
Modelling Constraint Solver Architecture
Design as a Constraint Problem

Ian Gent, Chris Jefferson, Lars Kotthoff, and Ian Miguel
{ipg,caj,larsko,ianm}@cs.st-andrews.ac.uk

University of St Andrews

Abstract. Designing component-based constraint solvers is a complex
problem. Some components are required, some are optional and there
are interdependencies between the components. Because of this, previous
approaches to solver design and modification have been ad-hoc and limited.
We present a system that transforms a description of the components
and the characteristics of the target constraint solver into a constraint
problem. Solving this problem yields the description of a valid solver.
Our approach represents a significant step towards the automated design
and synthesis of constraint solvers that are specialised for individual
constraint problem classes or instances.

1 Introduction

Most current constraint solvers, such as Minion [3], are constructed to be as
general as possible. They are monolithic in design, accepting a broad range
of models. While this generality is convenient, it leads to a complex internal
architecture, resulting in significant overheads and inhibiting efficiency, scalability
and extensibility. Another drawback is that current solvers perform little analysis
of an input model, so the features of an individual model cannot be exploited to
produce a more efficient solving process. To mitigate these drawbacks, constraint
solvers often allow manual tuning of the solving process. However, this requires
considerable expertise, preventing the widespread adoption of constraint solving.

A possible solution to this problem is to automatically generate specialised
constraint solvers. A given problem class or instance is analysed and the most
suitable solver components identified. These components are then assembled into
a solver. The artificial intelligence community has shown a lot of interest in this
problem recently, especially in the context of algorithm portfolios [15, 9, 2, 4].
The solution proposed above takes the portfolio idea a step further – instead
of selecting or configuring an existing solver, we aim to synthesise a specialised
solver.

The techniques for analysing problems and identifying the most suitable
solution strategies are still applicable for our approach, but in addition we
are faced with the difficult problem of automatically assembling a constraint
solver from a list of components and a specification of the problem it is to
solve. Constraint programming itself is a natural fit for solving this configuration

problem. In the remainder of this paper, we detail a way of expressing the
architecture of a constraint solver in such a way that it can be solved as a
constraint problem.

2 Background

Several other approaches for generating specialised constraint solvers exist. The
Multi-tac [7] system configures and compiles a constraint solver for a specific
set of problems. It does not synthesis a new constraint solver from a library of
components, but customises a base solver. The customisations are limited to
heuristics and do not affect all parts of the constraint solver.

KIDS [13] is a more general system and synthesises efficient algorithms from
an initial specification. The approach is knowledge-based, i.e. the user supplies
the knowledge required to generate an efficient algorithm for the specific problem.
Refinements are limited to a number of generic transformation operations and
again are not capable of customising all parts of a solver.

A review of the literature on analysing combinatorial problems and selecting
the most efficient way of solving them is beyond the scope of this paper. Some of
the most prominent systems are SATzilla [15] and CPHydra [9], which select from
a portfolio of SAT and constraint solvers respectively based on the characteristics
of a problem using machine learning.

The synthesis of a constraint solver from components is a configuration
problem, many instances of which have been discussed in the literature. An
overview can be found in the Configuration chapter of the Handbook of Constraint
Programming [10].

One of the earliest approaches to solving configuration problems as constraint
problems is by Mittal and Falkenhainer [8] and proposes dynamic constraint
problems that introduce new variables as the requirements for configured compo-
nents become known. They furthermore require special constraints that express
whether a variable is still relevant to the partially solved problem based on the
assignments made so far.

Sabin and Freuder [11] propose solving configuration problems as composite
constraint satisfaction problems where values for variables can be constraint
problems themselves. Stumptner et al. [14] introduce the constraint-based config-
uration system COCOS. Their system requires several extensions of the standard
constraint paradigm as well. Mailharro [6] proposes a constraint formulation
that integrates concepts from object-oriented programming. His approach relies
on many of the concepts introduced in earlier work and infinite-sized domains
for variables. Hinrich et al. [5] use object-oriented constraint satisfaction for
modelling configuration problems. They then transform the constraint model
into first order logic sentences and find a solution using a theorem solver.

Our approach works without the need to modify an existing off-the-shelf
constraint solver and a solution gives a complete configuration of a solver. There
is no need to solve a series of refined constraint problems. This is crucial for us
because we are aiming to do this in the context of generating a constraint solver

that is specialised to solve a particular problem more efficiently and want to keep
possible overheads, such as repeatedly generating constraint models and calling
a constraint solver, as minimal as possible.

3 Architecture specification

We use the generic software architecture description language GRASP [1, 12] to
describe the components of a constraint solver. The advantages of using a generic
architecture description language include available tools for checking architecture
descriptions for consistency and that people without a background in constraint
programming are able to work with it. We chose GRASP because it is being
developed by a research group at our department and we are able to influence the
design of the language towards meeting the requirements for modelling constraint
solvers.

A full description of GRASP is beyond the scope of this paper and not
necessary for our purposes. The relevant elements of the language are described
below.

templates Templates are the high-level elements of the language that describe
components. A single template can describe a memory manager for example.
Templates may take parameters when they are instantiated to customise
their behaviour further.

requires/provides Describe things a template needs and offers for other tem-
plates to use. A memory manager for example provides a facility for storing
and retrieving data. This facility could be required by a variable to keep
track of its domain.

properties Properties characterise components beyond the generic facilities
they provide. A Boolean variable for example would have the property that
the size of the domain is at most two.

checks Check statements model the interdependencies between components and
restrictions of customisations of a component. A component that implements
a specific constraint for example would place restrictions on the parameters it
can be customised with (i.e. the variables that it constrains) by e.g. limiting
the domain size.

The check statements of GRASP provide much power and flexibility. Only a
small subset of this is needed to express the components of a constraint solver
though. The relevant parts are explained below.

A subsetof B Asserts that set B contains all the elements of set A. It is used
to ensure that a certain implementation has a specific set of properties and
provides a specific set of facilities. It can also be used to ensure that an
implementation does not have a property or facility.

A accepts B Asserts that B is accepted as A, e.g. if A is the parameter given
to the implementation of a constraint and B is a variable implementation, it
makes sure that the constraint can be put on variables of that type.

Apart from the components that describe the building blocks of a solver,
there is a top-level meta-component that describes the problem to be solved.
It specifies the types of variables and constraints needed and which constraint
implementation needs to work with which variable implementation.

The description of the constraint solver consists of a library of solver compo-
nents specified this way and the problem meta-component. The library of solver
components is not specific to any constraint problem to be solved by the generated
solver and describes all the implementation options for any solver. The problem
meta-component encodes the requirements for solving a particular constraint
problem and links components from the library into an actual constraint solver.

4 Constraint model

The requirements of a component naturally map to variables in a constraint
problem that we want to find assignments for. The domain of each of those
variables is determined by the components which provide the facility required,
i.e. the possible implementations. Each implementation variable has a set of
provides and properties attached to it. The set of provides is necessary because
an implementation may provide more than the one main facility that would be
required by another component. If a variable is assigned a value which determines
its implementation, it must provide all the facilities and have all the properties
that this implementation provides and has and it must not provide any other
facilities or have any other properties. We therefore add constraints to ensure
that a component variable has a certain property or provide if and only if it is
assigned an implementation that has this property or provide.

There are several cases we need to consider for converting the check state-
ments of GRASP into constraints. The first case is of the form list subsetof

properties/provides. This requires a component implementation to provide
a list of facilities or have a set of properties. The translation into constraints
is straightforward; we simply require the things in list to be in the set of
properties/provides. The second case of the form properties/provides

subsetof list. This is the opposite of the previous case and forbids the proper-
ties/provides which are not listed explicitly. The translation into constraints is
analogous to the previous case.

The final case deals with the accepts. The general requirement encoded is
that if a parameter to an implementation requires a certain property or facility, the
implementation of the parameter must provide it. The corresponding constraints
are implications that require properties and provides of an implementation that
might be used as a parameter to be set if they are set for the parameter.

4.1 Conditional variables and constraints

The variables and constraints mentioned so far are only valid at the top level,
i.e. for the problem meta-component. We need additional constructs that encode
the requirements that arise if a component is implemented in a certain way. The

variables and constraints to encode the requirements take the same form as above,
but they have prerequisites that need to be true in order for them to become
relevant.

We chose an explicit representation of the prerequisites where the conditional
variables encode them in their names. The names of the variables that model
the requirements for an implementation of a component not at the top level
are prefixed by the implementation choices for the top-level components. The
constraints on these variables can be encoded as an implication, e.g. if component
x is implemented as an A, its first parameter needs to have property Y. The
name of the variable that models this first parameter would have a prefix that
indicates that the superior component x is implemented as an A. The left-hand
side of the implication is a conjunction of the implementation decisions made in
the prerequisites.

4.2 Modelling language

We decided to use the modelling language of the Minion constraint solver. While
it would be easier to use a more high-level language such as Essence, we need
more fine-grained control over the solving process. In particular, we need to
be able to specify the order of variables and values in the domains of variables
to guide the solver towards the implementations we consider the most suitable
ones. This enables us to analyse the constraint problem to be solved with the
synthesised solver, identify the component implementations that are likely to
provide the best performance and encode this in the constraint problem through
the variable and value orderings.

The decision to use the Minion input language has some ramifications for
the model. First, Minion only supports integer domain values and all component
implementations, properties and provides must be mapped to integers. Further-
more, some of the constraints that the model uses are not provided by Minion
and must be encoded with additional constraints and variables.

For the provides and the properties of each component variable, we added an
auxiliary array of Boolean variables to represent the set. If the ith Boolean is set
to true, the ith property or provides is present in the set. This means that two
auxiliary arrays of Booleans are added for each component variable.

Almost all constraints can be encoded directly in Minion. We used the
watched-or constraint to express that a component variable can have a property
or provides if and only if it is assigned one of the implementations that have it.
The conjunction to encode the conditional constraints was implemented with
a watched-and. The only constraints which cannot directly be translated into
Minion are the implications, as Minion only allows implications between a Boolean
variable and a constraint. To mitigate this, we introduced channelling variables,
one for each auxiliary array of Booleans that encode the properties and provides.
The left hand side of the implication is linked to the channelling variable through
an if and only if (reify in Minion) and the right hand side is connected to the
channelling variable by an implication constraint (reifyimply in Minion).

5 Example

Consider the constraint problem below.

pvx + pvy = pvw + pvc6

pvx = pvz

The GRASP specification of a solver component library and problem meta-
component that corresponds to the constraint problem are shown in Figure 1.
The problem meta-component requires five variables and two constraints with
certain properties and restrictions. The variable and constraint implementations
impose further restrictions and may in turn require a memory manager. Constant
variables have domain size 1, Boolean variables domain size 2 and discrete
variables arbitrary-sized domains. A GAC sum needs to be able to remove values
from the domain of the variables it constrains while a Boolean sum needs its
first argument to be a Boolean (domain size 2) and its second argument to be
a constant variable (domain size 1). The memory manager does not have any
special properties or further requirements.

Parts of the Minion model generated from this description is shown in Figure 2.
The first part shows the variables generated for the requirement IPropVariable
pvw in the GRASP model (Figure 1). Apart from the main variable, there are
auxiliary variables for the properties and the provides as well as variables which
model the conditional requirements of pvw being implemented in a particular
way.

The first section of the constraints section models the properties and requires
pvw (or one of its requirements) will have if being implemented in a particular
way. We especially refer the reader to the last couple of lines before the . . .
– these express what possible implementations for pvw would give it specific
properties/provides and that some of the provides are not given by any of the
candidate implementations and are therefore always not in the set (Boolean array
element set to 0).

The second part of the constraints section models the check statements that
affect the parameters of the sum constraint implementations. The variables for
these components are not shown for space reasons, but are analogous to the
variables for the pvw component. A pair of Minion constraints is required to model
the implication of a component being implemented in a specific way, as outlined
in Section 4.2. The first constraint reifies the conditions with the channelling
variable while the second constraint establishes the implication between the
channelling variable and the actual property or provide.

Note that some of the check...accepts statements are given additional
properties for the variables to check in the GRASP model. Only the properties
which are not explicitly given need to be checked by the generated constraints.

Minion finds a valid constraint solver architecture for the, admittedly trivial,
encoded problem (the first solution to the generated constraint model) in just a
couple of milliseconds.

a r c h i t e c t u r e So l v e r {
template CopyMemoryFactory () {

p ro v i d e s IMemoryManager ;
p ro v i d e s IRawMemory ;
p ro v i d e s I V i ewH i s t o r y ;

}
template D i s c r e t eV a r i a b l e F a c t o r y () {

p ro v i d e s I P r o pVa r i a b l e ;
p ro v i d e s IRemoveFromDomain ;
r e q u i r e s IMemoryManager domain ;
r e q u i r e s IMemoryManager bounds ;
p rope r t y domainType = ”bound” ;
check domain . g e t P r o p e r t i e s () s ub s e to f [(MemoryChanges , ’ S i n g l e ’)] ;
check bounds . g e t P r o p e r t i e s () s ub s e to f [] ;

}
template Boo lVa r i a b l e F a c t o r y () {

p ro v i d e s I P r o pVa r i a b l e ;
p ro v i d e s IRemoveFromDomain ;
r e q u i r e s IMemoryManager bounds ;
p rope r t y domainType = ”bound” ;
check bounds . g e t P r o p e r t i e s () s ub s e to f [(MemoryChanges , ’ S i n g l e ’)] ;
p rope r t y domainS ize = 2 ;

}
template Con s t a n tVa r i a b l eF a c t o r y () {

p ro v i d e s I P r o pVa r i a b l e ;
p ro v i d e s IRemoveFromDomain ;
p rope r t y domainS ize = 1 ;
p rope r t y domainType = ”bound” ;

}
template GACSumFactory (P1 , P2) {

p ro v i d e s ISumEqCon ;
r e q u i r e s IMemoryManager m;
check m. g e t P r o p e r t i e s () s ub s e to f [] ;
check [IRawMemory] s ub s e to f m. g e t I n t e r f a c e s () ;
check [IRemoveFromDomain , I P r o pVa r i a b l e] s ub s e to f P1 . g e t I n t e r f a c e s () ;
check [IRemoveFromDomain , I P r o pVa r i a b l e] s ub s e to f P2 . g e t I n t e r f a c e s () ;

}
template BoolSumFactory (P1 , P2) {

p ro v i d e s ISumEqCon ;
r e q u i r e s IMemoryManager m;
check m. g e t P r o p e r t i e s () s ub s e to f [] ;
check [(domainSize , 2)] s ub s e to f P1 . g e t P r o p e r t i e s () ;
check [(domainSize , 1)] s ub s e to f P2 . g e t P r o p e r t i e s () ;
check [I P r o pVa r i a b l e] s ub s e to f P1 . g e t I n t e r f a c e s () ;
check [I P r o pVa r i a b l e] s ub s e to f P2 . g e t I n t e r f a c e s () ;

}
template ThisProblem () {

p ro v i d e s IProb lem ;
r e q u i r e s I P r o pVa r i a b l e pvw , pvx , pvy , pvz , pvc6 ;
r e q u i r e s ISumEqCon scA , scB ;
check pvx . g e t P r o p e r t i e s () s ub s e to f

[(domainType , ’ bound ’) , (domainSize , 2)] ;
check pvy . g e t P r o p e r t i e s () s ub s e to f

[(domainType , ’ bound ’)] ;
check pvc6 . g e t P r o p e r t i e s () s ub s e to f

[(domainType , ’ bound ’) , (domainSize , 1)] ;
check scA . param (1) accepts (pvx +

[(domainType , ’ bound ’) , (domainSize , 2)]) ;
check scA . param (1) accepts (pvy +

[(domainType , ’ bound ’)]) ;
check scA . param (2) accepts (pvw +

[(domainType , ’ bound ’) , (domainSize , 1)]) ;
check scA . param (2) accepts (pvc6 +

[(domainType , ’ bound ’) , (domainSize , 1)]) ;
check scB . param (1) accepts (pvx +

[(domainType , ’ bound ’) , (domainSize , 2)]) ;
check scB . param (1) accepts pvz ;

}
}

Fig. 1. Solver architecture description for simple constraint problem.

MINION 3
∗∗VARIABLES∗∗
DISCRETE pvw 1 domain {1 . . 1}
BOOL pvw 1 doma i n p r op e r t i e s [3]
BOOL pvw 1 doma in p rov i d e s [7]
DISCRETE pvw 1 bounds {1 . . 1}
BOOL p vw 1 bound s p r o p e r t i e s [3]
BOOL pvw 1 bound s p r ov i d e s [7]
DISCRETE pvw 2 bounds {1 . . 1}
BOOL p vw 2 bound s p r o p e r t i e s [3]
BOOL pvw 2 bound s p r ov i d e s [7]
DISCRETE pvw {1 . . 3}
BOOL p vw p r o p e r t i e s [3]
BOOL pvw p rov i d e s [7]
. . .
∗∗CONSTRAINTS∗∗
r e i f y (watched−or ({ eq (pvw 1 domain , 1)}) , pvw 1 doma in p rov i d e s [0])
eq (pvw 1 doma in p rov i d e s [6] , 0)
eq (pvw 1 doma in p rov i d e s [3] , 0)
r e i f y (watched−or ({ eq (pvw 1 domain , 1)}) , pvw 1 doma in p rov i d e s [1])
eq (pvw 1 doma in p rov i d e s [4] , 0)
eq (pvw 1 doma in p rov i d e s [5] , 0)
r e i f y (watched−or ({ eq (pvw 1 domain , 1)}) , pvw 1 doma in p rov i d e s [2])
eq (p vw 1 doma i n p r op e r t i e s [2] , 0)
eq (p vw 1 doma i n p r op e r t i e s [1] , 0)
eq (p vw 1 doma i n p r op e r t i e s [0] , 0)
r e i f y (watched−or ({ eq (pvw 1 bounds , 1)}) , p vw 1 bound s p r ov i d e s [0])
eq (p vw 1 bound s p r ov i d e s [6] , 0)
eq (p vw 1 bound s p r ov i d e s [3] , 0)
r e i f y (watched−or ({ eq (pvw 1 bounds , 1)}) , p vw 1 bound s p r ov i d e s [1])
eq (p vw 1 bound s p r ov i d e s [4] , 0)
eq (p vw 1 bound s p r ov i d e s [5] , 0)
r e i f y (watched−or ({ eq (pvw 1 bounds , 1)}) , p vw 1 bound s p r ov i d e s [2])
eq (p vw 1 bound s p r o p e r t i e s [2] , 0)
eq (p vw 1 bound s p r o p e r t i e s [1] , 0)
eq (p vw 1 bound s p r o p e r t i e s [0] , 0)
r e i f y (watched−or ({ eq (pvw 2 bounds , 1)}) , p vw 2 bound s p r ov i d e s [0])
eq (p vw 2 bound s p r ov i d e s [6] , 0)
eq (p vw 2 bound s p r ov i d e s [3] , 0)
r e i f y (watched−or ({ eq (pvw 2 bounds , 1)}) , p vw 2 bound s p r ov i d e s [1])
eq (p vw 2 bound s p r ov i d e s [4] , 0)
eq (p vw 2 bound s p r ov i d e s [5] , 0)
r e i f y (watched−or ({ eq (pvw 2 bounds , 1)}) , p vw 2 bound s p r ov i d e s [2])
eq (p vw 2 bound s p r o p e r t i e s [2] , 0)
eq (p vw 2 bound s p r o p e r t i e s [1] , 0)
eq (p vw 2 bound s p r o p e r t i e s [0] , 0)
eq (p vw p rov i d e s [0] , 0)
eq (p vw p rov i d e s [6] , 0)
r e i f y (watched−or ({ eq (pvw , 1) , eq (pvw , 2) , eq (pvw , 3)}) , p vw p rov i d e s [3])
eq (p vw p rov i d e s [1] , 0)
r e i f y (watched−or ({ eq (pvw , 1) , eq (pvw , 2) , eq (pvw , 3)}) , p vw p rov i d e s [4])
eq (p vw p rov i d e s [5] , 0)
eq (p vw p rov i d e s [2] , 0)
r e i f y (watched−or ({ eq (pvw , 3)}) , p vw p r o p e r t i e s [2])
r e i f y (watched−or ({ eq (pvw , 2)}) , p vw p r o p e r t i e s [1])
r e i f y (watched−or ({ eq (pvw , 1) , eq (pvw , 2) , eq (pvw , 3)}) ,

p vw p r o p e r t i e s [0])
. . .
r e i f y (watched−and ({ eq (scA , 1)}) , s cA 1 pa r am 1 p r o v i d e s c h ann e l [3])
r e i f y im p l y (eq (s cA pa r am 1 p rov i d e s [3] , 1) ,

s cA 1 pa r am 1 p r o v i d e s c h ann e l [3])
r e i f y (watched−and ({ eq (scA , 1)}) , s cA 1 pa r am 1 p r o v i d e s c h ann e l [4])
r e i f y im p l y (eq (s cA pa r am 1 p rov i d e s [4] , 1) ,

s cA 1 pa r am 1 p r o v i d e s c h ann e l [4])
r e i f y (watched−and ({ eq (scA , 1)}) , s cA 1 pa r am 2 p r o v i d e s c h ann e l [3])
r e i f y im p l y (eq (s cA pa r am 2 p rov i d e s [3] , 1) ,

s cA 1 pa r am 2 p r o v i d e s c h ann e l [3])
r e i f y (watched−and ({ eq (scA , 1)}) , s cA 1 pa r am 2 p r o v i d e s c h ann e l [4])
r e i f y im p l y (eq (s cA pa r am 2 p rov i d e s [4] , 1) ,

s cA 1 pa r am 2 p r o v i d e s c h ann e l [4])
. . .
∗∗SEARCH∗∗
∗∗EOF∗∗

Fig. 2. Excerpts of constraint model for Figure 1.

6 Limitations and future work

A limitation of the current system is that we are unable to express requirements
which have a global effect on all components, such as whether to attach debug
information. At present, we are unable to express this in GRASP and therefore
cannot add it to the constraint model. We are planning on extending GRASP to
support this.

We have found that in practice while solving the generated constraint problems
for the first solution is quick, enumerating all solutions takes a long time because
of the auxiliary variables which result in sets of separate solutions that specify
the same constraint solver being found.

7 Conclusions

We have presented a way of encoding the configuration of the architecture of a
constraint solver as a constraint problem such that a solution to the problem
specifies a valid solver. This represents a major step towards automated synthesis
of constraint solvers from a library of components for a given problem. Given a
library and components and a problem specification, we can automatically and
efficiently synthesis a constraint solver.

Modelling the architecture of a constraint solver as a standard constraint
problem enables us to use off-the-shelf software to solve this complex configuration
problem using tried and tested techniques. Instead of a single solver, we can easily
generate all valid solvers by finding all solutions to the configuration problem
instead of only the first one.

Acknowledgements

GRASP was designed by Dharini Balasubramaniam and Lakshitha de Silva. Peter
Nightingale was involved with the modifications of GRASP. Lars Kotthoff is
supported by a SICSA studentship. This work was supported by EPSRC grant
EP/H004092/1. We thank the anonymous reviewer for their comments.

References

1. Balasubramaniam, D., de Silva, L., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale,
P.: Dominion: An architecture-driven approach to generating efficient constraint
solvers. In: 9th Working IEEE/IFIP Conference on Software Architecture (WICSA)
(2011)

2. Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie,
K.: Learning when to use lazy learning in constraint solving. In: ECAI. pp. 873–878
(August 2010)

3. Gent, I., Jefferson, C., Miguel, I.: MINION: A fast scalable constraint solver. In:
Proceedings of the Seventeenth European Conference on Artificial Intelligence. pp.
98–102 (2006)

4. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)
5. Hinrich, T., Love, N., Petrie, C., Ramshaw, L., Sahai, A., Singhal, S.: Using Object-

Oriented constraint satisfaction for automated configuration generation. In: DSOM
(2004)

6. Mailharro, D.: A classification and constraint-based framework for configuration.
Artif. Intell. Eng. Des. Anal. Manuf. 12, 383–397 (1998)

7. Minton, S.: Automatically configuring constraint satisfaction programs: A case
study. Constraints 1, 7–43 (1996)

8. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: AAAI.
pp. 25–32 (1990)

9. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference
on Artificial Intelligence and Cognitive Science (2008)

10. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc. (2006)

11. Sabin, E.C.F.D.: Configuration as composite constraint satisfaction. Proceedings of
the (1st) Artificial Intelligence and Manufacturing Research Planning Workshop
pp. 153–161 (1996)

12. de Silva, L., Balasubramaniam, D.: A model for specifying rationale using an
architecture description language. Tech. rep., University of St Andrews (2011)

13. Smith, D.R.: KIDS - a Knowledge-Based software development system. In: Au-
tomating Software Design. pp. 483–514. MIT Press (1990)

14. Stumptner, M., Friedrich, G.E., Haselböck, A.: Generative constraint-based config-
uration of large technical systems. Artif. Intell. Eng. Des. Anal. Manuf. 12, 307–320
(1998)

15. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

