
4 Bistarelli et al. / Containerisation and Dynamic Frameworks in ICCMA’19

Containerisation and Dynamic
Frameworks in ICCMA’19

Stefano BISTARELLI a,1, Lars KOTTHOFF b, Francesco SANTINI a,1 and
Carlo TATICCHI c

a Dipartimento di Matematica e Informatica, University of Perugia, Italy
email: [stefano.bistarelli, francesco.santini]@unipg.it

b Department of Computer Science, University of Wyoming, U.S.
email: larsko@uwyo.edu

c Gran Sasso Science Insitute, L’Aquila, Italy
email: carlo.taticchi@gssi.it

Abstract. The International Competition on Computational Models of Argumen-
tation (ICCMA) is a successful event dedicated to advancing the state of the art
of solvers in Abstract Argumentation. We describe two proposals that will further
improve the third and next edition of the competition, i.e. ICCMA 2019. The first
novelty concerns the packaging of each solver-application participating in the com-
petition in a virtual “light” container (using Docker): this allows for easy deploy-
ment and to (re)running all of the submissions on different architectures (Linux,
Windows, macOS, and also in the cloud). The second proposal consists of a new
track focused on solvers processing dynamic frameworks, i.e., solvers described
in terms of changes w.r.t. previous ones: a solver can reuse the solution obtained
previously to be faster on the same framework modulo a new argument/attack.

1. Introduction

An Abstract Argumentation semantics [12] is a declarative or procedural method for de-
riving a set of subsets of arguments (each called an extension) from an Abstract Argu-
mentation Framework (AF), which is simply defined by a set of arguments and an attack
relationship, i.e., 〈A,R〉. Such subsets define different levels of “acceptability”, in the
sense that selected arguments need to survive the conflict defined by R together.

The popularity of the abstract approach defined in [12] has increased more and more
in terms of the interest in the scientific community. Abstracting from both the internal
structure of arguments in terms of premises and conclusion, and from the logic defining
the inference process, is appealing: it leads to the investigation of general properties of
debating. Strong links of Abstract Argumentation to Graph Theory and Logic Programs
are well-known as well, and advanced by the seminal original paper itself [12].

Recent years have experienced a wide interest in solving problems related to Ab-
stract Argumentation (e.g., [5]). The evidence, and a further incentive, has been the or-

1Authors supported by projects “REMIX” (funded by Banca d’Italia and Fondazione Cassa di Risparmio
di Perugia) and “RACRA” (funded by “Ricerca di Base 2018-2020, University of Perugia).

Bistarelli et al. / Containerisation and Dynamic Frameworks in ICCMA’19 5

ganisation of the first edition of the International Competition on Computational Models
of Argumentation (ICCMA’15) [17], followed by the 2017 [14] and 20192 editions. The
latter is scheduled for the next year, and it will be organised by the authors of this paper:
the reference solver for checking results will be ConArg3 [4,6,7], since it is maintained
by some of the competition organisers (Probo was the reference in ICCMA’15). This
kind of competition aims to showcase the current state of the art, as well as nurture re-
search and development of implementations for computational models of argumentation.

The goal of this paper is to present the two main novelties that will be considered
in ICCMA’19: in particular, (i) the containerisation, using the Docker platform, of the
solvers submitted to the competition, and (ii) new tracks dedicated to dynamic systems.
The main motivation behind the first point is to allow each solver to be delivered with
its complete run time environment to make setup and deployment easier; moreover, a
dockerised application can be launched on different platforms (e.g., Windows, Linux,
macOS, and in the cloud), making it possible to recompute the experiments anywhere.
The motivation behind introducing dynamic tracks to check the current capabilities and
performance of solvers in exploiting previous results with the purpose of solving the
same task after a small change in the considered AF (e.g., adding an attack). A debate is a
dynamic process by nature, and we hope that the new tracks will highlight the capabilities
of current systems in this respect.

2. ICCMA

The ICCMA competition aims at nurturing research and development of implementa-
tions for computational models of Argumentation. Previous editions of the competition
have seen the participation of 18 and 16 solvers respectively (i.e., 20154 and 20175).

For each tested semantics, 4 different problems have been tested: determine some
(SE) and all (EE) extensions, credulous (DC) and sceptical (DS) acceptance of a given
argument (passed as a parameter of the problem together with an AF). The considered
semantics in ICCMA’15 were complete, preferred, stable, and grounded (all defined in
[12]), for a total of 16 different tasks; 14 in practice, since SE and EE, and DC and
DS, correspond to the same task due to the uniqueness of the grounded extension. In
ICCMA’17 the problems were the same, but on a larger set of semantics, considering
also the semi-stable [10], stage [18], and ideal [13] ones. Hence, the total number of tasks
was 24 (both the grounded and ideal semantics return a single extension). In addition,
ICCMA featured a special track called “Dung’s Triathlon”, which required solvers to
enumerate all grounded, preferred and stable extensions at once. In both editions a solver
could be submitted to be tested on only a subset of the proposed tracks.

In ICCMA’15, benchmarks were randomly generated based on three different graph
models: (i) a very large grounded extension (and having many nodes in general),
(ii) many complete/preferred/stable extensions, and (iii) a rich structure of strongly con-
nected components. Each generator was used to create three classes of frameworks;
small, medium, and large (according to the number of nodes), each of them storing 24

2http://iccma2019.dmi.unipg.it/.
3http://www.dmi.unipg.it/conarg/.
4http://argumentationcompetition.org/2015/index.html.
5http://argumentationcompetition.org/2017/index.html.

6 Bistarelli et al. / Containerisation and Dynamic Frameworks in ICCMA’19

different instances. For ICCMA’17, a call for benchmarks was put out, and the compe-
tition received 6 submissions. Some of them were an example set of frameworks, others
the generating tool itself. The generators of ICCMA15 were reused, and one of the sub-
mitted generators was able to create three different classes of networks, the total number
of different classes was 11. From these classes, 350 AAFs were chosen for each of three
representative tasks; EE-preferred, EE-stable, and SE-grounded. This resulted in 50 very
easy, 50 easy, 100 medium, 100 hard, and 50 too hard to solve AAFs. For each task,
three different solvers from ICCMA’15 were used to test instances hardness. Moreover,
the AAFs to test the ideal and semi-stable semantics, and Dung’s Triathlon, were chosen
in accordance to the characteristics of these problems.6

The timeout for returning the result of each task was set to 10 minutes. In IC-
CMA’15, the solvers were ranked w.r.t. the number of timeouts on these instances, ties
were broken by the actual runtime on the instances. An output error (e.g., unparsable
output) was considered as an unsolved instance that caused a timeout. The ranking was
created using the Borda count across all the tracks. In ICCMA’17, for each instance each
solver got a score of 1 for a correct answer, −5 for an incorrect answer, and 0 otherwise
(e.g., in case of output errors and timeouts). Points for each instance were aggregated per
semantics, e.g., DS, DC, SE, and EE for the preferred semantics.

3. Docker

Docker7 is an open-source implementation of operating-system-level virtualisation, also
known as containerisation. Docker is primarily developed for Linux, where it uses the
resource isolation features of the Linux kernel such as cgroups and kernel namespaces,
and a union-capable file system, to allow independent “containers” to run within a single
Linux instance. The main aim is to avoid the overhead of starting and maintaining virtual
machines. Figure 1 shows the general structure compared to virtual machines.Docker
allows applications to use the same Linux kernel as the system that they are running
on and only requires applications to be shipped with things not already running on the
host computer. The container can also be executed on other operating systems: besides
different Linux distros such as Debian, Fedora, and Ubuntu, there also exist engines for
Mac OS, Windows, Amazon Web Services, and Microsoft Azure. The latter allow to
move an application quickly into the cloud without modifications.

Containers in ICCMA. We will require each solver to be submitted to the competition
to be packaged in a Docker container. To do so, a submitter needs three files: (i) a Dock-
erfile, (ii) a solver interface.sh file, and (iii) the solver itself. The Dockerfile defines the
environment in the container. Access to resources like networking interfaces and disk
drives is virtualised inside this environment. An example is shown in Figure 2: it cre-
ates an Alpine Linux container (a minimal distro) and defines the environment where the
solver will run. Environment variables describing the input file (i.e., the AF) and the task
to be solved by the solver can be added. The command specified by CMD is run when the
container is started. The file solver interface.sh is a shell-script file with a common in-
terface used to run each solver; this file will be provided by the organisers of ICCMA’19,
and only minor changes are needed to be personalised to a specific solver.

6http://argumentationcompetition.org/2017/benchmark_selection_iccma2017.pdf.
7Docker Inc.: https://www.docker.com.

Bistarelli et al. / Containerisation and Dynamic Frameworks in ICCMA’19 7

Figure 1. Difference in abstraction layers between virtual machines and Docker containers.

A Docker image is built with the command docker build -t imageName and run
with docker run imageName. Docker images can be pushed to and pulled from online
repositories (such as Docker Hub), and all benchmark AFs can be mounted in a Docker
volume. This allows the submissions to be prepared independently of the benchmark
instances and then simply mounted into the submission container to run the competition.

4. Dynamic Frameworks

In previous ICCMA editions, all the frameworks in each database were considered static
in the sense that all the AFs were sequentially passed as input to solvers, representing dif-
ferent and independent information: all tasks are computed from scratch without taking
any potentially useful knowledge from previous runs into account.

However, in many practical applications, an AF represents only a temporary situ-
ation: arguments and attacks can be added/retracted to take into account new knowl-
edge that becomes available. For instance, in disputes among users of online social net-
works [16], arguments/attacks are repeatedly added/retracted by users to express their
point of view in response to the last move made by the adversaries in the current digital
polylogue (often disclosing as few arguments/attacks as possible).

The dynamics of frameworks has attracted recent and wide interest in the Argu-
mentation community. We describe some related work, which also points to the research
groups interested in the organisation of such a track. In [9], the authors investigate the
principles according to which a grounded extension of a Dung’s AF does not change

FROM a l p i n e
RUN mkdir −p / u s r / s r c / app
WORKDIR / u s r / s r c / app
COPY . / u s r / s r c / app
ENV INPUTFILE ””
. . .

ENV PROBLEM ””
CMD [” / u s r / s r c / app / C o n A r g i n t e r f a c e . sh ”]

Figure 2. An example of Dockerfile calling a shell-script file personalised to ConArg; more environment
variables can be set, while running the created container using the ENV parameter.

8 Bistarelli et al. / Containerisation and Dynamic Frameworks in ICCMA’19

when the set of arguments/attacks are changed. The work of [11] studies how the exten-
sions can evolve when a new argument is considered. The authors focus on adding one
argument interacting with one starting argument (i.e., an argument which is not attacked
by any other argument). In further work [19], the authors study the evolution of the set
of extensions after performing a change operation (addition/removal of arguments/inter-
action). In [2], the authors propose a division-based method to divide the updated frame-
work into two parts: “affected” and “unaffected”. Only the status of affected arguments
is recomputed after updates. A matrix-reduction approach that resembles the previous
division method is presented in [19]. A recent work that tests complete, preferred, sta-
ble, and grounded semantics on an AF and a set of updates is [1]. This approach finds
a reduced (updated) AF sufficient to compute an extension of the whole AF, and uses
state-of-the-art algorithms to recompute an extension of the reduced AF only.

Modifications of AFs are also studied in the literature as a base to compute robust-
ness measures of frameworks [8]. In particular, by adding/removing an argument/attack,
the set of extensions satisfying a given semantics may or may not change. For instance,
one could be interested in computing the number of modifications needed to bring a
change in this set, or measure the number of modifications needed to have a different set
of extensions satisfying a desired semantics. In the latter case, the user is interested in
having an estimate on how distant two different points of views are; this kind od approach
has also been proposed in [3].

Dynamic Track in ICCMA. We will organise the following dynamic track in IC-
CMA’19. Its goal is (i) to determine what solvers work incrementally, and (ii) to test how
much better they tackle the same problems compared to static solvers. To achieve this,
we will use some of the AFs adopted in the benchmark to test static solvers, which will
be collected by reusing some of ICCMA’15 and ICCMA’17 AFs, and by putting out a
call for benchmark or generators as in ICCMA’17. Some of these AFs will be chosen
from (some of) these sets as initial frameworks, which will be passed to solvers together
with a list of changes in a separate file. Changes may consist of a sequence of random
additions/deletions of attacks, which will be provided through a simple text format, e.g.,
+att(a,b). -att(d,e). . . ., representing the introduction and deletion of an attack, respec-
tively (two AFs to process in the end). We will then expect as many outputs as the number
of changes plus one (the original framework). In order to compare performance, static
solvers will be tested on these networks as well, by providing full AFs instead of lists
of changes. The track will consider the four semantics originally advanced in [12], i.e.,
complete, preferred, stable, and grounded, and as tasks SE, EE, DC, and DS.

5. Conclusion

We have described two proposals that we will introduce in ICCMA’19. The first allows
for easy moving and testing of submissions on different platforms and in different con-
texts – everything a solver needs is packaged into a Docker container. We strongly believe
in recomputability [15] – recomputing computational experiments (i.e. rerunning them
with exactly the same conditions) should be very easy. Using Docker will make ICCMA
easy to recompute, allowing submitters and independent parties to easily reproduce our
results and build on them to advance the state of the art. As the second improvement, we
will organise a track dedicated to dynamic solvers, where previous results can be used to

Bistarelli et al. / Containerisation and Dynamic Frameworks in ICCMA’19 9

rapidly reach a solution on a slightly modified AF, instead of solving the whole problem
from scratch. This will provide a different lens to assess the current state of the art and
make the competition more relevant to current research in the community.

References

[1] G. Alfano, S. Greco, and F. Parisi. Efficient computation of extensions for dynamic abstract argumen-
tation frameworks: An incremental approach. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI, pages 49–55. ijcai.org, 2017.

[2] P. Baroni, M. Giacomin, and B. Liao. On topology-related properties of abstract argumentation seman-
tics. A correction and extension to dynamics of argumentation systems: A division-based method. Artif.
Intell., 212:104–115, 2014.

[3] R. Baumann and G. Brewka. Expanding argumentation frameworks: Enforcing and monotonicity re-
sults. In Computational Models of Argument (COMMA), volume 216 of Frontiers in Artificial Intelli-
gence and Applications, pages 75–86. IOS Press, 2010.

[4] S. Bistarelli, F. Rossi, and F. Santini. A comparative test on the enumeration of extensions in abstract
argumentation. Fundam. Inform., 140(3-4):263–278, 2015.

[5] S. Bistarelli, F. Rossi, and F. Santini. Not only size, but also shape counts: abstract argumentation solvers
are benchmark-sensitive. J. Log. Comput., 28(1):85–117, 2018.

[6] S. Bistarelli, F. Rossi, and F. Santini. A novel weighted defence and its relaxation in abstract argumen-
tation. Int. J. Approx. Reasoning, 92:66–86, 2018.

[7] S. Bistarelli and F. Santini. Modeling and solving afs with a constraint-based tool: Conarg. In Theorie
and Applications of Formal Argumentation - First International Workshop, TAFA, volume 7132 of LNCS,
pages 99–116. Springer, 2012.

[8] S. Bistarelli, F. Santini, and C. Taticchi. On looking for invariant operators in argumentation seman-
tics. In Proceedings of the Thirty-First International Florida Artificial Intelligence Research Society
Conference, FLAIRS, pages 537–540. AAAI Press, 2018.

[9] G. Boella, S. Kaci, and L. W. N. van der Torre. Dynamics in argumentation with single extensions: Ab-
straction principles and the grounded extension. In Symbolic and Quantitative Approaches to Reasoning
with Uncertainty ECSQARU, volume 5590 of LNCS, pages 107–118. Springer, 2009.

[10] M. W. A. Caminada, W. Alexandre Carnielli, and P. E. Dunne. Semi-stable semantics. J. Log. Comput.,
22(5):1207–1254, 2012.

[11] C. Cayrol, F. de Saint-Cyr, and M.-C. Lagasquie-Schiex. Change in abstract argumentation frameworks:
Adding an argument. J. Artif. Intell. Res., 38:49–84, 2010.

[12] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[13] P. Minh Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artif. Intell.,
171(10-15):642–674, 2007.

[14] S. A. Gaggl, T. Linsbichler, M. Maratea, and S. Woltran. Introducing the second international com-
petition on computational models of argumentation. In Proceedings of the First International Work-
shop on Systems and Algorithms for Formal Argumentation (SAFA), volume 1672 of CEUR Workshop
Proceedings, pages 4–9. CEUR-WS.org, 2016.

[15] I. P. Gent and L. Kotthoff. Recomputation.org: Experiences of its first year and lessons learned. In
Proceedings of the 7th IEEE/ACM International Conference on Utility and Cloud Computing, UCC,
pages 968–973. IEEE Computer Society, 2014.

[16] N. Kökciyan, N. Yaglikci, and P. Yolum. Argumentation for resolving privacy disputes in online social
networks: (extended abstract). In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, pages 1361–1362. ACM, 2016.

[17] M. Thimm and S. Villata. The first international competition on computational models of argumentation:
Results and analysis. Artif. Intell., 252:267–294, 2017.

[18] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation stages.
Proceedings of the Eighth Dutch Conference on Artificial Intelligence (NAIC), 96:357–368, 1996.

[19] Y. Xu and C. Cayrol. The matrix approach for abstract argumentation frameworks. In Theory and
Applications of Formal Argumentation TAFA, volume 9524 of LNCS, pages 243–259. Springer, 2015.

