
Machine learning for constraint solver design

A case study for the alldifferent constraint

Ian Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale
{ipg,larsko,ianm,pn}@cs.st-andrews.ac.uk

University of St Andrews

Abstract. Constraint solvers are complex pieces of software which re-
quire many design decisions to be made by the implementer based on
limited information. These decisions affect the performance of the fin-
ished solver significantly [16]. Once a design decision has been made,
it cannot easily be reversed, although a different decision may be more
appropriate for a particular problem.
We investigate using machine learning to make these decisions auto-
matically depending on the problem to solve. We use the alldifferent
constraint as a case study. Our system is capable of making non-trivial,
multi-level decisions that improve over always making a default choice
and can be implemented as part of a general-purpose constraint solver.

1 Introduction

Constraints are a natural, powerful means of representing and reasoning about
combinatorial problems that impact all of our lives. Constraint solving is applied
successfully in a wide variety of disciplines such as aviation, industrial design,
banking, combinatorics and the chemical and steel industries, to name but a few
examples.

A constraint satisfaction problem (CSP [3]) is a set of decision variables,
each with an associated domain of potential values, and a set of constraints. An
assignment maps a variable to a value from its domain. Each constraint speci-
fies allowed combinations of assignments of values to a subset of the variables.
A solution to a CSP is an assignment to all the variables that satisfies all the
constraints. Solutions are typically found for CSPs through systematic search
of possible assignments to variables. During search, constraint propagation algo-
rithms are used. These propagators make inferences, usually recorded as domain
reductions, based on the domains of the variables constrained and the assign-
ments that satisfy the constraints. If at any point these inferences result in any
variable having an empty domain then search backtracks and a new branch is
considered.

When implementing constraint solvers and modelling constraint problems,
many design decision have to be made – for example what level of consistency to
enforce and what data structures to use to enable the solver to backtrack. These
decisions have so far been made mostly manually. Making the “right” decision
often depends on the experience of the person making it.

We approach this problem using machine learning. Given a particular prob-
lem class or problem instance, we want to decide automatically which design
decisions to make. This improves over the current state of the art in two ways.
First, we do not require humans to make a decision based on their experience
and data available at that time. Second, we can change design decisions for
particular problems.

Our system does not only improve the performance of constraint solving, but
also makes it easier to apply constraint programming to domain-specific prob-
lems, especially for people with little or no experience in constraint programming.
It represents a significant step towards Puget’s “model and run” paradigm [23].

We demonstrate that we can approach machine learning as a “black box” and
use generic techniques to increase the performance of the learned classifiers. The
result is a system which is able to dynamically decide which implementation
to use by looking at an unknown problem. The decision made is in general
better than simply relying on a default choice and enables us to solve constraint
problems faster.

2 Background

We are addressing an instance of the Algorithm Selection Problem [26], which,
given variable performance among a set of algorithms, is to choose the best
candidate for a particular problem instance. Machine learning is an established
method of addressing this problem [17, 19]. Particularly relevant to our work
are the machine learning approaches that have been taken to configure, to select
among, and to tune the parameters of solvers in the related fields of mathematical
programming, propositional satisfiability (SAT), and constraints.

Multi-tac [21] configures a constraint solver for a particular instance distri-
bution. It makes informed choices about aspects of the solver such as the search
heuristic and the level of constraint propagation. The Adaptive Constraint En-
gine [5] learns search heuristics from training instances. SATenstein [15] config-
ures stochastic local search solvers for solving SAT problems.

An algorithm portfolio consists of a collection of algorithms, which can be
selected and applied in parallel to an instance, or in some (possibly truncated) se-
quence. This approach has recently been used with great success in SATzilla [29]
and CP Hydra [22]. In earlier work Borrett et al [2] employed a sequential port-
folio of constraint solvers. Guerri and Milano [11] use a decision-tree based tech-
nique to select among a portfolio of constraint- and integer-programming based
solution methods for the bid evaluation problem. Similarly, Gent et al [7] in-
vestigate decision trees to choose whether to use lazy constraint learning [9] or
not.

Rather than select among a number of algorithms, it is also possible to learn
parameter settings for a particular algorithm. Hutter et al [14] apply this method
to local search. Ansotegui et al [1] employ a genetic algorithm to tune the pa-
rameters of both local and systematic SAT solvers.

The alldifferent constraint requires all variables which it is imposed on to be
pairwise alldifferent. For example alldiff(x1, x2, x3) enforces x1 6= x2, x1 6= x3

and x2 6= x3.

There are many different ways to implement the alldifferent constraint. The
näıve version decomposes the constraint and enforces disequality on each pair
of variables. More sophisticated versions (e.g. [25]) consider the constraint as a
whole and are able to do more propagation. For example an alldifferent constraint
which involves four variables with the same three possible values each cannot
be satisfied, but this knowledge cannot be derived when just considering the
decomposition into pairs of variables. Further variants are discussed in [13].

Even when the high-level decision of how much propagation to do has been
made, a low-level decision has to be made on how to implement the constraint.
For an in-depth survey of the decisions involved, see [10].

We make both decisions and therefore combine the selection of an algorithm
(the näıve implementation or the more sophisticated one) and the tuning of
algorithm parameters (which one of the more sophisticated implementations to
use). Note that we restrict the implementations to the ones that the Minion con-
straint solver [8] provides. In particular, it does not provide a bounds consistency
propagator.

3 The benchmark instances and solvers

We evaluated the performance of the different versions of the alldifferent con-
straint on two different sets of problem instances. The first one was used for
learning classifiers, the second one only for the evaluation of the learned classi-
fiers.

The set we used for machine learning consisted of 277 benchmark instances
from 14 different problem classes. It has been chosen to include as many in-
stances as possible whatever our expectation of which version of the alldifferent
constraint will perform best.

The set to evaluate the learned classifiers consisted of 1036 instances from 2
different problem classes that were not present in the set we used for machine
learning. We chose this set for evaluation because the low number of different
problem classes makes it unsuitable for training.

Our sources are Lecoutre’s XCSP repository [18] and our own stock of CSP
instances. The reference constraint solver used is Minion [8] version 0.9 and
its default implementation of the alldifferent constraint gacalldiff. The ex-
periments were run with binaries compiled with g++ version 4.4.3 and Boost
version 1.40.0 on machines with 8 core Intel E5430 2.66GHz, 8GB RAM running
CentOS with Linux kernel 2.6.18-164.6.1.el5 64Bit.

We imposed a time limit of 3600 seconds for each instance. The total number
of instances that no solver could solve solve because of a time out was 66 for the
first set and 26 for the second set. We took the median CPU time of 3 runs for
each problem instance.

0.1 1.0 10.0 100.0 1000.0

1

2

5

10

20

50

default variant solve time [s]

speedup of best over default variant

Fig. 1. Potential speedup a decision algorithm could achieve over always making the
default decision. The crosses represent the instances of the first data set, the pluses
the instances of the second data set. A speedup of one means that the default version
of alldifferent is the fastest version, a speedup of two means that the fastest version of
alldifferent is twice as fast as the default version.

As Figure 1 shows, adapting the implementation decision to the problem in-
stead of always choosing a standard implementation has the potential of achiev-
ing significant speedups on some instances of the first set of benchmark instances
and speedups of up to 1.2 on the second set.

We ran the problems with 9 different versions of the alldifferent constraint
– the näıve version which is operationally equivalent to the binary decompo-
sition and 8 different implementations of the more sophisticated version which
achieves generalised arc consistency (see [10]). The amount of search done by
the 8 versions which implement the more sophisticated algorithm was the same.
The variables and values were searched in the order they were specified in in the
model of the problem instance.

The instances, the binaries to run them, and everything else required to
reproduce our results are available on request.

4 Instance attributes and their measurement

We measured 37 attributes of the problem instances. They describe a wide range
of features such as constraint and variable statistics and a number of attributes
based on the primal graph. The primal graph g = 〈V,E〉 has a vertex for every
CSP variable, and two vertices are connected by an edge iff the two variables
are in the scope of a constraint together.

Edge density The number of edges in g divided by the number of pairs of
distinct vertices.

Clustering coefficient For a vertex v, the set of neighbours of v is n(v). The
edge density among the vertices n(v) is calculated. The clustering coefficient
is the mean average of this local edge density for all v [27] . It is intended
to be a measure of the local cliqueness of the graph. This attribute has
been used with machine learning for a model selection problem in constraint
programming [11].

Normalised degree The normalised degree of a vertex is its degree divided
by |V |. The minimum, maximum, mean and median normalised degree are
used.

Normalised standard deviation of degree The standard deviation of ver-
tex degree is normalised by dividing by |V |.

Width of ordering Each of our benchmark instances has an associated vari-
able ordering. The width of a vertex v in an ordered graph is its number
of parents (i.e. neighbours that precede v in the ordering). The width of
the ordering is the maximum width over all vertices [3]. The width of the
ordering normalised by the number of vertices was used.

Width of graph The width of a graph is the minimum width over all possible
orderings. This can be calculated in polynomial time [3], and is related to
some tractability results. The width of the graph normalised by the number
of vertices was used.

Variable domains The quartiles and the mean value over the domains of all
variables.

Constraint arity The quartiles and the mean of the arity of all constraints
(the number of variables constrained by it), normalised by the number of
constraints.

Multiple shared variables The proportion of pairs of constraints that share
more than one variable.

Normalised mean constraints per variable For each variable, we count the
number of constraints on the variable. The mean average is taken, and this
is normalised by dividing by the number of constraints.

Ratio of auxiliary variables to other variables Auxiliary variables are in-
troduced by decomposition of expressions in order to be able to express them
in the language of the solver. We use the ratio of auxiliary variables to other
variables.

Tightness The tightness of a constraint is the proportion of disallowed tuples.
The tightness is estimated by sampling 1000 random tuples (that are valid
w.r.t. variable domains) and testing if the tuple satisfies the constraint. The
tightness quartiles and the mean tightness over all constraints is used.

Proportion of symmetric variables In many CSPs, the variables form equiv-
alence classes where the number and type of constraints a variable is in are
the same. For example in the CSP x1 × x2 = x3, x4 × x5 = x6, x1, x2, x4, x5

are all indistinguishable, as are x3 and x6. The first stage of the algorithm
used by Nauty [20] detects this property. Given a partition of n variables
generated by this algorithm, we transform this into a number between 0 and
1 by taking the proportion of all pairs of variables which are in the same
part of the partition.

Alldifferent statistics The size of the union of all variable domains in an
alldifferent constraint divided by the number of variables. This is a measure
of how many assignments to all variables that satisfy the constraint there
are. We used the quartiles and the mean over all alldifferent constraints.

In creating this set of attributes, we intended to cover a wide range of possi-
ble factors that affect the performance of different alldifferent implementations.
Wherever possible, we normalised attributes that would be specific to problem
instances of a particular size. This is based on the intuition that similar instances
of different sizes are likely to behave similarly. Computing the features took 27
seconds per instance on average.

5 Learning a problem classifier

Before we used machine learning on the set of training instances, we annotated
each problem instance with the alldifferent implementation that had the best
performance on it according to the following criteria. If the näıve alldifferent
implementation took less CPU time than all the other ones, it was chosen, else
the implementation which had the best performance in terms of search nodes per
second was chosen. All implementations except the näıve one explore the same
search space. If no solver was able to solve the instance, we assigned a “don’t
know” annotation.

We used the WEKA [12] machine learning software through the R [24] inter-
face to learn classifiers. We used almost all of the WEKA classifiers that were
applicable to our problem – algorithms which generate decision rules, decision
trees, Bayesian classifiers, nearest neighbour and neural networks. Our selection
is broad and includes most major machine learning methodologies. The specific
classifiers we used are BayesNet, BFTree, ConjunctiveRule, DecisionTable,
FT, HyperPipes, IBk, J48, J48graft, JRip, LADTree, MultilayerPerceptron,
NBTree, OneR, PART, RandomForest, RandomTree, REPTree and ZeroR, all of
which are described in [28].

For all of these algorithms, we used the default parameters provided by
WEKA. While the performance would have been improved by carefully tuning
those parameters, a lot of effort and knowledge is required to do so. Instead, we
used the standard parameter configuration which is applicable for other machine
learning problems as well and not specific to this paper.

The problem of classifying problem instances here is different to normal ma-
chine learning classification problems. We do not particularly care about classi-
fying as many instances as possible correctly; we rather care that the instances
that are important to us are classified correctly. The higher the potential gain
is for an instance, the more important it is to us. If, for example, the difference
between making the right and the wrong decision means a difference in CPU
time of 1%, we do not care whether the instance is classified correctly or not.
If the difference is several orders of magnitude on the other hand, we really do
want this instance to be classified correctly.

Based on this observation, we decided to measure the performance of the
learned classifiers not in terms of the usual machine learning performance mea-
sures, but in terms of misclassification penalty [29]. The misclassification penalty
is the additional CPU time we require to solve a problem instance when choosing
to solve it with a solver that is not the fastest one. If the selected solver was not
able to solve the problem, we assumed the timeout of 3600 seconds minus the
CPU time the fastest solver took to be the misclassification penalty. This only
gives the lower bound, but the correct value cannot be estimated easily.

We furthermore decided to assign the maximum misclassification penalty (or
the maximum possible gain), cf. Figure 1 as a cost to each instance as follows.
To bias the WEKA classifiers towards the instances we care about most, we used
the common technique of duplicating instances [28]. Each instance appeared in
the new data set 1 + dlog2(cost)e times. The particular formula to determine
how often each instance occurs was chosen empirically such that instances with
a low cost are not disregarded completely, but instances with a high cost are
much more important. Each instance will be in the data set used for training
the machine learning classifiers at least once and at most 13 times for a theoretic
maximum cost of 3600.

To achieve multi-level classification, each individual classifier below consists
of a combination of classifiers. First we make the decision whether to use the
alldifferent version equivalent to the binary decomposition or the other one, then,
based on the previous decision, we decide which specific version of the alldifferent
constraint to use.

Table 1 shows the total misclassification penalty for all classifiers with and
without instance duplication on the first data set. It clearly shows that our
cost model improves the performance significantly in terms of misclassification
penalty for almost all classifiers.

misclass. penalty [s]
classifier all equal cost model

BayesNet 1494 3.9
BFTree 8.4 1.1
ConjunctiveRule 2300 1433
DecisionTable 249 1.6
FT 248 1.2
HyperPipes 867 867
IBk 109 109
J48 8.2 1.2
J48graft 8.2 1.2
JRip 283 1.3

misclass. penalty [s]
classifier all equal cost model

LADTree 8.4 6.5
MultilayerPerceptron 249 8.5
NBTree 9 1.3
OneR 69.5 409
PART 5.9 1
RandomForest 41.9 0.9
RandomTree 1 1
REPTree 1099 10.8
ZeroR 2304 2304

Table 1. Misclassification penalty for all classifiers with and without instances dupli-
cated according to their cost in the training data set. All numbers are rounded.

For each classifier, we did stratified n-fold cross-validation – the original
data set is split into n parts of roughly equal size. Each of the n partitions is
in turn used for testing. The remaining n − 1 partitions are used for training.
In the end, every instance will have been used for both training and testing
in different runs [28]. Stratified cross-validation ensures that the ratio of the
different classification categories in each subset is roughly equal to the ratio in
the whole set. If, for example, about 50% of all problem instances in the whole
data are solved fastest with the näıve implementation, it will be about 50% of
the instances in each subset as well.

There are several problems we faced when generating the classifiers. First,
we do not know which one of the machine learning algorithms was suited best
for our classification problem; indeed we do not know whether the features of
the problem instances we measured are able to capture the factors which affect
the performance of each individual implementation at all. Second, the learned
classifiers could be overfitted. We could evaluate the performance of each clas-
sifier on the second set of problem instances and compare it to the performance
during machine learning to assess whether it might be overfitted. Even if we
were able to reliably detect overfitting this way, it is not obvious how we would
change or retrain the classifier to remove the overfitting. Instead, we decided
to use all classifiers – for each machine learning algorithm the n different clas-
sifiers created during the n-fold cross-validation and the classifiers created by
each different machine learning algorithm.

We decided to use three-fold cross-validation as an acceptable compromise
between trying to avoid overfitting and time required to compute and run the
classifiers. We combine the decisions of the individual classifiers by majority vote.
The technique of combining the decisions of several classifiers was introduced
in [6] and formalised in [4].

Table 2 shows the overall performance of our meta-classifier compared to the
best and worst individual classifier for each set and several other hypothetical
classifiers. Our meta-classifier outperforms a classifier which always makes the
default decision even on the second set of problem instances. This set is an
extreme case because just making the default choice is almost always the best
choice – the misclassification penalty for the default choice classifier is extremely
low given the large number of instances. Even though there is only very little
room for improvement (cf. Figure 1), we achieve some of it.

It also shows that the classifiers we have learned on a data set that contains
problem instances from many problem classes can be applied to a different data
set with instances from different problem classes and still achieve a performance
improvement. Based on this observation, we suggest that our meta-classifier is
generally applicable.

Another observation we made is that the performance of the meta-classifier
does not suffer even if a large number of the classifiers that it combines perform
badly individually. This suggests that the classifiers complement each other –
the set of instances that each one misclassifies are different for each classifier.
Note also that the classifier which performs best on one set of instances is not

misclassification penalty [s]
instance set 1 instance set 2

classifier all features cheap features all features cheap features

oracle 0 0 0 0
anti-oracle 19993 19993 47144 47144
default decision 2304 2304 223 223
random decision 5550 5550 564 564
best classifier on set 1 0.998 0.994 131 220.3
worst classifier on set 1 2304 2304 223 223
best classifier on set 2 0.998 61.66 131 186
worst classifier on set 2 1.34 1.44 621 610
meta-classifier 1.16 0.996 220 222.95

Table 2. Summary of classifier performance on both sets of benchmarks in terms of
total misclassification penalty in seconds. We first evaluated the performance using the
full set of features described in Section 4, then using only the cheap features. The oracle
classifier always makes the right decision, the anti-oracle always the worst possible
wrong decision. The “default decision” classifier always makes the same decision and
the “random decision” one chooses one of the possibilities at random. Three-fold cross-
validation was used. All numbers are rounded.

necessarily the best performer on the other set of instances. The same observation
can be made for the classifier with the worst performance on one of the instance
sets. This means that we cannot simply choose “the best” classifier or discard
“the worst” for a given set of training instances. Table 3 provides further evidence
for this. The individual best and worst classifiers vary not only with the data
set, but also with the set of features used.

instance set 1 instance set 2
all features cheap features all features cheap features

best classifier IBk BFTree IBk BayesNet

worst classifier ZeroR ZeroR LADTree LADTree

Table 3. Individual best and worst classifiers for the different data and feature sets
for the numbers presented in Table 2.

The time required to compute the features was 27 seconds per instance on
average, and it took 0.2 seconds per instance on average to run the classifiers
and combine their decisions. If we take this time into account, our system is
slower than just using the default implementation. This is mostly because of the
cost of computing all the features required to make the decision. We do however
learn good classifiers in the sense that the decision they make is better than just
using the standard implementation.

We now focus on making a decision as quickly as possible. Most of the time
required to make the decision is spent computing the features that the classifiers
need. We removed the most expensive features – all the properties of the primal
graph described in Section 4 apart from edge density.

The results for the reduced set of features are shown in Table 2 as well. The
performance is not significantly worse and even better on the first set of instances,
but the time required to compute all the features is only about 3 seconds per
instance. On the first set of benchmarks, we solve each instance on average 8
seconds faster using our system (misclassification penalty of default decision
minus that of our system divided by the number of instances in the set). We
are therefore left with a performance improvement of an average of 5 seconds
per instance. On the second set, we cannot reasonably expect a performance
improvement – the perfect oracle classifier only achieves about 0.2 seconds per
instance on average.

0.1 1.0 10.0 100.0 1000.0

1

2

5

10

20

50

default variant solve time [s]

speedup over default variant

Fig. 2. Speedup achieved by the meta-classifier using the set of cheaply-computable
features. The figure does not take the overhead of computing the features and running
the classifiers into account. The crosses represent the instances of the first data set, the
pluses the instances of the second data set.

Figure 2 revisits Figure 1 and shows the actual speedup our meta-classifier
achieves for each instance. It convincingly illustrates the quality of our classifier.
The instances where we suffer a slowdown are ones that are solved almost in-
stantaneously, whereas the correctly classified instances are the hard ones that
we care about most. In particular the instances where a large speedup can be
gained are classified correctly by our system.

6 Conclusions and future work

We have applied machine learning to a complex decision problem in constraint
programming. To facilitate this, we evaluated the performance of constraint
solvers representing all the decisions on two large sets of problem instances. We
have demonstrated that training a set of classifiers without intrinsic knowledge
about each individual one and combining their decisions can improve perfor-
mance significantly over always making a default decision. In particular, our
combined classifier is almost as good as the best classifier in the set and much
better than the worst classifier while mitigating the need to select and tune an
individual classifier.

We have conclusively shown that we can improve significantly on default
decisions suggested in the state-of-the-art literature using a relatively simple
and generic procedure. We provide strong evidence for the general applicability
of a set of classifiers learned on a training set to sets of new, unknown instances.
We identified several problems with using machine learning to make constraint
programming decisions and successfully solved them.

Our system achieves performance improvements even taking the time it takes
to compute the features and run the learned classifiers into account. For atypical
sets of benchmarks, where always making the default decision is the right choice
in almost all of the cases, we are not able to compensate for this overhead, but
we are confident that we can achieve a real speedup on average.

We have identified two major directions for future research. First, it would
be beneficial to analyse the individual machine learning algorithms and evaluate
their suitability for our decision problem. This would enable us to make a more
informed decision about which ones to use for our purposes and may suggest
opportunities for improving them.

Second, selecting which features of problem instances to compute is a non-
trivial choice because of the different cost and benefit associated with each one.
The classifiers we learned on the reduced set of features did not seem to suffer
significantly in terms of performance. Being able to assess the benefit of each
individual feature towards a classifier and contrast that to the cost of computing
it would enable us to make decisions of equal quality cheaper.

Acknowledgements

The authors thank Chris Jefferson for providing some of the feature descrip-
tions. We thank Jesse Hoey for useful discussions about machine learning and
the anonymous reviewers for their feedback. Peter Nightingale is supported by
EPSRC grants EP/H004092/1 and EP/E030394/1. Lars Kotthoff is supported
by a SICSA studentship.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: CP. pp. 142–157 (2009)

2. Borrett, J., Tsang, E., Walsh, N.: Adaptive constraint satisfaction: The quickest
first principle. In: ECAI. pp. 160–164 (1996)

3. Dechter, R.: Constraint Processing. Elsevier Science (2003)
4. Dietterich, T.G.: Ensemble methods in machine learning. In: First International

Workshop on Multiple Classifier Systems. pp. 1–15 (2000)
5. Epstein, S., Freuder, E., Wallace, R., Morozov, A., Samuels, B.: The adaptive

constraint engine. In: CP. pp. 525–542 (2002)
6. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. In: EuroCOLT. pp. 23–37 (1995)
7. Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie,

K.: Learning when to use lazy learning in constraint solving. In: ECAI (2010)
8. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:

ECAI. pp. 98–102 (2006)
9. Gent, I., Miguel, I., Moore, N.: Lazy explanations for constraint propagator. In:

PADL (2010)
10. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent

constraint: An empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)
11. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio se-

lection. In: ECAI. pp. 475–479 (2004)
12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The

WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)
13. van Hoeve, W.J.: The alldifferent Constraint: A Survey (2001)
14. Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance prediction and

automated tuning of randomized and parametric algorithms. In: CP. pp. 213–228
(2006)

15. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically
building local search SAT solvers from components. In: IJCAI. pp. 517–524 (2009)

16. Kotthoff, L.: Constraint solvers: An empirical evaluation of design decisions.
CIRCA preprint (2009), http://www-circa.mcs.st-and.ac.uk/Preprints/solver-
design.pdf

17. Lagoudakis, M., Littman, M.: Reinforcement learning for algorithm selection. In:
AAAI/IAAI. p. 1081 (2000)

18. Lecoutre, C.: XCSP benchmarks. http://tinyurl.com/y6hpphs (June 2010)
19. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-

folio approach to algorithm selection. In: IJCAI. pp. 1542–1543 (2003)
20. McKay, B.: Practical graph isomorphism. In: Numerical mathematics and comput-

ing, Proc. 10th Manitoba Conf., Winnipeg/Manitoba 1980, Congr. Numerantium
30. pp. 45–87 (1981), see also http://cs.anu.edu.au/people/bdm/nauty

21. Minton, S.: Automatically configuring constraint satisfaction programs: A case
study. Constraints 1(1/2), 7–43 (1996)

22. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: 19th Irish
Conference on AI (2008)

23. Puget, J.F.: Constraint programming next challenge: Simplicity of use. In: CP. pp.
5–8 (2004)

24. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing (2009)

25. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI.
pp. 362–367 (1994)

26. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

27. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393,
440–442 (1998)

28. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (2005)

29. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

