●● ●● ●● ● ●●●●●● ●● ●●●●

●

●●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●●●

●

●● ●●●●●●● ●●●●●●●

●●●●●● ●●●●

●●●● ●● ●●●●

●●●● ●

●

●●●

●

●
●

●

●●●●

●

●●●● ●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●●●●

●

●● ●● ●●●●●●●● ●●●●● ●●●● ●●●●● ●●● ●●●● ●

●

●

●

●

●●●●●

●

●●● ●● ●

●

●●

●

●●●

●

● ●●●

●
●

●

●●●●●●● ●●●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●● ●

●
●

●

●●● ●● ●●●

●

●
●

●● ●●
●

●

●●●●●●●●
●

●

●●
●●
●●●●●●●

●●●

●

●

●

●

●

●●

●●
●● ●●●●●●●●

●
●●● ●●●●●●●●●●●●● ●●●

●

●●●●

●

●●● ●●●●●●●

●
●
●●

●

●●●
●●

●

●●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●●
●

●

●●

●●●●

●

●●●●●

●

1 50 5000

1
50

50
00

sSolve

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

qu
an

to
r

sK
iz

zo

sS
ol

ve

X
2c

ls
Q

Q
uB

E

quantor

sKizzo

sSolve

X2clsQ

QuBE

Figure 3: Pairwise correlations among algorithms of the QBF-2011 scenario: A scatter plot
matrix on a log scale (left) and the plot of a correlation matrix (right).

boxes represent positive correlation, red boxes represent negative correlation,
and shading indicates the strength of correlation. The algorithms are also clus-
tered according to these values (using Ward’s method [114]) and then sorted,
such that similar algorithms appear together in blocks. This type of clustering
allows the identification of algorithms with highly correlated performance.

Figure 4 shows the correlation between algorithms for the SAT12-ALL sce-
nario. The plot reveals four groups of algorithms (minisatpsm to restartsat,
sattimep to tnm, marchrw and the three mphaseSAT -algorithms) with high
correlations within each group. It may be desirable to include just a single rep-
resentative from each group, reducing the size of the entire portfolio from 31 to
four algorithms.

As we do with algorithm runs, we characterise the features by giving sum-
mary statistics of the feature values, the run status and the cost of the feature
groups. Table 3 shows the summary of the feature groups for the SAT12-RAND
scenario. In this scenario, all 115 features have the feature group “Pre” as a
requirement. While this preprocessing group succeeded in all cases, one other
group did not: the feature group “CG” (which computes clause graph features)
failed in 37.37% of cases due to exceeding time or memory limits, and even for
instances where it succeeded, it was quite expensive (8.79 seconds on average).
Such information is useful to understand the behavior of the features: how risky
is it to compute a feature group, and how much time must one invest in order
to obtain the corresponding features?

We also check whether instances occur with exactly the same feature val-
ues, indicating that the experimenter might have erroneously run on the same
instance twice.

16



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
m

in
is

at
ps

m
rc

l
eb

gl
uc

os
e

gl
uc

os
e2

qu
te

rs
at

cr
yp

to
m

in
is

at
20

11
lrg

ls
hr

gl
ue

m
in

is
at

lin
ge

lin
g

pr
ec

os
at

so
l

sp
ea

r−
sw

sp
ea

r−
hw

cl
as

p2
cl

as
p1

m
xc

09
pi

co
sa

t
sa

pp
er

lo
t

eb
m

in
is

at
re

st
ar

ts
at

sa
tti

m
ep

sa
tim

e1
1

sa
tti

m
e

ea
gl

eu
p

gn
ov

el
ty

p2
sp

ar
ro

w
tn

m
m

ar
ch

rw
m

ph
as

eS
AT

64
m

ph
as

eS
AT

m
m

ph
as

eS
AT

minisatpsm
rcl

ebglucose
glucose2
qutersat

cryptominisat2011
lrglshr

glueminisat
lingeling
precosat

sol
spear−sw
spear−hw

clasp2
clasp1
mxc09
picosat

sapperlot
ebminisat
restartsat
sattimep
satime11

sattime
eagleup

gnoveltyp2
sparrow

tnm
marchrw

mphaseSAT64
mphaseSATm

mphaseSAT

Figure 4: Algorithm correlations on the SAT12-ALL scenario.

All of the above tables and figures and many more were generated by our
online platform, and are also accessible through the R package aslib. The func-
tions are highly configurable and customisable. We plan to extend our data
analysis with additional techniques, such as more measures of algorithm perfor-
mance [94].

6. Study of Algorithm Selection Techniques

In this section, we present an exploratory benchmark study that gives an in-
dication of the diversity of our benchmarks. First, we evaluate the performance
of algorithm selectors on our scenarios. We then perform a subset selection study
to identify the important algorithms and instance features in each of the scenar-
ios. We make no claim that the presented experimental settings are exhaustive
or that we achieve state-of-the-art algorithm selection performance; rather, we

17



runstatus [%] cost [s]

feature group # ok . . . crash min mean max missing [%]

Pre 115 100.00 . . . 0.00 0.00 0.06 1.31 0.00
Basic 14 100.00 . . . 0.00 0.00 0.00 0.07 0.00
KLB 20 100.00 . . . 0.00 0.00 0.18 6.09 0.00
CG 10 62.63 . . . 37.37 0.02 8.79 20.28 0.00

DIAMETER 5 100.00 . . . 0.00 0.00 0.60 2.11 0.00
cl 18 100.00 . . . 0.00 0.01 1.99 2.02 0.00
sp 18 100.00 . . . 0.00 0.01 0.33 3.05 0.00

ls saps 11 100.00 . . . 0.00 1.36 2.12 2.51 0.00
ls gsat 11 100.00 . . . 0.00 2.03 2.29 3.03 0.00
lobjois 2 100.00 . . . 0.00 2.00 2.00 2.27 0.00

Table 3: Feature group summary for the SAT12-RAND scenario. The second column shows
how many features depend on another feature group to be computed first. Percentages of
runstatus events are followed by summary statistics for group costs.

provide results that can be used as a baseline comparison for other approaches.
These results, and our framework in general, allow us to study which algorithm
selection approaches work well for which of our scenarios.

We use the LLAMA toolkit [62], version 0.9.1, in combination with the aslib
package12 to run the algorithm selection study. LLAMA is an R [84] package
that facilitates many common algorithm selection approaches. In particular, it
enables access to classification, regression, and clustering models for algorithm
selection—the three main approaches we use in our study. We use the mlr
R package [14] as an interface to the machine learning models provided by
other R packages. We parallelize all of our benchmark experiments through the
BatchExperiments [13] R package.

In this paper, we only present aggregated benchmark results, but the in-
terested reader can access full benchmark results at http://aslib.net. Our
study is fully reproducible as the complete code to generate these results is part
of the aslib package.

We use the subset of feature groups that are recommended by the authors of
the respective scenario, called default feature set. For the feature subset selec-
tion study, we have used all feature groups. Detailed and continuously updated
information (e.g., the names of the feature processing groups we selected and
their average costs) is provided on the ASlib website.

6.1. Experimental setup

We consider three approaches to algorithm selection that have been studied
extensively in the literature (cf. Section 2.2):

12https://github.com/coseal/aslib-r

18

http://aslib.net
https://github.com/coseal/aslib-r


• classification applies a multi-class classifier to directly predict the best
performing algorithm of the k possible algorithms;

• regression predicts each algorithm’s performance via a regression model
and then chooses the one with the best predicted performance;

• clustering groups problem instances in feature space, then determines the
cost-optimal solver for each cluster and finally assigns to each new instance
the solver associated with the instance’s predicted cluster.

Technical Name Algorithm and Parameter Ranges Reference

classification
ksvm support vector machine [58]

C ∈ [2−12, 212], γ ∈ [2−12, 212]
randomForest random forest [69]

ntree ∈ [10, 200], mtry ∈ [1, 30]
rpart recursive partitioning tree, CART [103]

regression
lm linear regression [84]
randomForest random forest [69]

ntree ∈ [10, 200], mtry ∈ [1, 30]
rpart recursive partitioning tree, CART [103]

clustering
XMeans extended k-means clustering [40]

Table 4: Machine learning algorithms and their parameter ranges used for our study.

The specific machine learning algorithms we employed for our study are
shown in Table 4. They include representatives of each of the three major
approaches above.

The linear model we employ is the best-studied regression method. In its
most basic version, it models the data using the linear function f(x) = βTx+β0;
parameters are obtained by minimizing squared loss. The trees constructed by
the CART algorithm, which can handle both classification and regression prob-
lem, are grown in a top-down manner and divide the training data into rectan-
gular regions by axis-parallel splits at each interior node. Splits are selected by
considering label impurity reduction measured by an impurity function, based,
e.g., on the Gini index for classification or squared loss for regression. Leaf nodes
associate the best, but constant, label with their feature region for prediction.
Random forests form an ensemble of ntree simpler trees by bootstrapping mul-
tiple data sets from the original one and then fitting a tree for each. Predictions
are made through majority voting for classification and averaging for regression.
Furthermore, ensemble members are decorrelated by randomly selecting only
a few candidate features for each split point (controlled by parameter mtry)
in a tree and maximally growing trees without any early stopping or pruning.
Support Vector Machines perform linear classification in a transformed feature

19



space by maximizing the margin between the positive and negative examples.
Parameter C controls the trade-off between the size of the margin and clas-
sification loss. The feature mapping is implicitly built into the algorithm by
substituting the regular inner product of the Euclidean space with a so-called
kernel. Parameter γ is a property of the radial basis function kernel used here.
The XMeans clustering algorithm is the only unsupervised learning algorithm
we study. It is an extension of the well known k-means method to adaptively
select the number of clusters. k-means starts with k random cluster centroids,
assigns each point to the nearest centroid, and then iteratively recomputes the
cluster centroids and cluster assignments until convergence. For further details
on all methods the reader is referred to the standard literature [41] and for
XMeans to [21].

We tuned the hyperparameters of ksvm and randomForest (classification
and regression) within the listed parameter ranges, using random search with
250 iterations and a nested cross validation (with three internal folds) to ensure
unbiased performance results. All other parameters were left at their default
values. For the clustering algorithm, we set the (maximum) number of clus-
ters to 30 after some preliminary experiments; the exact number of clusters is
determined internally by XMeans.

6.2. Data preprocessing

We preprocessed the data as follows. We removed constant-valued (and
therefore irrelevant) features and imputed missing feature values as the mean
over all non-missing values of the feature.13 For the clustering methods, we
normalized the range of each feature to the interval [−1, 1]. The scenarios we
consider in this article contain only continuous features. The other machine
learning methods that require normalized data perform this internally (for ex-
ample the SVMs). Missing performance values were imputed using the timeout
value of the scenario.

For each problem instance, we calculated the total feature computation cost
as the sum of the costs of all feature groups, in the order specified in the defini-
tion of the scenario. If the problem instance was solved during feature computa-
tion (e.g., using SLS-probing features [118]), we only considered the cost of the
feature groups up to the one that solved it. Furthermore, we set the runtime
for all algorithms to zero for instances solved during feature computation. If
the instance was not solved during feature computation, we added the feature
costs computed in this way to the runtimes of the individual algorithms on
the respective instances (c(fi) + t(i, a)). Given these new runtimes, we checked
whether the specified timeout was now exceeded and set the run status of any
corresponding algorithm accordingly. Preprocessing runtimes to include feature
computation time in this way allows us to focus on an algorithm selection sys-
tem’s overall performance, and avoids overstating the fraction of instances that

13For the CSP-MZN-2013 scenario, we also removed the gc circuit feature, which is almost
constant.

20



would be solved within a time budget in cases where features are expensive to
compute.

Each scenario specifies a partition into 10 folds for cross-validation to ensure
consistent evaluation across different methods. We used this partition in our
study.

6.3. Evaluation

We evaluated different algorithm selection models using three different measures:

• the fraction of all instances solved within the timeout;

• the penalized average runtime with a penalty factor of 10, i.e., a timeout
counts as 10 times the timeout;

• the average misclassification penalty, which, for a given instance, is the
difference between the performance of the selected algorithm and the per-
formance of the best algorithm.

The performance of each algorithm selection model was compared to the
virtual best solver (VBS) and the single best solver. The virtual best solver
selects the best solver from A for each instance (∀i ∈ I : argmaxa∈A m(i, a)).
Note that the misclassification penalty for VBS is zero by definition. The single
best solver is the actual solver that has the overall best performance on the data
set (argmaxa∈A

∑
i∈I m(i, a)). Specifically, we consider the solver with the best

PAR10 score over all problem instances in a scenario.

6.4. Results

Figure 5 presents a summary of the results of our study. In most cases, the
algorithm selection approaches performed better than the single best solver. We
expected this, as most of our data sets come from publications that advocate
algorithm selection systems.

Nevertheless, there were significant differences between the scenarios. While
almost all algorithm selection approaches outperformed the single best algo-
rithm, there are some scenarios that seem to be much harder for algorithm
selection. In particular, on the SAT12-INDU scenario, three approaches were
not able to achieve a performance improvement.

Random regression forests stood out quite clearly as the best overall ap-
proach, achieving the best performance on 13 of the 17 datasets. This is in line
with recent results showing the strong performance of this model for algorithm
runtime prediction [54]. The results are also consistent with those of the original
papers introducing the datasets.

XMeans performed worst on average. On some scenarios, it performed well,
in particular SAT11-RAND, MAXSAT12-PMS, and PROTEUS-2014. However,
on SAT12-ALL, SAT12-INDU, and SAT15-INDU XMeans performed worse
than the single best solver. The default subset of instance features appears
to be unfavorable for XMeans on industrial SAT instances.

21



0.590.620.72* 0.48 0.470.65 0.12

0.110.15*0.10 0.13 −0.290.01 0.01

0.860.850.76 0.83 0.820.90* 0.54

0.060.700.63 0.43 0.320.72* −0.01

0.370.700.60 0.51 0.450.75* 0.08

−0.180.440.37 0.24 −0.010.47* −0.16

0.34*0.10−0.00 0.28 −0.500.25 0.10

0.210.220.25 0.09 0.020.49* −0.10

0.720.790.67 0.71 0.700.88* 0.43

0.380.530.46 0.35 0.520.79* 0.07

0.620.650.62 0.63 0.620.90* 0.60

0.270.370.31 0.46 0.190.64* 0.45

0.83*0.670.55 0.66 0.290.77 0.23

0.680.79 0.83 0.770.91* 0.160.82

0.470.730.73 0.77 0.710.81* 0.54

0.470.430.39 0.55 0.530.80* 0.40

0.230.160.23 0.16 0.160.29* 0.22PREMAR−ASTAR−2015

ASP−POTASSCO

PROTEUS−2014

CSP−MZN−2013

CSP−2010

MAXSAT15−PMS−INDU

MAXSAT12−PMS

QBF−2014

QBF−2011

SAT15−INDU

SAT12−RAND

SAT12−INDU

SAT12−HAND

SAT12−ALL

SAT11−RAND

SAT11−INDU

SAT11−HAND

classif/
ksvm
(0.48)

classif/
randomForest

(0.52)

classif/
rpart
(0.42)

regr/
lm

(0.48)

regr/
randomForest

(0.65)

regr/
rpart
(0.34)

cluster/
XMeans
(0.22)

Figure 5: Summary of the results of our study. We show how much of the gap between the
single best and the virtual best solver in terms of PAR10 score was closed by each model.
That is, a value of 0 corresponds to the single best solver and a value of 1 to the virtual best.
Negative values indicate performance worse than the single best solver. Within each data set,
the best model is annotated with an asterisk. The shading emphasizes that comparison: green
cells correspond to values close to 1 (i.e., close to the virtual best solver), whereas red shows
the models with bad performance. White shading indicates values close to 0, i.e. the model
has the same performance as the single best algorithm. The arithmetic mean for each model
type across all scenarios is given in parentheses after the model name.

6.5. Algorithm and Feature Subset Selection

To provide further insight into our algorithm selection scenarios, we ap-
plied forward selection [61] to the algorithms and features to determine whether
smaller subsets still achieve comparable performance. We performed forward
search independently for algorithms and features for each scenario. Forward
selection is an iterative selection algorithm whose the first iteration starts with
an empty set of algorithms and features; in each subsequent iteration, it greedily
adds the algorithm or feature to the set which most improves the cross-validated
score (PAR10) of the predictor. The selection process terminates when the score
does not improve by at least ε. We set ε = 1, which roughly corresponds to an
improvement of 1 second per instance. In all other aspects, the experimental
setup was the same as described before.

We used random regression forests14, as it was the best overall approach so

14We used random forests with default parameters, as the tuning was done for the set of

22



far. We note that the selection results use standard cross validation rather than
the nested version, which may result in overconfident performance estimates for
the selected subsets [16]. We accept this caveat since our goal here is to study
the ranking of the features and the size of the selected sets, and a more complex,
nested approach would have resulted in multiple selected sets.

Scenario PAR10 full set Number PAR10 reduced set

SAT11-HAND 16943.49 15 → 8 15919.09
SAT11-INDU 13246.70 18 → 4 12127.05
SAT11-RAND 10253.09 9 → 4 10180.39
SAT12-ALL 971.45 31 → 11 979.17
SAT12-HAND 4303.81 31 → 10 4187.13
SAT12-INDU 2763.37 31 → 7 2775.61
SAT12-RAND 3241.42 31 → 2 3153.48
SAT15-INDU 3845.52 28 → 6 3604.57
QBF-2011 9232.49 5 → 4 9198.01
QBF-2014 2090.02 14 → 8 2040.33
MAXSAT12-PMS 3370.22 6 → 3 3299.15
MAXSAT15-PMS-INDU 1752.57 29 → 7 1479.31
CSP-2010 6541.20 2 → 2 6516.57
CSP-MZN-2013 4204.58 11 → 9 4168.35
PROTEUS-2014 5905.71 22 → 8 5725.50
ASP-POTASSCO 525.55 11 → 5 509.61
PREMAR-ASTAR-2015 5154.40 4 → 3 4954.45

Table 5: PAR10 scores for the set of all algorithms and the reduced set, along with the number
of all algorithms and the size of the reduced portfolio.

Tables 5 and 6 present the results of forward selection for algorithms and
features on all scenarios. Usually, the number of selected features is very small
compared to the complete feature set. This is consistent with the observations
of Roberts and Howe (2009) and Hutter et al. (2013) who found in their exper-
iments that only a few instance features are necessary to reliably predict the
runtime of their algorithms. For example, on SAT12-RAND, the only three
features selected were a balance feature concerning the ratio of positive and
negative occurrences of each variable in each clause and two features based on
survey propagation.

The number of algorithms after forward selection is also substantially re-
duced on most scenarios. On the SAT scenarios, we expected to see this because
the scenarios consider a huge set of SAT solvers that were not pre-selected in
any way. Xu et al. (2012a) showed that many SAT solvers are strongly cor-
related and make only very small contributions to the VBS, a finding that is

features specified by the scenario authors and the full set of solvers.

23



Scenario full set default set Number reduced set

SAT11-HAND 17249.59 16943.49 113 → 6 15743.04
SAT11-INDU 13111.61 13246.70 112 → 4 10951.00
SAT11-RAND 10496.39 10253.09 112 → 3 9854.11
SAT12-ALL 994.25 971.45 113 → 9 815.37
SAT12-HAND 4298.00 4303.81 113 → 6 4092.58
SAT12-INDU 2881.97 2763.37 113 → 6 2506.25
SAT12-RAND 3196.28 3241.42 113 → 3 3088.72
SAT15-INDU 3970.56 3845.52 51 → 3 3620.06
QBF-2011 9229.99 9232.49 46 → 5 8995.62
QBF-2014 2102.79 2090.02 46 → 4 2032.50
MAXSAT12-PMS 3321.22 3370.22 30 → 4 3296.52
MAXSAT15-PMS-INDU 1696.69 1752.57 29 → 5 1520.77
CSP-2010 6514.37 6541.20 69 → 3 6415.23
CSP-MZN-2013 4192.82 4204.58 115 → 5 4119.36
PROTEUS-2014 6120.13 5905.71 193 → 6 5700.05
ASP-POTASSCO 516.47 525.55 134 → 4 472.84
PREMAR-ASTAR-2015 5289.96 5154.40 22 → 3 4619.49

Table 6: PAR10 scores for the set of all features, the default feature set and the reduced set,
along with the number of all features and the size of the reduced feature set.

corroborated by our results (see Figure 4 in Section 5). For example, on the
SAT12-RAND scenario, only two solvers were selected: sparrow and eagleup.
We did not expect the set of algorithms to be reduced on the ASP-POTASSCO
scenario, as the portfolio was automatically constructed using algorithm configu-
ration to obtain a set of complementary parameter settings that are particularly
amenable to portfolios; nevertheless only 5 of 11 configurations were chosen by
the forward selection.

Our results indicate that in real-world settings, selecting the most predictive
features and the solvers that make the highest contributions can be important.
More detailed and continuously updated results can be found on the ASlib
website.

7. Competitions on ASlib

As described before and illustrated in Section 6, we designed ASlib to en-
able easy and fair comparison of different algorithm selection approaches. The
next step to get unbiased performance comparisons of algorithm selectors is to
organize competitions based on ASlib. In this section, we will briefly describe
two exemplary competition settings based on ASlib.

24



On-going Evaluation on ASlib. In the on-going evaluation on ASlib15, every
participant can simply submit his/her performance for each scenario (using the
provided cross validation splits) and the source code of their algorithm selector.
The latter will only be used to verify the results in case of doubt. The results
(i.e., (penalized) average performance on each scenario) will be added in an
overview table and the system will be linked.

In this setting, every system that can read the ASlib format can easily par-
ticipate and no deadlines for submission are required. Therefore, the newest
systems and results can always be added on-the-fly such that the on-going eval-
uation always reflects the most recent known state-of-the-art systems and their
performances. Disadvantages of this setting are:

1. the different participants use different amounts of computational resources
to compute the results – for example, two well-performing systems in the
on-going evaluation are SATzilla [118] and AutoFolio [70] but it is also
well-known that these two systems use a lot more computation resources
(several CPU days) than other systems;

2. since the test and training data are published, the system will tend to
overfit the scenarios if we will not regularly provide new scenarios to reveal
such overfitting.

ICON Challenge on Algorithm Selection. The ICON Challenge on Algorithm
Selection16 provided a comparative evaluation of state-of-the-art algorithm se-
lection systems. The winner of the challenge was the zilla system [121]. In
this competition, the algorithm selectors needed to be submitted before a fixed
deadline and each system was executed on the organizers’ hardware with some
limitations (e.g., at most 12 CPU hours for training on one scenario). Although
the used scenarios were also already published before (i.e., ASlib version 1.0.1),
the organizers did not reveal the training-test splits to avoid overly strong over-
fitting on these scenarios. Furthermore, the ICON challenge assessed the per-
formance of the algorithm selectors based on 3 different performance metrics
(i.e., average number of solved instances, PAR10, and misclassification penalty
(MCP)) which revealed some strengths and weaknesses of algorithm selectors,
e.g., systems that used an algorithm schedule had better performance on solved
instances and PAR10, but wasted some time with respect to MCP.

8. Summary

We have introduced ASlib, a benchmark library for algorithm selection,
a rapidly growing field of research with substantial impact on various sub-
communities in artificial intelligence. ASlib facilitates research on algorithm

15The most recent results of the on-going evaluation can be found on the ASlib homepage
aslib.net.

16http://challenge.icon-fet.eu/

25

aslib.net
http://challenge.icon-fet.eu/


selection methods by providing a common set of benchmarks and tools for work-
ing with these. Similar to solver competitions, it enables principled comparative
empirical performance assessment. It also considerably lowers the otherwise
rather high barrier for researchers to work on algorithm selection, since anyone
using the benchmark scenarios we provide does not have to perform actual runs
of the solvers contained in them. Since our library provides performance data
for the solvers and problem instances included in each selection scenario, us-
ing ASlib also substantially reduces the computational burden of performance
assessments. Otherwise, these data would have to be produced, at consider-
able computational cost, by anyone working with that scenario. We carefully
selected the set of scenarios included in release version 2.0 of ASlib to challenge
algorithm selection methods in various ways and thus provide a solid basis for
developing and assessing such methods.

Release version 2.0 of the library contains 17 algorithm selection scenarios
from six different areas with a focus on (but not a limitation to) constraint satis-
faction problems. We discussed the format of new algorithm selection scenarios
and showed examples of the automated exploratory data analysis that will run
for each new scenario submitted to our online platform http://aslib.net/.
Finally, exploratory studies with various algorithm selection approaches demon-
strated the performance that algorithm selection systems can achieve on our
scenarios.

Acknowledgements

We thank the creators of the algorithms and instance distributions used
in our various algorithm selection scenarios. The performance of algorithm
selection systems depends critically upon the ingenuity and tireless efforts of
domain experts who continue to invent novel solver strategies.

FH and ML are supported by the DFG (German Research Foundation) under
Emmy Noether grant HU 1900/2-1. KLB, AF and LK were supported by an
NSERC E.W.R. Steacie Fellowship; in addition, all of these, along with HH, were
supported under the NSERC Discovery Grant Program. Part of this research
was supported by an Azure for Research grant.

References

[1] Amadini, R., Gabbrielli, M., Mauro, J., 2014a. An enhanced features
extractor for a portfolio of constraint solvers, in: Symposium on Applied
Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28,
2014, pp. 1357–1359.

[2] Amadini, R., Gabbrielli, M., Mauro, J., 2014b. SUNNY: a lazy portfolio
approach for constraint solving. TPLP 14, 509–524.

[3] Ansótegui, C., Malitsky, Y., Sellmann, M., 2014. MaxSAT by Improved
Instance-Specific Algorithm Configuration, in: Proceedings of the Twenty-
Eighth National Conference on Artificial Intelligence, pp. 2594–260.

26

http://aslib.net/


[4] Ansótegui, C., Sellmann, M., Tierney, K., 2009. A gender-based genetic
algorithm for the automatic configuration of algorithms, in: Proceedings
of the Fifteenth International Conference on Principles and Practice of
Constraint Programming (CP’09), pp. 142–157.

[5] Arbelaez, A., Hamadi, Y., Sebag, M., 2010. Continuous search in con-
straint programming, in: Proceedings of the Twenty-Second IEEE Inter-
national Conference on Tools with Artificial Intelligence, pp. 53–60.

[6] Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J., Rapicault, P., 2010.
Solving linux upgradeability problems using boolean optimization, in: Pro-
ceedings of the International Workshop on Logics for Component Config-
uration, pp. 11–22.

[7] Argelich, J., Li, C., Manyà, F., Planes, J., 2012. Seventh MaxSAT Evalu-
ation. http://www.maxsat.udl.cat/12/.

[8] Baral, C., 2003. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press.

[9] Biere, A., 2014. Yet another local search solver and Lingeling and friends
entering the SAT competition 2014, in: Proceedings of SAT Competition
2014: Solver and Benchmark Descriptions, pp. 39–40.

[10] Biere, A., Heule, M., van Maaren, H., Walsh, T. (Eds.), 2009. Handbook
of Satisfiability. volume 185 of Frontiers in Artificial Intelligence and Ap-
plications. IOS Press.

[11] Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T., 2010. in: Empirical
Methods for the Analysis of Optimization Algorithms. Springer. chapter
F-race and iterated F-race: An overview.

[12] Bischl, B., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos,
H., Hutter, F., Kerschke, P., Leyton-Brown, K., Vanschoren, J., 2014.
Algorithm Selection Format Specification. Technical Report. Available at
http://www.aslib.net/.

[13] Bischl, B., Lang, M., Mersmann, O., Rahnenführer, J., Weihs, C., 2015a.
BatchJobs and BatchExperiments: Abstraction mechanisms for using R
in batch environments. Journal of Statistical Software 64, 1–25.

[14] Bischl, B., Lang, M., Richter, J., Bossek, J., Judt, L., Kuehn, T., Studerus,
E., Kotthoff, L., Jones, Z., 2015b. mlr: Machine Learning in R. R package
version 2.7. https://github.com/mlr-org/mlr.

[15] Bischl, B., Mersmann, O., Trautmann, H., Preuss, M., 2012a. Algorithm
selection based on exploratory landscape analysis and cost-sensitive learn-
ing, in: Proceedings of the Fourteenth Annual Conference on Genetic and
Evolutionary Computation, pp. 313–320.

27

http://www.maxsat.udl.cat/12/
http://www.aslib.net/
https://github.com/mlr-org/mlr


[16] Bischl, B., Mersmann, O., Trautmann, H., Weihs, C., 2012b. Resampling
methods for meta-model validation with recommendations for evolution-
ary computation. Evolutionary Computation 20, 249–275.

[17] Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R., 2008. Metalearning:
Applications to Data Mining. 1st ed., Springer.

[18] Cicirello, V.A., Smith, S.F., 2005. The max k-armed bandit: A new model
of exploration applied to search heuristic selection, in: Proceedings of the
Twentieth National Conference on Artificial Intelligence, AAAI Press. pp.
1355–1361.

[19] Cook, D.J., Varnell, R.C., 1997. Maximizing the benefits of parallel search
using machine learning, in: Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, AAAI Press. pp. 559–564.

[20] Crawford, J.M., Baker, A.B., 1994. Experimental results on the applica-
tion of satisfiability algorithms to scheduling problems, in: In Proceedings
of the Twelfth National Conference on Artificial Intelligence, pp. 1092–
1097.

[21] Dan Pelleg, A.M., 2000. X-means: Extending k-means with efficient es-
timation of the number of clusters, in: Proceedings of the Seventeenth
International Conference on Machine Learning, Morgan Kaufmann, San
Francisco. pp. 727–734.

[22] Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc,
R., Whaley, R.C., Yelick, K., 2005. Self-Adapting linear algebra algo-
rithms and software. Proceedings of the IEEE 93, 293–312.

[23] Domhan, T., Springenberg, J.T., Hutter, F., 2015. Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of
learning curves, in: Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI).

[24] Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2015. Effi-
cient benchmarking of hyperparameter optimizers via surrogates, in: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

[25] Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., Leyton-
Brown, K., 2014. Improved features for runtime prediction of domain-
independent planners, in: Proceedings of the International Conference on
Automated Planning and Scheduling.

[26] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F., 2015a. Efficient and robust automated machine leraning, in: Ad-
vances in Neural Information Processing Systems 28, pp. 2944–2952.

28



[27] Feurer, M., Springenberg, J.T., Hutter, F., 2015b. Initializing Bayesian
hyperparameter optimization via meta-learning, in: Bonet, B., Koenig, S.
(Eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA., AAAI Press. pp.
1128–1135.

[28] Gagliolo, M., Schmidhuber, J., 2007. Learning restart strategies, in: Pro-
ceedings of the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI), pp. 792–797.

[29] Gagliolo, M., Zhumatiy, V., Schmidhuber, J., 2004. Adaptive online time
allocation to search algorithms, in: Proceedings of European Conference
on Machine Learning, Springer. pp. 134–143.

[30] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2012a. Answer
Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning, Morgan and Claypool Publishers.

[31] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T.,
Ziller, S., 2011. A portfolio solver for answer set programming: preliminary
report, in: Eleventh International Conference on Logic Programming and
Nonmonotonic Reasoning, Springer. pp. 352–357.

[32] Gebser, M., Kaufmann, B., Schaub, T., 2012b. Multi-threaded ASP solv-
ing with clasp. Theory and Practice of Logic Programming 12, 525–545.

[33] Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P.,
Petrie, K., 2010a. Learning when to use lazy learning in constraint solv-
ing, in: Proceedings of the Nineteenth European Conference on Artificial
Intelligence, IOS Press. pp. 873–878.

[34] Gent, I.P., Jefferson, C.A., Miguel, I., 2006. MINION: A fast, scalable,
constraint solver, in: Proceedings of the European Conference on Artificial
Intelligence, pp. 98–102.

[35] Gent, I.P., Miguel, I., Moore, N.C.A., 2010b. Lazy explanations for con-
straint propagators, in: Proceedings of the Twelfth International Sympo-
sium on Practical Aspects of Declarative Languages, pp. 217–233.

[36] Gomes, C., Selman, B., Crato, N., Kautz, H., 2000. Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems. Journal of
Automated Reasoning 24, 67–100.

[37] Gomes, C.P., Selman, B., 2001. Algorithm portfolios. Artificial Intelli-
gence 126, 43–62.

[38] Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F., 2010.
An ASP-based system for team-building in the Gioia-Tauro seaport, in:
Proceedings of the Twelfth International Symposium on Practical Aspects
of Declarative Languages, pp. 40–42.

29



[39] Guerri, A., Milano, M., 2004. Learning techniques for automatic algorithm
portfolio selection, in: Proceedings of the Sixteenth Eureopean Conference
on Artificial Intelligence, IOS Press. pp. 475–479.

[40] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.H., 2009. The WEKA data mining software: An update. SIGKDD
Explorations 11, 10–18.

[41] Hastie, T.J., Tibshirani, R.J., Friedman, J.H., 2009. The elements of
statistical learning : data mining, inference, and prediction. Springer
series in statistics, Springer, New York.

[42] Helmert, M., Röger, G., Karpas, E., 2011. Fast downward stone soup: A
baseline for building planner portfolios, in: Proceedings of the Workshop
on Planning and Learning at the Twenty-First International Conference
on Automated Planning and Scheduling, pp. 28–35.

[43] Hoos, H., Lindauer, M., Schaub, T., 2014a. claspfolio 2: Advances in
algorithm selection for answer set programming. Theory and Practice of
Logic Programming , 569–585.

[44] Hoos, H.H., Kaminski, R., Lindauer, M., Schaub, T., 2014b. aspeed:
Solver scheduling via answer set programming. Theory and Practice of
Logic Programming , 1–26.

[45] Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., von Mayrhauser, A.,
1999. Exploiting competitive planner performance, in: Proceedings of the
Fifth European Conference on Planning, Springer. pp. 62–72.

[46] Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B., 2014. Proteus:
A hierarchical portfolio of solvers and transformations, in: Proceedings
of the Eleventh International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 301–317.

[47] Hutter, F., Babić, D., Hoos, H.H., Hu, A.J., 2007. Boosting Verification
by Automatic Tuning of Decision Procedures, in: Formal Methods in
Computer Aided Design, IEEE Computer Society. pp. 27–34.

[48] Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K., 2006. Perfor-
mance prediction and automated tuning of randomized and parametric
algorithms, in: Proceedings of the Twelfth International Conference on
Principles and Practice of Constraint Programming, pp. 213–228.

[49] Hutter, F., Hoos, H.H., Leyton-Brown, K., 2010. Automated configura-
tion of mixed integer programming solvers, in: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 186–202.

30



[50] Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential model-based
optimization for general algorithm configuration, in: Proceedings of the
International Conference on Learning and Intelligent Optimization, pp.
507–523.

[51] Hutter, F., Hoos, H.H., Leyton-Brown, K., 2013. Identifying key algorithm
parameters and instance features using forward selection, in: LION 7.

[52] Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T., 2009. ParamILS:
an automatic algorithm configuration framework. Journal of Artificial
Intelligence Research (JAIR) 36, 267–306.

[53] Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H.,
Leyton-Brown, K., Stützle, T., 2014a. Aclib: a benchmark library for
algorithm configuration, in: Proceedings of the International Conference
on Learning and Intelligent Optimization, pp. 36–40.

[54] Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K., 2014b. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence 206, 79–
111.

[55] Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T., 2009. Answer
set vs. integer linear programming for automatic synthesis of multiproces-
sor systems from real-time parallel programs. Journal of Reconfigurable
Computing .

[56] Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.,
2011. Algorithm selection and scheduling, in: Proceedings of the Interna-
tional Conference on Principles and Practice of Constraint Programming.
Springer. volume 6876 of Lecture Notes in Computer Science, pp. 454–469.

[57] Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K., 2010. ISAC
Instance-Specific Algorithm Configuration, in: Proceedings of Nineteenth
European Conference on Artificial Intelligence, IOS Press. pp. 751–756.

[58] Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. kernlab – an S4
package for kernel methods in R. Journal of Statistical Software 11, 1–20.

[59] Kautz, H., Selman, B., 1999. Unifying SAT-based and graph-based plan-
ning, in: Proceedings of the Sixteenth International Joint Conference on
Artifical Intelligence, Morgan Kaufmann. pp. 318–325.

[60] Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.Q., Grimme,
C., Rudolph, G., Bischl, B., Trautmann, H., 2014. Cell mapping tech-
niques for exploratory landscape analysis, in: Proceedings of the EVOLVE
2014: A Bridge between Probability, Set Oriented Numerics, and Evolu-
tionary Computation, Springer. pp. 115–131.

[61] Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Ar-
tificial Intelligence 97, 273–324.

31



[62] Kotthoff, L., 2013. LLAMA: Leveraging Learning to Automatically
Manage Algorithms. Technical Report arXiv:1306.1031. arXiv. http:

//arxiv.org/abs/1306.1031.

[63] Kotthoff, L., 2014. Algorithm selection for combinatorial search problems:
A survey. AI Magazine 35, 48–60.

[64] Lagoudakis, M., Littman, M., 2000. Algorithm selection using reinforce-
ment learning, in: Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pp. 511–518.

[65] Lagoudakis, M., Littman, M., 2001. Learning to select branching rules in
the DPLL procedure for satisfiability, in: Proceedings of the International
Conference on Satisfiability, pp. 344–359.

[66] Le Berre, D., Lynce, I., 2008. CSP2SAT4J: A simple CSP to SAT transla-
tor, in: Proceedings of the Second International CSP Solver Competition,
pp. 43–54.

[67] Leite, R., Brazdil, P., Vanschoren, J., 2012. Selecting classification al-
gorithms with active testing, in: Machine Learning and Data Mining in
Pattern Recognition, Springer. pp. 117–131.

[68] Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham,
Y., 2003. A portfolio approach to algorithm selection, in: Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence,
Morgan Kaufmann. pp. 1542–1543.

[69] Liaw, A., Wiener, M., 2002. Classification and regression by randomForest.
R News 2, 18–22.

[70] Lindauer, M., Hoos, H., Hutter, F., Schaub, T., 2015. Autofolio: An auto-
matically configured algorithm selector. Journal of Artificial Intelligence
53, 745–778.

[71] Malitsky, Y., Mehta, D., O’Sullivan, B., 2013. Evolving instance specific
algorithm configuration, in: The Sixth Annual Symposium on Combina-
torial Search.

[72] Malitsky, Y., O’Sullivan, B., Previti, A., Marques-Silva, J., 2014. A port-
folio approach to enumerating minimal correction subsets for satisfiability
problems, in: Proceedings of the Eleventh International Conference on In-
tegration of Artificical Intelligence and Operations Research Techniques
in Constraint Programming.

[73] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M., 2011. Non-
model-based algorithm portfolios for SAT, in: Proceedings of the Four-
teenth International Conference on Theory and Applications of Satisfia-
bility Testing, Springer. pp. 369–370.

32

http://arxiv.org/abs/1306.1031
http://arxiv.org/abs/1306.1031


[74] Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neu-
mann, F., 2013. A novel feature-based approach to characterize algorithm
performance for the traveling salesperson problem. Annals of Mathematics
and Artificial Intelligence , 1–32.

[75] Nikolić, M., Marić, F., Janičić, P., 2009. Instance-based selection of poli-
cies for SAT solvers, in: Proceedings of the Twelfth International Confer-
ence on Theory and Applications of Satisfiability Testing, Springer. pp.
326–340.

[76] Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M., 2001.
An A-prolog decision support system for the space shuttle, in: Proceedings
of the Third International Symposium on Practical Aspects of Declarative
Languages, Springer. pp. 169–183.

[77] Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes, C., McFadden, J.,
Selman, B., Shoham, Y., 2003. Satzilla 0.9.

[78] Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.,
2004. Understanding random SAT: beyond the Clauses-to-Variables ratio,
in: Principles and Practice of Constraint Programming CP 2004, Springer.
pp. 438–452.

[79] O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B., 2008.
Using case-based reasoning in an algorithm portfolio for constraint solv-
ing, in: Proceedings of the Nineteenth Irish Conference on Artificial Intel-
ligence and Cognitive Science.

[80] Pfahringer, B., Bensusan, H., Giraud-Carrier, C., 2000. Meta-learning by
landmarking various learning algorithms. Proceedings of the Seventeenth
International Conference on Machine Learning , 743–750.

[81] Prasad, M.R., Biere, A., Gupta, A., 2005. A survey of recent advances in
SAT-based formal verification. International Journal on Software Tools
for Technology Transfer 7, 156–173.

[82] Pulina, L., Tacchella, A., 2007. A multi-engine solver for quantified
boolean formulas, in: Proceedings of the Thirteenth International Con-
ference on Principles and Practice of Constraint Programming, Springer.
pp. 574–589.

[83] Pulina, L., Tacchella, A., 2009. A self-adaptive multi-engine solver for
quantified boolean formulas. Constraints 14, 80–116.

[84] R Core Team, 2014. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. Vienna, Austria.
URL: http://www.R-project.org/.

[85] Rice, J.R., 1976. The algorithm selection problem. Advances in Computers
15, 65–118.

33

http://www.R-project.org/


[86] Roberts, M., Howe, A., 2009. Learning from planner performance. Artifi-
cial Intelligence Journal 173, 536–561.

[87] Roberts, M., Howe, A.E., 2007. Learned models of performance for many
planners, in: Proceedings of the Workshop on AI Planning and Learning
at the Seventeenth International Conference on Automated Planning and
Scheduling.

[88] Roberts, M., Howe, A.E., Wilson, B., desJardins, M., 2008. What makes
planners predictable?, in: ICAPS, pp. 288–295.

[89] Sabharwal, A., Samulowitz, H., Sellmann, M., Malitsky, Y., 2013. Boost-
ing sequential solver portfolios: Knowledge sharing and accuracy predic-
tion, in: LION 7.

[90] Samulowitz, H., Memisevic, R., 2007. Learning to solve QBF, in: Proceed-
ings of the Twenty-Second National Conference on Artificial Intelligence,
AAAI Press. pp. 255–260.

[91] Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A., 2013. A survey of
intelligent assistants for data analysis. ACM Comput. Surv. 45, 1–35.

[92] Silverthorn, B., Miikkulainen, R., 2010. Latent class models for algorithm
portfolio methods., in: Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, pp. 167–172.

[93] Smith-Miles, K.A., 2008. Cross-disciplinary perspectives on meta-learning
for algorithm selection. ACM Computing Surveys 41, 6:1–6:25.

[94] Smith-Miles, K.A., Baatar, D., Wreford, B.J., Lewis, R., 2014. Towards
objective measures of algorithm performance across instance space. Com-
puters & Operations Research 45, 12–24.

[95] Soininen, T., Niemelä, I., 1999. Developing a declarative rule language
for applications in product configuration, in: Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages,
Springer. pp. 305–319.

[96] Stahlbock, R., Voß, S., 2008. Operations research at container terminals:
a literature update. OR Spectrum 30, 1–52.

[97] Stergiou, K., 2009. Heuristics for dynamically adapting propagation in
constraint satisfaction problems. AI Communications 22, 125–141.

[98] Streeter, M.J., Golovin, D., Smith, S.F., 2007a. Combining multiple
heuristics online, in: Proceedings of the Twenty-Second National Con-
ference on Artificial Intelligence, AAAI Press. pp. 1197–1203.

[99] Streeter, M.J., Golovin, D., Smith, S.F., 2007b. Restart schedules for
ensembles of problem instances, in: Proceedings of the Twenty-Second
National Conference on Artificial Intelligence, AAAI Press. pp. 1204–1210.

34



[100] Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J., 2014. The
MiniZinc challenge 2008-2013. AI Magazine 35, 55–60.

[101] Tamura, N., Tanjo, T., Banbara, M., 2008. System description of a SAT-
based CSP solver sugar, in: Proceedings of the Third International CSP
Solver Competition, pp. 71–75.

[102] Tanjo, T., Tamura, N., Banbara, M., 2012. Azucar: a SAT-based CSP
solver using compact order encoding, in: Theory and Applications of Sat-
isfiability Testing – SAT 2012. Springer, pp. 456–462.

[103] Therneau, T., Atkinson, B., Ripley, B., 2014. rpart: Recursive Partition-
ing and Regression Trees. URL: http://CRAN.R-project.org/package=
rpart. r package version 4.1-8.

[104] Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K., 2013. Auto-
WEKA: Combined selection and hyperparameter optimization of classi-
fication algorithms, in: Proceedings of the Nineteenth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, ACM.
pp. 847–855.

[105] Tierney, K., Malitsky, Y., 2015. An algorithm selection benchmark of
the container pre-marshalling problem, in: Dhaenens, C., Jourdan, L.,
Marmion, M.E. (Eds.), Learning and Intelligent Optimization, Springer
International Publishing. pp. 17–22.

[106] Tierney, K., Pacino, D., Voß, S., 2014. Solving the Pre-Marshalling Prob-
lem to Optimality with A* and IDA*. Technical Report Working Paper
#1401. Decision Support & Optimization Lab, University of Paderborn.

[107] Vallati, M., Chrpa, L., Grzes, M., McCluskey, T.L., Roberts, M., Sanner,
S., 2015a. The 2014 international planning competition: Progress and
trends. AI Magazine 36, 90–98.

[108] Vallati, M., Chrpa, L., Kitchin, D., 2015b. Portfolio-based planning: State
of the art, common practice and open challenges. AI Communincations
28, 717–733.

[109] Vallati, M., Fawcett, C., Gerevini, A., Hoos, H.H., Saetti, A., 2013. Au-
tomatic generation of efficient domain-optimized planners from generic
parametrized planners, in: International Symposium on Combinatorial
Search (SoCS).

[110] Van Gelder, A., 2008. Another look at graph coloring via propositional
satisfiability. Discrete Applied Mathematics 156, 230–243.

[111] Vanschoren, J., 2010. Understanding Machine Learning Performance with
Experiment Databases. Ph.D. thesis. University of Leuven.

35

http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart


[112] Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G., 2012. Experi-
ment databases. A new way to share, organize and learn from experiments.
Machine Learning 87, 127–158.

[113] Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L., 2013. OpenML:
Networked science in machine learning. SIGKDD Explorations 15, 49–60.

[114] Ward, J., 1963. Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association 22, 236–244.

[115] Xu, H., Rutenbar, R., Sakallah, K., 2003. Sub-SAT: A formulation for re-
laxed boolean satisfiability with applications in routing, in: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
pp. 814–820.

[116] Xu, L., Hoos, H.H., Leyton-Brown, K., 2007. Hierarchical hardness models
for SAT, in: Proceedings of the Thirteenth International Conference on
Principles and Practice of Constraint Programming, Springer. pp. 696–
711.

[117] Xu, L., Hoos, H.H., Leyton-Brown, K., 2010. Hydra: Automatically con-
figuring algorithms for Portfolio-Based selection, in: Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI Press.
pp. 210–216.

[118] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2008. SATzilla:
portfolio-based algorithm selection for SAT. Journal of Artificial Intel-
ligence Research 32, 565–606.

[119] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Hydra-MIP:
automated algorithm configuration and selection for mixed integer pro-
gramming, in: Proceedings of the RCRA Workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial Ex-
plosion at the Twenty-Second International Joint Conference on Artificial
Intelligence.

[120] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2012a. Evaluating
component solver contributions to Portfolio-Based algorithm selectors, in:
Proceedings of the Fifteenth International Conference on Theory and Ap-
plications of Satisfiability Testing, Springer. pp. 228–241.

[121] Xu, L., Hutter, F., Shen, J., Hoos, H.H., Leyton-Brown, K., 2012b.
Satzilla2012: Improved algorithm selection based on cost-sensitive clas-
sification models, in: Proceedings of SAT Challenge 2012: Solver and
Benchmark Descriptions, pp. 57–58.

36


	Introduction
	Background
	What to select and when
	How to select
	Selection enablers
	Algorithm Selection and Algorithm Configuration

	Summary of Format Specification
	Algorithm Selection Scenarios Provided in ASlib Release 2.0
	SAT: Propositional Satisfiability
	QBF: Quantified Boolean Formula
	MAXSAT: Maximum Satisfiability
	CSP: Constraint solving
	ASP: Answer Set Programming
	PREMAR-ASTAR-2015: Container pre-marshalling

	Automated Exploratory Data Analysis
	Study of Algorithm Selection Techniques
	Experimental setup
	Data preprocessing
	Evaluation
	Results
	Algorithm and Feature Subset Selection

	Competitions on ASlib
	Summary

